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Abstract
Effective management of dementia hinges on
timely detection and precise diagnosis of the
underlying cause of the syndrome at an early
mild cognitive impairment (MCI) stage. Ver-
bal fluency tasks are among the most often
applied tests for early dementia detection due
to their efficiency and ease of use. In these
tasks, participants are asked to produce as
many words as possible belonging to either
a semantic category (SVF task) or a phone-
mic category (PVF task). Even though both
SVF and PVF share neurocognitive function
profiles, the PVF is typically believed to be
less sensitive to measure MCI-related cogni-
tive impairment and recent research on fine-
grained automatic evaluation of VF tasks has
mainly focused on the SVF. Contrary to this
belief, we show that by applying state-of-the-
art semantic and phonemic distance metrics in
automatic analysis of PVF word productions,
in-depth conclusions about production strategy
of MCI patients are possible. Our results re-
veal a dissociation between semantically- and
phonemically-guided search processes in the
PVF. Specifically, we show that subjects with
MCI rely less on semantic- and more on phone-
mic processes to guide their word production
as compared to healthy controls (HC). We fur-
ther show that semantic similarity-based fea-
tures improve automatic MCI versus HC clas-
sification by 29% over previous approaches for

the PVF. As such, these results point towards
the yet underexplored utility of the PVF for in-
depth assessment of cognition in MCI.

1 Introduction

Dementia is a syndrome primarily presenting with
broad cognitive impairments. There are multiple
underlying causes that result in dementia such as
Alzheimer’s Disease (AD) or fronto-temporal lobar
degeneration or focal lesions (MacPherson et al.,
2016). These sub-forms have different neurocog-
nitive profiles. The most-common Alzheimer’s
Disease (AD)-related dementia is typically driven
by an amnestic cognitive impairment (Kidd, 2008)
whereas the fronto-temporal dementia is often as-
sociated with executive function impairment (Huey
et al., 2009).

Early identification of dementia as well as pre-
cise differentiation between dementia sub-forms
is crucial for effective management of the syn-
drome (Thyrian et al., 2016). Pairing high diag-
nostic sensitivity with ease of use, verbal fluency
tests (VF) are amongst the most-applied tests in
cognitive assessment of dementia (Troyer et al.,
1997). In these tests, participants are asked to pro-
duce as many words from a specific category as
they can in a fixed time. The two main variants of
VF tests are the semantic verbal fluency (SVF) and
the phonemic verbal fluency (PVF). In the SVF,
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the word category is defined by semantics (e.g. all
animal words), whereas in the PVF participants
need to produce words starting with a specific let-
ter (e.g. “S”). Traditionally, test scores are com-
puted by counting the number of correctly named
words within the given time (Gomez and White,
2006). Although both VF variants are quite similar
in the way they engage different neurocognitive
functions, the cognitive strategies of the task can
indicate different patterns of the underlying neu-
ropathology. For instance, an SVF impairment is
often only regarded as evidence for amnestic de-
mentia (Vaughan et al., 2016; Teng et al., 2013)
whereas a PVF impairment is almost exclusively
regarded as evidence for fronto-temporal dementias
(Dubois et al., 2000).

Recently, advanced Natural Language Process-
ing (NLP) techniques have been applied to allow
for in-depth analysis of the produced word se-
quence in VF tasks, particularly for the SVF (Linz
et al., 2017a; Kim et al., 2019; Diaz-Orueta et al.,
2020; Zemla et al., 2020). By extracting clus-
ters from the produced word sequence and by
modelling the semantic relationships between- and
within these clusters, it is possible to disentangle
the effects of memory impairment from effects of
executive function impairment (Tröger et al., 2019).
Despite the success of these qualitative features in
the SVF, their utility for automatic analysis of the
PVF remains underexplored.

In this paper, we investigate both phonemic and
semantic motivations for the underlying strategy
of the phonemic verbal fluency task, and thereby
reduce the gap between clinical theory and compu-
tational approaches to evaluating cognitive speech
tasks. By contrasting semantic and phonemic dis-
tance measure in an analysis based on time bins,
we show a dissociation between semantically- and
phonemically-guided search processes: Subjects
with mild cognitive impairment (MCI) exhibit sig-
nificantly less semantic similarity in their produc-
tions as compared to healthy controls (HC). Finally,
in experiments on automatic classification of MCI
vs. HC from PVF word productions, we show
that semantic features improve over previous ap-
proaches by 29%. Taken together, our results pave
the way towards more fine-grained analysis of the
PVF task that can help to improve clinical decision
processes.

2 Clinical Background

2.1 Cognitive Processes in VF
Verbal Fluency tasks (VF) require a network of cog-
nitive processes activating—-a region associated
with language (Vigneau et al., 2006)—-the frontal
lobe (Coslett et al., 1991; Miller, 1984), specifically
the left hemisphere (Birn et al., 2010; Troyer et al.,
1998; Mueller et al., 2015), as well as the temporal
lobe (Newcombe, 1969; Cerhan et al., 2002).

VF are used to assess semantic memory and ex-
ecutive functions as a good VF performance hinges
on intact semantic memory stores as well as the
ability to access these memory stores (Chertkow
and Bub, 1990; Hodges et al., 1992; Mueller et al.,
2015). Executive functioning, specifically, working
memory is thought to allow a person to effectively
search through phonological and semantic stores
while regulating and adapting the search strategy to
produce more words over the task (Faust, 2012;
Rende et al., 2002; Troyer et al., 1997; Rosen,
1980).Both PVF and SVF are hypothesised to span
multiple overlapping cognitive abilities; executive,
verbal, and attention abilities (Mueller et al., 2015;
Li et al., 2017; Shao et al., 2014; Schmidt et al.,
2017). However, there is evidence that each task
measures a set of distinct cognitive processes.

