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Abstract

Recurrent neural networks (RNNs) have long
been an architecture of interest for compu-
tational models of human sentence process-
ing. The recently introduced Transformer ar-
chitecture outperforms RNNs on many natural
language processing tasks but little is known
about its ability to model human language pro-
cessing. We compare Transformer- and RNN-
based language models’ ability to account for
measures of human reading effort. Our anal-
ysis shows Transformers to outperform RNNs
in explaining self-paced reading times and neu-
ral activity during reading English sentences,
challenging the widely held idea that human
sentence processing involves recurrent and im-
mediate processing and provides evidence for
cue-based retrieval.

1 Introduction

Recurrent Neural Networks (RNNs) are widely
used in psycholinguistics and Natural Language
Processing (NLP). Psycholinguists have looked to
RNNs as an architecture for modelling human sen-
tence processing (for a recent review, see Frank
et al., 2019). RNNs have been used to account
for the time it takes humans to read the words of a
text (Monsalve et al., 2012; Goodkind and Bicknell,
2018) and the size of the N400 event-related brain
potential as measured by electroencephalography
(EEG) during reading (Frank et al., 2015; Rabovsky
et al., 2018; Brouwer et al., 2017; Schwartz and
Mitchell, 2019).

Simple Recurrent Networks (SRNs; Elman,
1990) have difficulties capturing long-term pat-
terns. Alternative RNN architectures have been
proposed that address this issue by adding gating
mechanisms that control the flow of information
over time; allowing the networks to weigh old and
new inputs and memorise or forget information
when appropriate. The best known of these are
the Long Short-Term Memory (LSTM; Hochreiter

and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU; Cho et al., 2014) models.

In essence, all RNN types process sequential
information by recurrence: Each new input is pro-
cessed and combined with the current hidden state.
While gated RNNs achieved state-of-the-art results
on NLP tasks such as translation, caption genera-
tion and speech recognition (Bahdanau et al., 2015;
Xu et al., 2015; Zeyer et al., 2017; Michel and Neu-
big, 2018), a recent study comparing SRN, GRU
and LSTM models’ ability to predict human read-
ing times and N400 amplitudes found no significant
differences (Aurnhammer and Frank, 2019).

Unlike the LSTM and GRU, the recently intro-
duced Transformer architecture is not simply an
improved type of RNN because it does not use re-
currence at all. A Transformer cell as originally
proposed (Vaswani et al., 2017) consists of self-
attention layers (Luong et al., 2015) followed by
a linear feed forward layer. In contrast to recur-
rent processing, self-attention layers are allowed to
‘attend’ to parts of previous input directly.

Although the Transformer has achieved state-of-
the art results on several NLP tasks (Devlin et al.,
2019; Hayashi et al., 2019; Karita et al., 2019),
not much is known about how it fares as a model
of human sentence processing. The success of
RNNs in explaining behavioural and neurophysi-
ological data suggests that something akin to re-
current processing is involved in human sentence
processing. In contrast, the attention operations’
direct access to past input, regardless of temporal
distance, seems cognitively implausible.

We compare how accurately the word sur-
prisal estimates by Transformer- and GRU-based
language models (LMs) predict human process-
ing effort as measured by self-paced reading,
eye tracking and EEG. The same human read-
ing data was used by Aurnhammer and Frank
(2019) to compare RNN types. We believe the
introduction of the Transformer merits a simi-
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lar comparison because the differences between
Transformers and RNNs are more fundamental
than among RNN types. All code used for the
training of the neural networks and the anal-
ysis is available at https://github.com/
DannyMerkx/next_word_prediction

2 Background

2.1 Human Sentence Processing

Why are some words more difficult to process than
others? It has long been known that more pre-
dictable words are generally read faster and are
more likely to be skipped than less predictable
words (Ehrlich and Rayner, 1981). Predictabil-
ity has been formalised as surprisal, which can
be derived from LMs. Neural network LMs are
trained to predict the next word given all previous
words in the sequence. After training, the LM can
assign a probability to a word: it has an expecta-
tion of a word w at position t given the preced-
ing words w1, ..., wt−1. The word’s surprisal then
equals − logP (wt|w1, ..., wt−1).

