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Abstract

This system description paper describes our
participation in CMCL 2021 shared task on
predicting human reading patterns. Our fo-
cus in this study is making use of well-known,
traditional oculomotor control models and ma-
chine learning systems. We present experi-
ments with a traditional oculomotor control
model (the EZ Reader) and two machine learn-
ing models (a linear regression model and a re-
current network model), as well as combining
the two different models. In all experiments
we test effects of features well-known in the lit-
erature for predicting reading patterns, such as
frequency, word length and word predictabil-
ity. Our experiments support the earlier find-
ings that such features are useful when com-
bined. Furthermore, we show that although
machine learning models perform better in
comparison to traditional models, combination
of both gives a consistent improvement for pre-
dicting multiple eye tracking variables during
reading.

1 Introduction

Oculomotor control in reading has been a well-
established domain in eye tracking research. From
the perspective of perceptual and cognitive mech-
anisms that drive eye movement control, the char-
acteristics of the visual stimuli is better controlled
in reading research than visual scene stimuli. Sev-
eral computational models have been developed
for the past two decades, which aimed at modeling
the relationship between a set of independent vari-
ables, such as word characteristics and dependent
variables, such as fixation duration and location
(Kliegl et al., 2006).

Based on the theoretical and experimental re-
search in reading, the leading independent vari-
ables include the frequency of a word in daily use,
the length of the word and its sentential predictabil-
ity. The term sentential predictability (or word
predictability) is used to define predictability score

which is the probability of guessing a word from
the sequence of previous words of the sentence
(Kliegl et al., 2004). The dependent variables in-
clude numerous metrics, including fixation dura-
tion metrics such as first fixation duration (FFD)
and total gaze time on a word, as well as location
and numerosity metrics such as the location of a
fixation on a word and gaze-regressions.

A major caveat of the computational models that
have been developed since the past two decades
is that they weakly address linguistic concepts be-
yond the level of the fixated word, with a few ex-
ceptions, such as the spillover effects related to
the preview of a next word n+1 during the current
fixation on word n (Engbert et al., 2005). These
models are also limited in their recognition of syn-
tactic, semantic and discourse characteristics of the
text due to their complexity, despite they are in-
dispensable aspects of reading for understanding.
Machine Learning (ML) models of oculomotor con-
trol address some of those limitations by presenting
high predictive power. However, the holistic ap-
proach of the learning models has drawbacks in
terms of the explainability of the model underpin-
nings. In this study, we present experiments with a
traditional model of oculomotor control in reading,
namely the EZ Reader (Reichle et al., 2003), two
ML models (a regression model and a recurrent net-
work model), and their combination. We present an
evaluation of the results by focusing on the model
inputs that reveal relatively higher accuracy.

Accordingly, the aim of the present paper is to
investigate the effectiveness of both types of mod-
els and their combinations on predicting human
reading behavior as set up by the CMCL 2021
shared task (Hollenstein et al., 2021). The task
is defined as predicting five eye-tracking features,
namely number of fixations (nFix), first fixation
duration (FFD), total reading time (TRT), go-past
time (GPT), and fixation proportion (fixProp). The
eye-tracking data of the Zurich Congitive Language
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Processing Corpus (ZuCo 1.0 and ZuCo 2.0) were
used (Hollenstein et al., 2018), (Hollenstein et al.,
2019). Details of these variables and further in-
formation on the data set can be found in the task
description paper (Hollenstein et al., 2021).

2 Methodology

We created our models and identified the input fea-
tures following the findings in research on oculo-
motor control in reading. The previous studies have
shown that word length, frequency and sentential
predictability are well known parameters that in-
fluence eye movement patterns in reading (Rayner,
1998). There exist further parameters that influence
eye movement characteristics. For instance, the lo-
cation of a word in the sentence has been proposed
as a predictor on First Fixation Duration (Kliegl
et al., 2006). Therefore, we used those additional
parameters to improve the accuracy of the learning
models, as well as running a traditions oculomo-
tor control model (viz., the EZ Reader) with its
required parameter set. Below we present a de-
scription of the models that have been employed in
the present study.

