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Abstract

Word concreteness and imageability have
proven crucial in understanding how humans
process and represent language in the brain.
While word-embeddings do not explicitly in-
corporate the concreteness of words into their
computations, they have been shown to accu-
rately predict human judgments of concrete-
ness and imageability. Inspired by the re-
cent interest in using neural activity patterns
to analyze distributed meaning representations,
we first show that brain responses acquired
while human subjects passively comprehend
natural stories can significantly distinguish the
concreteness levels of the words encountered.
We then examine for the same task whether
the additional perceptual information in the
brain representations can complement the con-
textual information in the word-embeddings.
However, the results of our predictive mod-
els and residual analyses indicate the contrary.
We find that the relevant information in the
brain representations is a subset of the rele-
vant information in the contextualized word-
embeddings, providing new insight into the
existing state of natural language processing
models.

1 Introduction

Language comprises concrete and abstract words
that are distinctively used in everyday conversa-
tions. Concrete words refer to entities that can
be easily perceived with the senses (e.g., "house",
"blink", "red"). On the other hand, abstract words
refer to concepts that one cannot directly perceive
with the senses (e.g., "luck", "justify", "risky"), but
relies on the use of language to understand them
(Brysbaert et al., 2014).

This categorization of words based on their con-
creteness is rooted in theoretical accounts in cogni-
tive science. One such account is the Dual Coding
Theory (Paivio, 1971, 1991), according to which
two separate but interconnected cognitive systems

represent word meanings, i.e., a non-verbal system
that encodes perceptual properties of words and a
verbal system that encodes linguistic properties of
words. Concrete concepts can be easily imagined
and are represented in the brain with both verbal
and non-verbal codes. Abstract concepts are less
imaginable and are represented with only verbal
codes. For example, one can readily picture as well
as describe the word bicycle (e.g., "has a chain",
"has wheels"), but relies more on a verbal descrip-
tion for the word bravery.

The concreteness of words has since been used
as a differentiating property of word meaning
representations. Previous studies in natural lan-
guage processing (NLP) have examined the word-
embedding spaces of concrete and abstract words
and showed: (i) distinct vector representations of
the two categories within and across languages
(Ljubešić et al., 2018), and (ii) high predictabil-
ity of concreteness scores from pre-trained word-
embeddings (Charbonnier and Wartena, 2019).

Neurolinguistic studies have shown an exten-
sive, distributed network of brain regions repre-
senting the conceptual meaning of words (Mitchell
et al., 2008; Wehbe et al., 2014; Huth et al., 2016).
Among these, regions more closely involved in
sensory processing have been shown to respond
favorably to concrete words (Binder et al., 2005)
over abstract words. Hill et al. (2014) argued that
concrete and abstract concepts must be represented
differently in the human brain by showing through
a statistical analysis that concrete concepts have
fewer but stronger associations in the mind with
other concepts, while abstract concepts have weak
associations with several other concepts.

Wang et al. (2013) showed that functional Mag-
netic Resonance Imaging (fMRI) signals of brain
activity recorded as subjects attempted to decide
which two out of a triplet of words were most simi-
lar contained sufficient information to classify the
concreteness level of the word triplet, providing
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further evidence of the dissimilar representations
of the two categories in the brain. However, it re-
mains an open question whether the brain responses
within the semantic system can directly predict con-
creteness levels in the more challenging setting of
naturalistic word stimuli (e.g., words encountered
while reading a story). Moreover, given the hu-
man brain’s expertise in generating and processing
perceptual as well as linguistic information, one
could expect the brain representations to provide in-
formation that complements the word-embeddings
purely learned from linguistic contexts, improving
their predictive capability. We address both these
questions in this paper.