Hale (2001) and Levy (2008) related surprisal
to human word processing effort in sentence com-
prehension. In psycholinguistics, reading times are
commonly taken as a measure of word process-
ing difficulty, and the positive correlation between
reading time and surprisal has been firmly estab-
lished (Mitchell et al., 2010; Monsalve et al., 2012;
Smith and Levy, 2013). The N400, a brain poten-
tial peaking around 400 ms after stimulus onset
and associated with semantic incongruity (Kutas
and Hillyard, 1980), has been shown to correlate
with word surprisal in both EEG and MEG studies
(Frank et al., 2015; Wehbe et al., 2014).

In this paper, we compare RNN and Transformer-
based LMs on their ability to predict reading time
and N400 amplitude. Likewise, Aurnhammer and
Frank (2019) compared SRNs, LSTMs and GRUs
on human reading data from three psycholinguistic
experiments. Despite the GRU and LSTM gener-
ally outperforming the SRN on NLP tasks, they
found no difference in how well the models’ sur-
prisal predicted self-paced reading, eye-tracking
and EEG data.

2.2 Comparing RNN and Transformer

According to (Levy, 2008), surprisal acts as a
‘causal bottleneck’ in the comprehension process,
which implies that predictions of human processing
difficulty only depend on the model architecture

Figure 1: Comparison of sequential information flow
through the Transformer and RNN, trained on next-
word prediction.

through the estimated word probabilities. Here we
briefly highlight the difference in how RNNs and
Transformers process sequential information. The
activation flow through the networks is represented
in Figure 1.1

In an RNN, incoming information is immedi-
ately processed and represented as a hidden state.
The next token in the sequence is again immedi-
ately processed and combined with the previous
hidden state to form a new hidden state. Across
layers, each time-step only sees the corresponding
hidden state from the previous layer in addition
to the hidden state of the previous time-step, so
processing is immediate and incremental. Infor-
mation from previous time-steps is encoded in the
hidden state, which is limited in how much it can
encode so decay of previous time-steps is implicit
and difficult to avoid. In contrast, the Transformer’s
attention layer allows each input to directly receive
information from all previous time-steps.2 This ba-
sically unlimited memory is a major conceptual dif-
ference with RNNs. Processing is not incremental
over time: Processing of word wt is not dependent
on hidden states H1 through Ht−1 but on the unpro-
cessed inputs w1 through wt−1. Consequently, the
Transformer cannot use implicit order information,
rather, explicit order information is added to the
input.

However, a uni-directional Transformer can also
use implicit order information as long as it has
multiple layers. Consider H1,3 in the first layer
which is based on w1, w2 and w3. Hidden state

1Note that the figure only shows how activation is propa-
gated through time and across layers, not how specific architec-
tures compute the hidden states (see Elman (1990); Hochreiter
and Schmidhuber (1997); Cho et al. (2014); Vaswani et al.
(2017) for specifics on the SRN, LSTM, GRU and Trans-
former, respectively).

2Language modelling is trivial if the model also receives
information from future time-steps, as is commonly allowed in
Transformers. Our Transformer is thus uni-directional, which
is achieved by applying a simple mask to the input.

https://github.com/DannyMerkx/next_word_prediction
https://github.com/DannyMerkx/next_word_prediction
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H1,3 does not depend on the order of the previous
inputs (any order will result in the same hidden
state). However, H2,3 depends on H1,1, H1,2 and
H1,3. If the order of the inputs w1, w2, w3 is dif-
ferent, H1,3 will be the same hidden state but H1,1

and H1,2 will not, resulting in a different hidden
state at H2,3.

Unlike Transformers, RNNs are inherently se-
quential, making them seemingly more plausible as
a cognitive model. Christiansen and Chater (2016)
argue for a ‘now-or-never’ bottleneck in language
processing; incoming inputs need to be rapidly re-
coded and passed on for further processing to pre-
vent interference from the rapidly incoming stream
of new material. In line with this theory, Futrell
et al. (2020) proposed a model of lossy-context sur-
prisal based on a lossy representation of memory.
Recurrent processing, where input is forgotten as
soon as it is processed and only available for sub-
sequent processing through a bounded-size hidden
state, is more compatible with these theories than
the Transformer’s attention operation.