2.1 System Description

2.1.1 The EZ Reader Model
EZ Reader has been developed as a rule-based
model of oculomotor control in reading. It predicts
eye movement parameters, such as single fixation
duration, first fixation duration and total reading
time. The model efficiently addresses some of ex-
perimental research findings in the reading liter-
ature. For example, a saccade completion takes
about 20-50 msec to complete, and saccade length
is about 7-9 characters (Rayner, 2009). The model
consists of three main processing modules. The
oculomotor system is responsible for generating
and executing saccades by calculating the saccade
length. The visual system controls the attention of
the reader. Finally, the word identification system
calculates the time for identifying a word, mainly
based on the word length and the frequency of word
in daily use. EZ Reader accepts four arguments as
its input; frequency (count in million), word length
(number of characters), sentential predictability of
the word, and the word itself. The output features
of the model are given in Table 1.

Among those features, FFD and TT outputs of
EZ Reader directly map to FFD and TRT (Total
Reading Time) in the training data of the CMCL

Feature Description

EZ-SFD Single Fixation Duration
EZ-FFD First Fixation Duration
EZ-GD Gaze Duration
EZ-TT Total Reading Time
EZ-PrF Fixation Probability
EZ-Pr1 Probability of making exactly one fixation
EZ-Pr2 Probability of making two or more fixations
EZ-PrS Probability of skipping

Table 1: EZ Reader output features.

EZ Reader Training Data MAE

TT Total Reading Time 3.25
FFD First Fixation Duration 9.14

Table 2: Mean Absolute Error (MAE) scores obtained
by the EZ Reader model

2021 shared task. The EZ reader output features
are not sufficient enough to generate mean absolute
error values for each feature in the training data.
Therefore we were only able to calculate mean
absolute error values for FFD and TRT. Table 2
presents the Mean Absolute Error (MAE) values
of the test set, when predicted by the EZ Reader
model. In the design of the EZ Reader model, we
assumed the simulation count as 2000 participants,
which means that the model runs 2000 distinct sim-
ulations and the result scores consist of the average
of the simulation results. 2000 participants is the
optimum number for our case in terms of simula-
tion time and the MAE it produces. Above 2000
participants MEA did not decrease significantly.

A major challenge in designing the EZ Reader
model is that the model is not able to produce the
output values for some of the words, labeling them
Infinity. Those are usually long words with rela-
tively low frequency. In order to find an optimal
value to fill in the Infinity slots, we calculated the
mean absolute error between TRT of the training
data and the TT values of EZ Reader model results,
as an operational assumption. The calculation re-
turned 284 ms. Figure 1 shows the MAE scores
over given values between 0 to 500. This value is
close to the average fixation duration for skilled
readers which is about 200ms - 250ms (Rayner,
1998). Therefore, we preserved the assumption in
model development pipeline.
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Figure 1: Mean Absolute Error scores over given val-
ues for Infinity slot

In the present study, besides calculating the mean
absolute error values for the EZ Reader model, we
employed the outputs of the EZ Reader model as
inputs to the LSTM model. Below, we present
the model for the Linear Baseline and the LSTM
model.

2.1.2 Linear Baseline
Our linear model is a least-squares regression
model with L2 regularization (ridge regression).
The input features to the regression model include
the main word-level features, frequency, word
length and predictability discussed above. Word
frequencies are computed using a large news cor-
pus of approximately 2.7 million articles.1 The pre-
dictability features are obtained using the recurrent
network described in Section 2.2. Besides these
features, we also include some linguistic features
including the POS tag, dependency relation, and
signed distance from the head, as well as named
entity tag. The POS and dependency information is
obtained using version 1.2 of UDPipe using the pre-
trained models released by the authors (Straka and
Straková, 2017; Straka and Straková, 2019). We
used Apache OpenNLP (Apache Software Foun-
dation, 2014) for named entity recognition. The
model input also included indicator features for
beginning and end of sentence, and whether the
word is combined with a punctuation mark or not
(see Table 3). We also included the features from
EZ-reader described in Section 2.1.1 as additional
inputs to the regression model.

The predictions were based on a symmetric win-
dow around the target word, where all the above
features for the target word and ±k words were
concatenated. We selected the optimal window
size as well as the regularization constant (alpha)

1‘All the news’ data set, available from
https://components.one/datasets/
all-the-news-2-news-articles-dataset/.