While several related works exist, the following
limitations prompted a new study: (i) Anderson
et al. (2017) indirectly decoded the brain represen-
tations for concrete and abstract nouns with the
help of word-embeddings and convolutional neural
network image representations. Instead of build-
ing a predictive model, the authors used a similar-
ity metric to determine which signal in a pair of
fMRI signals corresponds to which word in a pair
of words. However, a direct, supervised decoding
approach (as adopted here) would provide more
substantial evidence about the strengths and weak-
nesses of the different information modalities. (ii)
Brysbaert et al. (2014) found word concreteness
scores to be highly correlated with both visual and
haptic perceptual strength. However, multi-modal
methods (Anderson et al., 2017; Bhaskar et al.,
2017) have incorporated only visual features (as
the second source of information) instead of gen-
eral perceptual features into their predictions. By
incorporating brain representations in our models,
we do not miss out on such perceptual information
(e.g., the adjectives "silky", "crispy", and "salty"
are concrete but not as imagery-inducing as the ad-
jective "blue"). (iii) In contrast to previous studies
that have required participants to actively imagine
a randomly presented word stimulus1 (before be-
ing given a few seconds to "reset" their thoughts)
during the brain data acquisition task (Anderson
et al., 2012; Wang et al., 2013; Anderson et al.,
2017), we adopt a task where participants would
read highly engaging natural stories (without un-
natural pauses), enabling them to process the word
stimuli in a more realistic context.

To summarize, our objectives with this paper
are twofold. First, we investigate how well human

1e.g., one word would be presented every 10s.

brain representations can predict the concreteness
levels of words encountered in natural stories using
simple, supervised learning algorithms. Second,
we investigate whether brain representations en-
code information that may be missing from word-
embeddings trained on a text corpus in making
the concrete/abstract distinction. We believe that
answering such questions will shed light on the
current state of human and machine intelligence
and on the ways to incorporate human language
processing information into NLP models.

2 Related Work

A few studies have shown that the concreteness
(and imageability) of words can be directly pre-
dicted with high accuracy from precomputed word-
embeddings using supervised learning algorithms.
Recently, Charbonnier and Wartena (2019) used
a combination of word-embeddings and morpho-
logical features to predict the word concreteness
and imageability values provided in seven publicly
available datasets. Ljubešić et al. (2018) extended
the idea to perform a cross-lingual transfer of con-
creteness and imageability scores by exploiting pre-
trained bilingual aligned word-embeddings (Con-
neau et al., 2017).

Multi-modal models that use both linguistic and
perceptual information have been shown to out-
perform language models at various NLP tasks,
such as learning concrete or abstract word embed-
dings (Hill and Korhonen, 2014; Lazaridou et al.,
2015), concept categorization (Silberer and Lapata,
2014), and compositionality prediction (Roller and
Schulte im Walde, 2013). However, Bhaskar et al.
(2017) found that the concreteness of nouns could
be predicted equally well from the textual, visual,
and combined modalities. This suggests that the
textual and visual modalities independently pro-
vided reliable, non-complementary information to
represent both concrete and abstract nouns.

Several studies have addressed the idea of de-
coding neural activity patterns recorded in subjects
when presented with certain textual or visual stim-
uli. Anderson et al. (2017) applied linguistic and
visually-grounded computational models to decode
the fMRI representations of a set of concrete and
abstract nouns. They, too, reported no decoding
advantage for multi-modal combinations over the
linguistic model. Anderson et al. (2012) demon-
strated that fMRI signals contained sufficient in-
formation to perform a 7-way classification of a
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set of words into WordNet-based (Miller, 1995)
taxonomic categories.

Lately, there has been an increasing research
interest at the intersection of neuroimaging and
language models (Jain and Huth, 2018; Abnar
et al., 2019; Gauthier and Levy, 2019; Hollen-
stein et al., 2019; Toneva and Wehbe, 2019; Jain
et al., 2020; Caucheteux and King, 2020; Schrimpf
et al., 2020). In an interesting study, Schwartz et al.
(2019) finetuned the BERT language model to pre-
dict the fMRI responses of text-reading participants
to obtain representations that encode brain-activity-
relevant semantic information. While the modified
representations could better predict neural activity
and even generalize to new participants, this in-
clusion of brain-relevant bias did not improve or
degrade the model’s performance on downstream
NLP tasks.