3 Methods

We train LMs with Transformer and GRU architec-
tures and compare how well their surprisal explains
human behavioural and neural data. Although
a state-of-the-art pre-trained model can achieve
higher LM quality, we opt to train our own models
for several reasons. Firstly, the predictive power
of surprisal increases with language model quality
(Goodkind and Bicknell, 2018), so to separate the
effects of LM quality from those of the architectural
differences, the architectures must be compared at
equal LM capability. We also need to make sure
both models have seen the same sentences. Train-
ing our own models gives us control over training
material, hyper-parameters and LM quality to make
a fair comparison.

Perhaps most importantly, we test our models
on previously collected human sentence processing
data. Most popular large-scale pre-trained models
use efficient byte pair encodings as input rather
than raw word tokens. This is a useful technique
for creating the best possible LM, but also a crucial
mismatch with how our test material was presented
to the human subjects. It is not possible to directly
compare the surprisal generated on BPEs to whole-
word measures such as gaze durations and reading
times.

3.1 Language Model Architectures

We first trained a GRU model using the same ar-
chitecture as Aurnhammer and Frank (2019): an
embedding layer with 400 dimensions per word, a
500-unit GRU layer, followed by a 400-unit linear
layer with a tanh activation function, and finally
an output layer with log-softmax activation func-
tion. All LMs used in this experiment use randomly
initialised (i.e., not pre-trained) embedding layers.

We implement the Transformer in PyTorch fol-
lowing Vaswani et al. (2017). To minimise the
differences between the LMs, we picked parame-
ters for the Transformer such that the total number
of weights is as close as possible to the GRU model.
We also make sure the embedding layers for the
models share the same initial weights. The Trans-
former model has an embedding layer with 400
dimensions per word, followed by a single Trans-
former layer with 8 attention heads and a fully
connected layer with 1024 units, and finally an
output layer with log-softmax activation function.
The total number of parameters for our single-layer
GRU and Transformer models are 9,673,137 and
9,581,961 respectively.

We also train two-layer GRU and Transformer
models. Neural networks tend to increase in ex-
pressiveness with depth (Abnar et al., 2019; Giu-
lianelli et al., 2018) and a second layer allows
the Transformer to use implicit order information,
as explained above. While results (see Section
4.2) showed that the two-layer Transformer outper-
formed the single-layer Transformer in explaining
the human reading data, the Transformer did not
further benefit from an increase to four layers so we
include only the single and two layer models. We
did not see a performance increase in the two-layer
GRU over the the single-layer GRU and therefore
did not try to further increase its layer depth.

3.2 Language Model Training

We train our LMs on Section 1 of the English Cor-
pora from the Web (ENCOW 2014; Schäfer, 2015),
consisting of sentences randomly selected from the
web. We first exclude word tokens containing nu-
merical values or punctuation other than hyphens
and apostrophes, and treat common contractions
such as ‘don’t’ as a single token. Following Au-
rnhammer and Frank (2019) we then select the
10,000 most frequent word types from ENCOW.
134 word types from the test data (see Section 3.3)
that were not covered by these most frequent words
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are added for a final vocabulary of 10,134 words.
We select the sentences from ENCOW that con-
sist only of words in the vocabulary and limit the
sentence length to 39 tokens (the longest sentence
in the test data). Our training data contains 5.9M
sentences with a total of 85M tokens.

The LMs are trained on a standard next-word pre-
diction task with cross-entropy loss. In the Trans-
former, we apply a mask to the upper diagonal of
the attention matrix such that each position can
only attend to itself and previous positions. To ac-
count for random effects of weight initialisation
and data presentation order we train eight LMs of
each type and share the random seeds between LM
types so each random presentation order and em-
bedding layer initialisation is present in both LM
types. The LMs were trained for two epochs using
stochastic gradient descent with a momentum of
0.9. Initial learning rates (0.02 for the GRU and
0.005 for the Transformer) were chosen such that
the language modelling performance of the GRU
and Transformer models are as similar as possi-
ble. The learning rate was halved after 1

3 ,
2
3 , and

all sentences during the first epoch and then kept
constant over the second epoch. LMs were trained
on minibatches of ten sentences.