Feature Description Used in model

Word Frequency (Fr) Word occurrence per million LB-LSTM
Word Location Zero based index of the word in sentence. LB-LSTM
Word Length (WL) Character count of the word LB-LSTM
Word Predictability (Pr) Probability of knowing a word before reading it LB-LSTM
StartPunct The presence of a punctuation before the word LB-LSTM
EndPunct The presence of the punctuation at the end LB-LSTM
EndSent Is the last word of the sentence or not LB-LSTM
POS Core part-of-speech category LB
Dep Universal syntactic relations LB
HeadDist Signed distance from the head LB
Ner Named entity category (person and company names, etc.) LB
EZ Reader simulation outputs see Table 1 LB-LSTM

Table 3: Input features used in Linear Baseline and
LSTM model.

for the ridge regression model via grid search. The
grid search is used to determine a single same al-
pha and single window size for all target variables.
We use the ridge regression implementation of the
Python scikit-learn library (Pedregosa et al., 2011).

2.1.3 LSTM Model
The LSTM model consists of an LSTM layer with
128 units followed by two dense layers and 5-
dimensional output layer. The input features of
the model include word length in total number of
characters, word predictability, frequency per mil-
lion, the location of the word in the sentence, the
presence of a punctuation before the word, the pres-
ence of the punctuation at the end, and the end of
sentence, being the last word of the sentence or
not. Finally, the input features included the outputs
of the typical EZ Reader model (given in Table
1). The output features of the LSTM model the
variables identified by the CMCL 2021 share task,
namely nFix, FFD, GPT, TT, and fixProp.

2.2 Predictability Scores
Sentential predictability of a word in a context is
a well-established predictor of eye movement pat-
terns in reading (Fernández et al., 2014; Kliegl
et al., 2004; Clifton et al., 2016). We used two
methods to generate the predictability values. First,
we used the average human predictability scores
from the Provo Corpus (Luke and Christianson,
2018), which is a public eye-tracking dataset col-
lected from real participants. The Provo Corpus
includes the cloze task results in which participants
are given the starting word of the sentence and ex-
pected to guess the next word. The actual word
is shown after the participant’s guess and predic-
tion for the next word is expected. This process
continues for all of the words. Prediction value is
generated for each word in corpus by simply calcu-
lating the ratio of the correct guesses to all guesses
for the word. We selected 1.0 as the default pre-
diction value for words which does not exist in the

https://components.one/datasets/all-the-news-2-news-articles-dataset/
https://components.one/datasets/all-the-news-2-news-articles-dataset/
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Model nFix FFD GPT TRT fixProp

LAST 3.88 0.66 2.20 1.52 10.81
Linear 4.36 0.74 2.50 1.76 12.55
LSTM 4.62 0.76 3.61 1.84 13.06
Baseline 7.30 1.15 3.78 2.78 21.78

Table 4: Official scores (MAE) of our models in com-
parison to mean baseline and the first team (LAST) in
the competition.

Provo Corpus. The mean absolute error for TRT
between EZ Reader output and CMCL train data
was at minimum when default prediction value is
1.0.

Second, we developed a separate LSTM model
that produced sentential predictability values. For
this, we trained the model by Wikipedia.2 Since the
primary goal of the model was to predict eye move-
ment patterns per word, we built a word-level lan-
guage model. The model consisted of two LSTM
layers with 1200 hidden units. It was trained with
a learning rate of 0.0001, and a dropout value was
set to 0.2, with the Adam optimizer. After the
training, we obtained the predictability scores for
each word based on their sentential context. These
scores were then used as an additional feature in
our final model besides the other features, such as
word length and frequency.

Provo Corpus predictability values are indepen-
dent from the context of text used in the shared
task. However using predictability values from the
first method gave better results than the calculated
predictability. Therefore we used Provo Corpus
predictability values for the results in the following
sections.

3 Results

We participated in the CMCL 2021 shared task
with two submissions, one with the linear model
described in Section 2.1.2, and the other with the
LSTM model (Section 2.1.3). Table 4 presents
the scores of our system in the competition, in
comparison to mean baseline and the best system.
Our systems perform substantially better than the
baseline, and the difference between the scores of
the participating teams are comparatively small.
Among our models, the linear model performed
slightly better, obtaining 10th place in the compe-

2We use the sentence segmented corpus from
https://www.kaggle.com/mikeortman/
wikipedia-sentences.