3 Data Collection

3.1 Stimulus and fMRI data

We briefly describe the functional Magnetic Reso-
nance Imaging (fMRI) data-collection procedure
here and refer the reader to Deniz et al. (2019) for
specific details.

Nine participants were asked to read 11 autobi-
ographical narrative stories taken from The Moth
Radio Hour podcast. We used six participants’
data in our experiments. The stories are each 10-
15 minutes long and were chosen to cover a wide
range of topics. Each story was first aligned to its
transcript by applying the UPenn Forced Aligner
(Yuan and Liberman, 2008) and Praat (Boersma
and Weenink, 2001) on the narration audio. Times-
tamps for word-occurrences were then obtained
from Praat’s TextGrid as a list of entries of the form
(wi, ti) representing the ith word and its onset time,
respectively. Using this word-representation list
for each story, each word in the story was displayed
one-by-one at the center of a screen for a duration
equal to its duration in the spoken version.

Each fMRI scan consists of a sequence of
voxel-responses2 acquired at a fixed repetition-time
(TR = 2.0045s) with a voxel-size of 2.24×2.24×
4.1mm. A separate scan was conducted for each
subject and presented story (all analysis was done
within subjects). The acquired volumetric fMRI
responses for each subject were first preprocessed
to correct for motion and then aligned to the first

2voxel = volumetric pixel.

scan’s temporal average, using the FMRIB Lin-
ear Image Registration Tool (FLIRT) from FSL
v5.0 (Jenkinson et al., 2002; Jenkinson and Smith,
2001). A Savitzky–Golay filter (Schafer, 2011)
with a 120s window was applied to remove low-
frequency voxel-response drift from the signal. Fi-
nally, the voxel-responses for each story were z-
scored separately so that they have zero mean and
unit variance across all acquisitions for the story.

We note that an equivalent analysis could be car-
ried out through a listening task since the elicited
brain representations have been shown to be largely
invariant to the stimulus modality (Deniz et al.,
2019).

3.2 Concreteness Ratings

We used the dataset collected by Brysbaert et al.
(2014), consisting of concreteness ratings for
39,954 English words. Each word was rated by
around 25 participants (recruited through Amazon
Mechanical Turk) on a 1-5 scale so that the most
concrete words are assigned the highest score of 5,
and the most abstract words are assigned the lowest
score of 1. For each word, the average rating (and
standard deviation) across all raters was recorded.

3.3 Word-Embeddings

We extracted the 768-dimensional activations from
the final hidden layer of the Generative Pre-trained
Transformer (GPT-2) (Radford et al., 2019) to ob-
tain contextualized representations for the words
in the stories. The reasons for selecting GPT-2
in this work are due to the findings of Schrimpf
et al. (2020). First, GPT-2 was constrained to use
unidirectional attention in the same way humans
process text in a left-to-right fashion. Second, the
authors find that models best matching human lan-
guage processing are precisely those trained for a
next word prediction objective (such as the GPT
family).

4 Data Preparation

Rating and Vectorizing Using the word-
representation for each story and a list of the
fMRI acquisition-times (identical for all subjects),
we partitioned the words into disjoint chunks so
that all words in a chunk correspond to the same
acquisition. Therefore, all words read by the
subjects within a duration of 1 TR from the start
of the acquisition pulse were included in the same
chunk.
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We used GPT-2 to vectorize each word in a story
by supplying all words in the story leading up to
it3 as context and extracting the network’s hidden
layer representation corresponding to the last input
position. To rate the words in the story, we first
lowercased and lemmatized them and then used
the Brysbaert et al. (2014) concreteness dataset
to assign a rating to each word in a chunk. Only
around 7% of all words in the stories were not
covered by the dataset and were dropped before
subsequent analysis.

We stored the ith preprocessed functional im-
age of each subject as an Nb-dimensional voxel-
response vector ~bi, where Nb denotes the number
of voxels for that subject’s brain. Typical values
forNb were found to lie in the 70k-90k range (with
a mean of 80976 and a standard deviation of 6173,
across subjects).