3.3 Human Reading Data

We use the self paced reading (SPR, 54 partici-
pants) and eye-tracking (ET, 35 participants) data
from Frank et al. (2013) and the EEG data (24
participants) from Frank et al. (2015). In these
experiments, participants read English sentences
from unpublished novels. In the SPR and EEG
experiments, the participants were presented sen-
tences one word at a time. In the SPR experiment
the reading was self paced while in the EEG ex-
periment words had a fixed presentation time. In
the ET experiment, participants were shown full
sentences while an eye tracking device monitored
which word was fixated. The SPR stimuli consist
of 361 sentences, with the EEG and ET stimuli
being a subset of the 205 shortest SPR stimuli. The
experimental measures representing processing ef-
fort of a word are reading time for the SPR data
(time between key presses), gaze duration for the
ET data (time a word is fixated before the first fixa-
tion on a different word) and N400 amplitude for
the EEG data (average amplitude at the centropari-
etal electrodes between 300 and 500 ms after word
onset; Frank et al., 2015).

We exclude from analysis sentence-initial and
-final words, and words directly followed by a
comma. From the SPR and ET data we also ex-
clude the word following a comma, and words
with a reading time under 50 ms or over 3500
ms. From the EEG data we exclude datapoints
that were marked by Frank et al. (2015) as contain-
ing artifacts. The numbers of data points for SPR,
ET, and EEG were 136,727, 33,001, and 32,417,
respectively.

3.4 Analysis Procedure

At 10 different points during training (1K, 3K, 10K,
30K, 100K, 300K, 1M, 3M sentences and after
the first and second epoch) we save each LM’s
parameters and estimate a surprisal value on each
word of the 361 test sentences.

3.4.1 Linear Mixed Effects Regression
Following Aurnhammer and Frank (2019), we anal-
yse how well each set of surprisal values predicts
the human sentence processing data using linear
mixed effects regression (LMER) models with the
MixedModels package in Julia (Bates et al., 2019).
For each datasets (SPR, ET, and EEG) we fit a
baseline LMER model which takes into account
several factors known to influence processing ef-
fort. The dependent variables for the SPR and ET
models are log-transformed reading time and gaze
duration, respectively; for the EEG model it is the
size of the N400 response. All LMER models in-
clude log-transformed word frequency (taken from
SUBTLEXus; Brysbaert and New, 2009), word
length (in characters) and the word’s position in the
sentence as fixed effects.

Spill-over occurs when processing a word is not
yet completed when the next word is read (Rayner,
1998).To account for spill-over in the SPR and ET
data we include the previous word’s frequency and
length. For the SPR data, we include the previous
word’s reading time to account for the high corre-
lation between consecutive words’ reading times.
For the EEG data, we include the baseline activ-
ity (average amplitude in the 100 ms before word
onset). All fixed effects were standardised, and all
LMER models include two-way interaction effects
between all fixed effects, by-subject and by-item
(word token) random intercepts, and by-subject
random slopes for all fixed effects.

After fitting the baseline models, we include the
surprisal values (for SPR and ET also the previous
word’s surprisal) as fixed effects, but no new in-



16

teractions. For each LMER model with surprisal,
we calculate the log-likelihood ratio with its corre-
sponding baseline model, indicating the decrease
in model deviance due to adding the surprisal mea-
sures. The more the surprisal values decrease the
model deviance, the better they predict the human
reading data. We call this log-likelihood ratio the
goodness-of-fit between the surprisal and the data.
Surprisal from the early stages of training often
received a negative coefficient, contrary to the ex-
pected longer reading times and higher N400 am-
plitude for higher surprisal. This could be caused
by collinearity, most likely between surprisal and
the log-frequency, which was confirmed by their
very high correlation (> .9) and Variance Infla-
tion Factors (> 15) (Tomaschek et al., 2018). Ap-
parently, the neural networks are very sensitive to
word frequency before they learn to pick up on
more complex relations in the data. We indicate af-
fected goodness-of-fit scores by adding a negative
sign and excluded these scores from the next stage
of analysis.