Features nFix FFD GPT TRT fixProp

Fr 4.80 2.20 2.75 1.85 13.61
WL 6.73 0.77 2.78 1.84 12.94
Pr 5.64 0.85 3.11 2.15 15.17
EZ-SFD 6.26 1.00 3.11 2.34 18.21
WL x Pr x Fr 4.35 0.71 2.68 1.73 11.99
WL x Pr 4.28 0.71 2.70 1.68 12.07
EZ-SFDxFrxWLxPr 4.21 0.73 2.57 1.64 12.11

Table 5: MAE for with different feature combinations.

tition. However, experimenting with the LSTM
model gave us more information about the basic
features of eye movements in reading and their ef-
fects on fixation durations. For the remainder of
this section, we will present further experiments
with the LSTM model, demonstrating the effects
of various features discussed above.

3.1 Further Experiments

To demonstrate the effectiveness of the features de-
scribed above, we trained a number of models that
employed a set of input variables in isolation, as
well as the models trained by their combination.
In particular, we trained a model on frequency,
then predictability, and then word length. Then
we trained models by their combinations as input
features. Each model produced a MAE (mean abso-
lute error) value. We then calculated the average of
the MAE values for each model output (nFix, FFD,
GPT, TRT, and FixProp) and their Standard De-
viation (SD). Finally, we calculated how far each
model was away from the average MAE in terms
of the SDs. Table 5 presents MAE scores for each
setting.

The figures in the Appendix A show the distance
of the models from the center of the circle, where
the center represents the best MAE score and the
circle represents the distance covered by one SD
(Standard Deviation) from the best accuracy (i.e.
the center). The models that received the combina-
tion of frequency, predictability, word length and
E-Z SFD (i.e., E-Z Reader’s single fixation dura-
tion prediction) as the input returned the best MAE
values for four of five dependent variables. As an
example, consider the MAE values for the models
developed for predicting the nFix (the number of
fixations on a word). Figure 2 shows that the ma-
jority of the models that are based on features in
isolation have relatively lower predictability com-
pared to the models that take a combination of the
features as the inputs. In particular, the predictabil-
ity model (i.e., the model that is solely based on

https://www.kaggle.com/mikeortman/wikipedia-sentences
https://www.kaggle.com/mikeortman/wikipedia-sentences
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the predictability values as the input feature) has
a mean MAE value 1.75 times the SD (Standard
Deviation). Similarly, the word-length model has
approximately 3 times the SD from the best score,
and the EZ-SFD model (i.e., the model that is solely
based on the single fixation duration predictions of
the EZ Reader model) has a mean MAE value far
away from the mean by 2.5 times the SD value.

4 Conclusion

In this paper, we analyzed a linear baseline model
and an LSTM model that employed the outputs of
a traditional model as its inputs. We built models
with input features in isolation, and their combina-
tion. The evaluation of the mean absolute errors
(MAE) supported a major finding in reading re-
search: The oculomotor processes in reading are in-
fluenced by multiple factors. Temporal and spatial
aspects of eye movement control are determined by
linguistic factors as well as low-level nonlinguistic
factors (Rayner, 1998; Kliegl and Engbert, 2013).
The models that employ their combinations return
higher accuracy. Our findings also indicate that be-
sides the frequently used features in the literature,
the EZ-SFD (single frequency duration outputs of
the EZ Reader model) may contribute to the accu-
racy of the learning based models. Nevertheless,
given the high variability of the machine learning
model outputs a systematic investigation is neces-
sary that address several operational assumptions
in the present study. In particular, future research
should improve statistical analysis for comparing
the model outputs. It should also address the in-
fluence of the location of a word in a sentence,
besides its interaction with the duration measures.
Last but not the least, future research on develop-
ing ML models of oculomotor control in reading
should focus on the relationship between the as-
pects of the ML model design and basic findings
in reading research. The GCMW (Gaze Contin-
gent Moving Window) paradigm and the boundary
paradigm (Rayner, 2014) are some examples of
those findings that could be used for oculomotor
control modeling.
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Figure 5: MAE scores for fixProp

Figure 6: MAE scores for TRT