Downsampling Since the rate at which the text
stimulus was presented to the subjects (the narra-
tion rate) is higher than the rate of fMRI data ac-
quisition (2.0045s per acquisition), several words
may occur within the TR corresponding to a sin-
gle acquisition and will all fall under the same
chunk. Therefore, we downsampled the stimulus to
match the acquisition rate before further analysis
by averaging out the concreteness ratings (rw) and
word-embeddings (~ew) within each TR. Thus, the
chunk-rating and chunk-embedding for chunk Ci

are given by:

ri =
1

|Ci|
∑
w∈Ci

rw

~ei =
1

|Ci|
∑
w∈Ci

~ew

Stacking We temporally stacked the voxel-
response vectors, chunk-embeddings and chunk-
ratings, first within each story and then across all
11 stories to obtain (i) a per-subject voxel-response
matrix B ∈ RT×Nb , (ii) an embedding matrix
E ∈ RT×D, and (iii) a rating vector ~r ∈ RT ,
where T denotes the total number of fMRI acquisi-
tions across all stories per subject, and D denotes
the dimensionality of the word-embedding space.
D = 768 for GPT-2, and 11 stories with an av-
erage duration close to 12.5 min per story gives
T = 4028.

3or as many as allowed by the model’s capacity.

5 Predictive Models

5.1 Word-Embedding based model

We consider the task of classifying words as
concrete or abstract (based on their concrete-
ness ratings) using the word-embeddings (chunk-
embeddings, ~ei) as explanatory variables. For this,
we first defined a concreteness threshold τ as fol-
lows: any word is labeled concrete if its assigned
rating is strictly greater than τ , and is labeled ab-
stract otherwise. We take τ = 3.

We then segregated the data into well-defined
classes by discarding any chunks that were found to
consist of a mixture of concrete and abstract words
(as defined above). This retains roughly 42% of all
chunks (T s < T ), resulting in the following strict
counterparts to the embedding matrix and rating
vector obtained in Section 4: (i) Es ∈ RT s×D, and
(ii) ~rs ∈ RT s

, with the superscript s denoting that
only chunks satisfying the strictly concrete/abstract
property are being considered. We binary-encoded
~rs into the boolean vector ~ys ∈ {0, 1}T s

, so that
ysi = 1 if the corresponding chunk is strictly con-
crete and ysi = 0 otherwise. Our specific choice
for the concreteness threshold (τ = 3) produces a
dataset that is approximately balanced between the
two classes and is a natural choice for a 1-5 scale.4

We learned the Es → ~ys mapping for each sub-
ject through L2-regularized logistic regression. We
trained on 75% of the available data and picked
the best value for the regularization parameter C
through 5-fold cross-validation. We report the ac-
curacy, recall, and F1 score of the classifier in our
results.

An important variable in cognitive processing is
the frequency with which words are encountered
in language. High-frequency words are often per-
ceived and processed faster than low-frequency
words (van Heuven et al., 2014). Thus, word fre-
quency could be a confounding variable to our ob-
jective if its distribution over the concrete words
significantly differs from its distribution over the
abstract words encountered in the stories. To check
if this is the case, we computed the distribution of
SUBTLEX-US (Brysbaert and New, 2009) word
frequencies separately over all concrete vs. abstract
words encountered by the subjects. However, a
Kolmogorov-Smirnov test showed that the com-
puted distribution over the concrete words was not

4Out of all strictly concrete/abstract chunks, 52% were
labeled concrete, and 48% were labeled abstract.
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significantly different from the distribution over the
abstract words (ks = 0.056, p = 0.063).

5.2 Voxel-Response based model
Voxel Selection With up to 90,000 voxel-
responses recorded per fMRI acquisition, not all
voxels may be relevant to our objective of predict-
ing the concreteness of word stimuli (Binder et al.,
2005).