3.4.2 Generalised Additive Modelling
As said before, it is well known that surprisal val-
ues derived from better LMs are a better fit to hu-
man reading data (Monsalve et al., 2012; Frank
et al., 2015; Goodkind and Bicknell, 2018). We use
generalised additive modelling (GAM) to assess
whether the LMs differ in their ability to explain
the human reading data at equal language mod-
elling capability, that is, because of their architec-
tural differences and not due to being a better LM.
The log-likelihood ratios obtained in the LMER
analyses are a measure of how well each LM ex-
plains the human reading data. We use each LM’s
average log probability over the datapoints used
in the LMER analyses as a measure of the LM’s
language modelling capability. Separate GAMs
are fit for each of the three datasets, using the R
package mgcv by (Wood, 2004). LM type (single-
layer GRU, two-layer GRU, etc.) is used as an
unordered factor so that separate smooths are fit for
each LM type. Furthermore, we add training repeti-
tion (i.e., the random training order and embedding
initialisation) as a random smooth effect.

4 Results

4.1 LM Quality and Goodness-of-Fit

Figure 2 shows the goodness-of-fit values from the
LMER models and the smooths fit by the GAMs.

Overall we see the expected relationship where
higher LM quality results in higher goodness of
fit. The LM quality increases monotonically during
training, meaning the clusters seen in the scatter-
plots correspond to the points during training where
the network parameters were stored. The models
do seem to reach similar levels of LM quality at
the end of training: The average log probability of
the best LM (two-layer Transformer) is only 0.17
higher than the worst LM (two-layer GRU).

4.2 GAM Comparisons
The bottom row of Figure 2 shows the estimated
differences between the GAM curves in the mid-
dle row. The two-layer GRU does not seem to im-
prove over the single-layer GRU. It outperforms the
single-layer GRU only in the early stages of train-
ing on the EEG data, with the single-layer GRU
outperforming it in the later stages and on the SPR
data. The two-layer GRU also reaches lower LM
quality on all datasets. For the Transformers we
see the opposite, with the two-layer Transformer
outperforming the single-layer Transformer on the
N400 data at the end of training and never being
outperformed by its shallower counterpart. The
two-layer Transformer reaches a higher maximum
LM quality on all datasets.

For the comparison between architectures, we
only compare the best model of each type, i.e.,
the single-layer GRU and two-layer Transformer.
The GRU outperforms the Transformer in the early
stages of training (3K-300K sentences) on the
N400 data, but the Transformer outperforms the
GRU at the end of training on both the SPR and
N400 data. On the gaze duration data, there are
some performance differences with the Transform-
ers and GRUs outperforming each other at different
points during training but there are no differences
in the later stages of training.

4.3 Shorter and Longer Sentences in SPR
The SPR data contains a subset of sentences longer
(in number of characters) than those in the EEG/ET
data. As the Transformer has unlimited memory
of past inputs, the presence of longer sentences
could explain why it outperformed the GRU on the
SPR data. We repeated the analysis of the single-
and two-layer GRUs and Transformers but only
on those sentences from the SPR data that also
occurred in the EEG/ET data. On these shorter
sentences, there are no notable performance differ-
ences between any of the LM architectures (Figure
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Figure 2: Top row: results of the linear mixed effects regression analysis grouped by LM type. These scatter-plots
show the resulting goodness-of-fit values plotted against the average log-probability over the included test data.
Negative goodness-of-fit indicates effects in the unexpected direction. Middle row: smooths resulting from the
GAMs fitted on the goodness-of-fit data (excluding negative values), with their 95% confidence intervals. Bottom
row: estimated differences in goodness-of-fit score. The markings on the x-axis and the vertical lines indicate
intervals where zero is not within the 95% confidence interval. Each curve represents a comparison between
two models, with an estimated difference above zero meaning the first model performed better and vice versa for
differences below zero.
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3). When we test on only those sentences that were
not included in the EEG/ET experiments (i.e., the
longer sentences), the Transformers outperform the
GRUs as they did on the complete SPR dataset.

5 Discussion

We trained several language models based on Trans-
former and GRU architectures to investigate how
well these neural networks account for human read-
ing data. At equal LM quality, the Transformers
generally outperform the GRUs. It seems that their
attention-based computation allows them to better
fit the self-paced reading and EEG data. This is
an unexpected result, as we considered the Trans-
former’s unlimited memory and access to past in-
puts implausible given current theories on human
language processing.