A standard voxel selection method is to man-
ually determine regions of interest (ROIs) in the
brain by analyzing the fMRI responses recorded in
an auxiliary functional localizer task (Fedorenko
et al., 2010) and select voxels from only these re-
gions. However, this comes at the risk of being too
restrictive. For example, one might inadvertently
exclude regions in the brain encoding relevant sen-
sory processing information in favor of regions
encoding linguistic information. Given our objec-
tive to investigate whether brain representations
contain any such additional information over word-
embeddings, we avoided ROI-based methods for
voxel selection.

We instead selected voxels based on their frac-
tions of potentially-explainable response variance
across time steps. This may be estimated sepa-
rately for each voxel by recording different ver-
sions of its (time-varying) response corresponding
to repeated presentations (Hsu et al., 2004) of the
same stimulus-sequence. Assume that one story
is repeatedly presented N times to a given sub-
ject and b represents a voxel being analyzed. If
b
(n)
t represents its response at time step t corre-

sponding to the nth repetition, then its mean re-
sponse across repetitions is bt = 1

N

∑N
m=1 b

(m)
t .

The following equations estimate the fraction of
potentially-explainable variance for b assuming the
voxel-responses are z-scored across all time steps
for the story:

ev(b) =
1

N

N∑
n=1

[1− V ar
t

(b
(n)
t − bt)]

ev(b) = ev(b)− 1

N − 1
(1− ev(b))

Thus, ev(b) is analogous to the adjusted R2 of
a (perfect) model that always predicts the mean
response (bt) across repetitions. A larger value
indicates that the voxel responds consistently to
repetitions of the same stimulus. Each subject was
presented the last story N = 2 times, and the top-
V voxels with the highest ev values were retained.

From this, we obtain the desired reduced form B̂ ∈
RT×V . The optimal number of semantic voxels V
was chosen separately for each subject to maximize
performance on the validation set (described next).

Prediction Task Blood-oxygen-level-dependent
(BOLD) signals in the brain typically persist for
8-10s after stimulus onset (Ashby, 2019). Since
each chunk covers nearly 2s of stimulus presen-
tation, we expect the response to each chunk to
be jointly encoded by the first, second, third, and
fourth (reduced) voxel-response vectors that follow
the current acquisition. However, including the first
or fourth acquisition significantly degraded predic-
tive performance. We posit that this degradation
occurs because the voxel-response vectors recorded
one or four TRs after the current acquisition are
more prone to be directly affected by words falling
in chunks preceding or succeeding the chunk of
interest.

With this observation, we modeled the brain’s
representation of the stimulus in chunk Ci to

be of the form f(~̂bi+2,~̂bi+3), where ~̂bi′ repre-
sents the reduced voxel-response vector from the
i′th acquisition. We therefore constructed the
reduced+delayed voxel-response matrix B̂+ ∈
RT×2V by replacing each row of B̂ with the con-
catenation of the second and third rows that suc-
ceed it.5

For classification, we first discarded chunks
that are not strictly concrete/abstract and obtained
B̂+s ∈ RT s×2V . We then used regularized logistic
regression to learn the per-subject B̂+s → ~ys map-
ping. The training procedure is identical to the one
followed in Section 5.1.

Statistical Significance We determined the sta-
tistical significance of our classification results us-
ing a label-permutation method (Ojala and Garriga,
2009) with cross-validated accuracy as the chosen
test statistic. Here, the distribution of a test statistic
under the null hypothesis (that data and labels are
independent) is estimated by training and evaluat-
ing the classifier on several randomized versions
of the original data (by permuting classification
labels). The p-value is then calculated as the pro-
portion of randomized samples where the classifier
performs better than it does on the original sample.
We ran 100 iterations per subject.

5For rows that are ≤ 3 positions from the end, we used
zero-padding for consistent dimensions.
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6 Comparing the Representations

6.1 Combined model

First, we combined the word-embedding and voxel-
response stimulus representations (obtained in Sec-
tion 4 and Section 5.2) for each subject, by stack-
ing the word-embedding matrix (E) and the re-
duced+delayed voxel-response matrix (B̂+) along
the feature dimension to obtain the combined stim-
ulus matrix C ∈ RT×(D+2V ). Limiting the data to
strict chunks yields the matrixCs ∈ RT s×(D+2V ),
which was then used for the classification task.