Notably, the Transformer outperformed the GRU
on the two datasets where sentences were presented
to participants word by word (SPR and EEG).
Neurophysiological evidence suggests that natu-
ral (whole sentence) reading places different de-
mands on the reader than word-by-word reading,
leading to different encoding and reading strategies
(Metzner et al., 2015). Metzner et al. speculate
that word-by-word reading places greater demand
on working memory, leading to faster retrieval of
previously processed material. This seems to be
supported by our results; the Transformer has di-
rect access to previous inputs and hidden states and
is better at explaining the RT and N400 data from
the word-by-word reading experiments. However,
when we split the SPR data by sentence length, the
results suggest that the Transformers’ advantage
is mainly due to performing better on the longer
SPR sentences. On the other hand, the Transformer
did outperform the GRU on the EEG dataset which
contains only the shorter subset of sentences. The
question remains whether the Transformer’s unlim-
ited memory is an advantage on longer sentences
only, or if it could also explain why it performs bet-
ter on data presented word-by-word. This question
could be resolved with new data gathered in experi-
ments where the same set of stimuli is used in SPR
and EEG. Furthermore, future research could do a
more specific error analysis to identify on which
sentences the Transformer performs better, and per-
haps even on which sentences the GRU performs
better. Such an analysis may reveal the models are
sensitive to certain linguistic properties allowing
us to form testable hypotheses.

Surprisingly, adding a GRU layer did not im-
prove performance, and even hurt it on reading
time data, despite previous research showing that
increasing layer depth in RNNs allows them to
capture more complex patterns in linguistic data
(Abnar et al., 2019; Giulianelli et al., 2018). The
Transformers did show improvement when adding
a second layer but did not improve much with four
layers. As explained in Section 2, a single-layer
Transformer cannot make use of implicit order in-
formation in the sequence. When adding a single
layer to our Transformer, the second layer operates
no longer on raw input embeddings but on contex-
tualised hidden states allowing the model to utilise
implicit input order information. Further layers in-
crease the complexity of the model but do not make
such a fundamental difference in how input is pro-
cessed. In future work we could investigate how
powerful this implicit order information is, and
whether multi-layer Transformer LMs no longer
require the additional explicit order information.

Our results raise the question how good recur-
rent models are as models of human sentence pro-
cessing if they are outperformed by a cognitively
implausible model. However, one could also inter-
pret the results in favour of Transformers (and the
attention mechanism) being plausible as a cogni-
tive model. While unlimited working memory is
certainly implausible, some argue that the capac-
ity of working memory is even smaller than often
thought (only 2 or 3 items) and that language pro-
cessing depends on rapid direct-access retrieval of
items from storage (McElree, 1998; Lewis et al.,
2006). Cue based retrieval theory posits that items
are rapidly retrieved based on how well they match
the cue (Parker et al., 2017). This is compatible
with the attention mechanism used in Transformers
which, simply put, weighs previous inputs based
on their similarity to the current input. Cue-based
retrieval models due have a recency bias due to
decaying activation of memory representations but
it is possible to implement a similar mechanism in
Transformers (Peng et al., 2021).

Interestingly, Lewis et al. (2006) claims that se-
rial order information is retrieved too slowly to
support sentence comprehension. However, our
two-layer Transformer outperforms the single layer
Transformer, presumably due to order information
implicitly arising as a natural result from the atten-
tion operation being performed. The use of serial
order information could be compatible with cue-
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Figure 3: Top row: the results of the linear mixed effects regression analysis on the SPR data, where the data is split
by whether the sentences were present in the ET/EEG experiment or not. These scatter-plots show the resulting
goodness-of-fit values plotted against the average surprisal over the included test data. Middle row: the smooths
resulting from the GAMs fitted on the goodness-of-fit data, with their 95% confidence intervals. Bottom row: the
estimated differences in goodness-of-fit score with intervals where 0 is not withing the 95% confidence interval
marked by vertical lines and markers on the x-axis. Each curve represents a comparison between two models, with
an estimated difference above zero meaning the first model performed better and vice versa for differences below
zero.
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based retrieval models if the order information can
naturally arise from the retrieval operations.

In conclusion, we investigated how the Trans-
former architecture holds up as a model of human
sentence processing compared to the GRU. Our
Transformer LMs are better at explaining the EEG
and SPR data which contradicts the widely held
idea that human sentence processing involves recur-
rent and immediate processing with lossy retrieval
of previous input and provides evidence for cue-
based retrieval in sentence processing.
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