The rationale behind combining representations
is the following. If the information encoded by
the word-embedding and voxel-response represen-
tations were indeed complementary, the combined
model should fare better at the prediction task than
the two individual models because it now has ac-
cess to information that was missing in either rep-
resentation.

The classification task (predicting ~ys) and its
training procedure are identical to those described
in Section 5.1.

6.2 Residual Classification

Next, we attempted to remove the information
present in each representation from the other and
then train the classification model using the result-
ing representation. This procedure is described
below.

1. Removing voxel-response information from
word-embeddings: For each subject, we
learned a linear mapping L ∈ R2V×D from
B̂+s to Es through multivariate ridge regres-
sion (Haitovsky, 1987). We then computed the
residuals Es

r ∈ RT s×D in a cross-validated
manner as follows, and used the residuals for
the classification task:

Es
r = Es − B̂+s · L

2. Removing word-embedding information from
voxel-responses: For each subject, we learned
the linear mapping L′ ∈ RD×2V from Es

to B̂+s through multivariate ridge regres-
sion. We then computed the residuals B̂+s

r ∈
RT s×2V in a cross-validated manner as fol-
lows, and used the residuals for the classifica-
tion task:

B̂+s
r = B̂+s − Es · L′

Statistical Significance To statistically validate
that any observed decrease in a residual model’s
performance compared to the corresponding non-
residual model is really due to shared information
between the representations (and not due to overfit-
ting/chance), we adopted a "residual-permutation"
procedure similar to that in Section 5.2.

Here, an empirical null distribution is created by
training and evaluating each residual model above
with several randomized versions of whichever rep-
resentation is to be regressed out. The randomiza-
tion is performed by permuting this representation
over all time steps. The p-value is then calculated
as the fraction of such residual models with cross-
validated accuracies lower than that of the true
(non-randomized) residual model. We ran 100 iter-
ations per subject.

7 Results

We use the abbreviations E for the word-
embedding based model, B for the voxel-response
based (brain) model, E+B for the combined-
representation model, E-B for the word-embedding
model with voxel-response information removed,
and B-E for the voxel-response model with word-
embedding information removed. Figure 1 shows
the classification accuracies of all models across
the six subjects.

7.1 Individual models

Table 1 shows the average accuracy, recall, and F1
score of E and B.

B achieved an average classification accuracy
of 69% and F1 score of 71%, and performed
significantly higher than chance under the label-
permutation test (p ≤ 9× 10−3) for each subject.
This indicates that the fMRI signals triggered due
to words encountered by subjects in natural stories
encode enough information to significantly distin-
guish their concreteness levels under the current
predictive framework. Evidently, this information
must be useful above and beyond the noise present
in the fMRI data unique to the data acquisition
process. To our knowledge, the ability to classify
the concreteness of naturalistic word stimuli from
their induced brain representations in a direct, su-
pervised fashion has not been shown in the existing
literature.

E achieved a comparatively higher classification
accuracy of 87%, which is in agreement with exist-
ing research (in non-naturalistic settings) on the pre-
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Model
Performance (Mean ± S.D.)

Accuracy Recall F1 score
E 0.87 0.88 0.87
B 0.69± 2.5% 0.77± 2.6% 0.71± 2.4%

E+B 0.86± 1.9% 0.86± 2.6% 0.85± 2.0%

Table 1: Classification metrics across the six participants for the word-embedding based (E), voxel-response based
(B) and combined (E+B) models.

Figure 1: Variation in classification accuracies of all models over the six subjects’ data.

dictability of word concreteness and imageability
using word-embeddings as explanatory variables
(Charbonnier and Wartena, 2019; Ljubešić et al.,
2018).

7.2 Comparative models

Table 1 shows the average accuracy, recall, and F1
score of E, B, and E+B.

As argued in Section 1, we expect the addi-
tional sensory processing information encoded in
the voxel-responses to complement the linguis-
tic/contextual information encoded in the word-
embeddings. Consequently, the combined model
should fare better at distinguishing the concreteness
of words in the stories.

However, our results indicate otherwise. The per-
formance of E+B (86±1.9%) was not significantly
different from E (87%) under a 1-sample t-test
(t = −2.33, p = 0.07, df = 5, 2-tail), meaning
the combined model is only as good as the word-
embedding based model at the task considered.
Therefore, the information present in the voxel-
responses relevant to differentiating between con-
crete and abstract words is already well-encoded
by the word-embeddings, and the former does not
complement the latter. On the other hand, the per-
formance of E+B (86 ± 1.9%) was significantly

higher than B (69 ± 2.5%) under a paired t-test
(t = 17.77, p = 5 × 10−6, df = 5, 1-tail). This
indicates that the word-embeddings may even con-
tain useful extra information above that in the fMRI
signals (note that we already demonstrated the ef-
fectiveness of our predictive framework in signif-
icantly distinguishing word-concreteness purely
from fMRI signals). We explore this idea further
next.

Table 2 shows the average accuracy, recall, and
F1 score of the residual models E-B and B-E.

The results of the residual analyses are surpris-
ing. First, E-B achieved an average accuracy of
84%, which was significant under the residual-
permutation test (p ≤ 9 × 10−3) for each sub-
ject. The performance of E-B (84 ± 1.7%) was
also significantly lower than E (87%) across sub-
jects under a 1-sample t-test (t = −4.71, p =
2.6 × 10−3, df = 5, 1-tail). This shows that re-
moving the voxel-response information from the
word-embeddings marginally affects its ability to
classify word concreteness. More strikingly, B-
E achieved an average accuracy of 48%, which
is lower than the theoretical chance accuracy of
50% (see Figure 1). This result was significant un-
der the residual-permutation test (p ≤ 9 × 10−3)
for each subject, ruling out the possibility that the
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Residual Model
Performance (Mean ± S.D.)

Accuracy Recall F1 score
E-B 0.84± 1.7% 0.85± 2.4% 0.84± 1.4%
B-E 0.48± 9.1% 0.60± 5.8% 0.55± 5.6%

Table 2: Classification metrics across the six participants for the two residual models.

Misclassified example Ground-truth label
... And so at the earliest opportunity ... abstract

... with this kind of curious compassion. And ... abstract
... to suggest I might find myself on such a wayward path ... abstract

... . Kind of blissfully unaware of what was ... abstract
... start to get a little tricky. My husband ... abstract

... couple amens and some applause and then everybody ... concrete
... you know, for hundred dollars a night maybe ... concrete

Table 3: Examples of chunks frequently misclassified by the voxel-response model. The exact phrase falling within
the chunk is in dark color. We find that a majority of such misclassifications come from the abstract category.

huge performance decrease was merely caused by
overfitting/chance. Across subjects too, the per-
formance of B-E (48 ± 9.1%) was significantly
lower than B (69 ± 2.5%) under a paired t-test
(t = −8.52, p = 1.8× 10−4, df = 5, 1-tail).

Therefore, while removing the word-embedding
information from the voxel-responses fully elimi-
nates the latter’s predictive capability (a 30% de-
crease), going the other way around only has a
marginal effect on predictive performance (a 3%
decrease). These results show not only that the
fMRI signals do not provide complementary in-
formation to the word-embeddings in making the
concrete/abstract distinction, but that the relevant
information in the voxel-responses is really a subset
of the relevant information in the word-embeddings.
This is a surprising result, considering the task was
to distinguish a property of words theorized to fun-
damentally affect how the human brain represents
language. We summarize our findings and provide
some additional observations about this work next.

8 Conclusion

This paper has three key findings. First, we showed
that words encountered in natural stories could be
classified based on concreteness purely from the
neural activity elicited as subjects passively com-
prehended the stories, using a direct, supervised
approach.

Second, we showed that in making the con-
crete/abstract distinction, contextualized word-
embeddings (i.e., GPT-2) do not benefit from the

inclusion of information from the accompanying
fMRI signals, despite evidence from several neu-
rolinguistic studies of the human brain exhibiting
fundamentally different representations over the
two categories.

Finally, we found that while the residual infor-
mation remaining in fMRI signals after regressing
out word-embedding information can no longer dis-
tinguish concrete from abstract words, the residual
information in word-embeddings beyond the fMRI
signals performs significantly at this task. This
shows that the information in the voxel-responses
important to our prediction task is a subset of the
corresponding information in the contextualized
word-embeddings.

Our results should be interpreted in light of the
following observations:

A limitation of our work is that while the voxel-
responses and word-embeddings (from GPT-2) con-
sidered provide contextualized stimulus representa-
tions, the Brysbaert et al. (2014) dataset provides
non-contextualized ratings for each word. We par-
tially addressed this discrepancy by formulating
the prediction task as a classification problem since
the available labels are now much more likely to
match ground-truth. I.e., it is reasonable to as-
sume that the broad binary concreteness class of a
word will rarely be modified by context as much
as the continuous scores would. Future work could
overcome this limitation by developing the ideas
from the recently introduced CONcreTEXT task6

6https://github.com/lablita/CONcreTEXT

https://github.com/lablita/CONcreTEXT
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Metric
Model

E B E+B E-B B-E
Spearman’s ρ

(Mean ± S.D.)
0.85 0.42± 0.03 0.84± 0.02 0.80± 0.03 0.09± 0.05

Table 4: Spearman’s rank-correlation coefficients (ρ ∈ [−1, 1]) between predicted and true ratings across the six
participants.

of computing contextualized rating scores. We
still report regression results in Table 4 for com-
pleteness and observe that they are consistent with
our findings (e.g., B-E can no longer predict word
concreteness as suggested by its near-zero rank-
correlation). Finally, we find that repeating our
analyses with non-contextualized word2vec em-
beddings (Mikolov et al., 2013) also yielded qual-
itatively identical results as in Section 7.2, indi-
cating that our three conclusions above hold for
word-embeddings more generally.

Another observation is that while B (69± 2.5%)
significantly distinguishes concrete from abstract
words, it still does not perform as well as E (87%)
at this task. There could be two reasons for this
difference. First, B does not handle abstract stimuli
as well as E does. Quantitatively, while B achieves
a recall of 77 ± 2.6% on concrete chunks, its re-
call on abstract chunks is significantly lower at
63 ± 3.6%. On the other hand, E shows nearly
identical performances over the categories. Table
3 shows some of B’s misclassified examples com-
mon to as many as four out of six subjects. Out of
the 29 such common misclassifications, 19 (65.5%)
were found to be abstract. This could indicate that
neural activity patterns are not as informative for
abstract stimuli as concrete stimuli, which is in
agreement with psycholinguistic studies demon-
strating verbal processing advantages for concrete
concepts over abstract concepts (Holmes and Lang-
ford, 1976; Kroll and Merves, 1986; Romani et al.,
2008). Second, the temporal resolution of func-
tional Magnetic Resonance Imaging may be too
coarse (Gauthier and Levy, 2019; Schwartz et al.,
2019) for optimal performance on our task (we had
to downsample the stimulus in Section 4). Never-
theless, our findings are important. Applying the
current predictive framework on the fMRI signals
produced highly significant results, and it is under
such a framework that the above conclusions were
made. Future work could explore the differences in
decoding neural activity from naturalistic stimuli
with imaging methods of different temporal resolu-

tions (e.g., EEG, MEG) to determine which method
should be used for which kind of task.

To conclude, we believe that this paper will in-
spire future work to take up the following excit-
ing directions: Which natural language process-
ing tasks may benefit from incorporating human
language processing information into the existing
frameworks? Are there ways of including such in-
formation to expose avenues for improvement in
these models?
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