PVF burdens executive resources whereas the
SVF demands linguistic-conceptual knowledge
(Thompson-Schill et al., 1997; Vigneau et al., 2006;
Shao et al., 2014; Mueller et al., 2015; Schmidt
et al., 2017; Birn et al., 2010). SVF is theorized to
engage the temporal lobe for lexical-semantic ac-
cess and retrieval from semantic store (Newcombe,
1969; Mueller et al., 2015; Cerhan et al., 2002)
where as the PVF is thought to rely on executive
functioning and prefrontal lobe processes (Mueller
et al., 2015) as well as phonological and ortho-
graphic cues for word retrieval (Li et al., 2017;
Clark et al., 2013). Generally, it is hypothesised
that SVF requires both semantic and retrieval pro-
cesses whereas PVF relies only on retrieval pro-
cesses (Fisher et al., 2004). However, there is con-
flicting research that PVF taps into the semantic
network, although to a lesser extent than semantic
fluency (Lezak et al., 2004; Mueller et al., 2015;
Schmidt et al., 2017; Clark et al., 2013).

Bizzozero et al. (2013) investigated the extent
to which SVF and PVF were related to seman-
tic and attention processes and found evidence of
semantic processes in both SVF and PVF. Nutter-
Upham et al. (2008) observed a larger effect size
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for the amnestic MCI (aMCI) group’s deficit on
semantic verbal fluency (Cohen’s d=0.98) than for
their deficit on phonemic verbal fluency (Cohen’s
d=0.66), due to greater variability in phonemic ver-
bal fluency performance. Therefore, an alternative
interpretation is that their findings actually do re-
flect a preferential deficit on semantic verbal flu-
ency in aMCI. Supporting these findings, imaging
studies combined with factor analysis have also
suggested that the PVF task is relies on both se-
mantic and phonemic processes (Schmidt et al.,
2017; Clark et al., 2013).

2.2 VF for Diagnosis

Both the Phonemic and Semantic varieties of ver-
bal fluency are commonly used to diagnosis and
monitor cognitive decline such as mild cognitive
impairment (MCI) and Alzheimer’s Disease and
Related Dementias (ADRD) (Marra et al., 2011;
Clark et al., 2009; Gomez and White, 2006; Troyer
et al., 1998).

SVF has been found to be more impaired than
PVF in ADRD (Cerhan et al., 2002; Barr and
Brandt, 1996; Zhao et al., 2013) and deficits in
both semantic and phonemic memory have been
reported. However there is conflicting research
for PVF and SVF in the MCI group. For aMCI,
only the SVF shows impairment (Hodges, 2006;
Murphy et al., 2006; Teng et al., 2013). While
other studies show decline on both the PVF and
SVF task for MCI (Mueller et al., 2015; Vita et al.,
2014; Nutter-Upham et al., 2008). Rinehardt et al.
(2014) compared controls with aMCI, non-aMCI
and AD and found that both MCI groups were less
impaired on the SVF than the PVF, behaving more
like controls than the AD group.

Clark et al. (2013) considered computationally-
based phonemic and semantic measures when ana-
lyzing the PVF and SVF tasks in relation to gray
matter correlates for HC, MCI and AD. They con-
cluded that both tasks showed greater semantic
motivations than phonemic motivation, even in the
PVF task.

PVF may be a sensitive test for investigating
phonemic and semantic processes but a global word
count does not provide the in-depth information
needed to understand the underlying cognitive pro-
cesses (Gomez and White, 2006; Becker and Salles,
2016). In this paper, we apply recently developed
automatic analysis techniques from computational
linguistics to the PVF to obtain a better insight

into the degradation of semantic and phonemic pro-
cesses.

3 Previous Work

3.1 Analyzing Semantic and Phonemic
Strategy for VF

Several modes of analysis have been proposed with
the goal of observing the role that different cogni-
tive strategies play throughout VF tasks.

Much work has been done on the semantic va-
riety of verbal fluency, specifically for the ani-
mal category. Troyer et al. (1997) introduced a
semantically-motivated hierarchical list of animals
for determining semantic clusters. To overcome
this time-intensive and subjective annotation pro-
cess, previous research worked on automatically
producing semantic clusters over SVF productions
(Ryan, 2013; Pakhomov et al., 2015b, 2016; Linz
et al., 2017b; König et al., 2018; Kim et al., 2019).
For example, Pakhomov et al. (2015a) compared
traditional and novel computational methods of
evaluating SVF using medical imaging techniques
between healthy and cognitively impaired individ-
uals. The semantic relatedness of words was de-
termined using latent semantic analysis of word
co-occurrences from a large online corpora. This
study showed that computational methods of eval-
uating the SVF were beneficial in understanding
the relationships between the different cognitive
processes.

Building off of this, Linz et al. (2017a) used neu-
ral word embeddings as a data-driven way to model
semantic clustering in the SVF task. König et al.
(2018) showed high correlations (r = 0.9) between
automatically extracted clustering and switching
features and clinical methods. From these clusters,
several features including cluster size or number of
switches between clusters were calculated to reflect
cognitive processes (Linz et al., 2017a; König et al.,
2018).

In addition to the SVF, Troyer et al. (1997)
proposed a rule-based method for finding
phonemically-related clusters of words in PVF pro-
ductions. Lindsay et al. (2019) automated this rule-
based method for determining phonemic clusters,
and proposed three additional phonemic similar-
ity metrics for evaluating the PVF task on healthy
German students, namely the Levenshtein distance
(LD), phonemically-weighted Levenshtein distance
(PHON-LD), as well as position-weighted Leven-
shtein distance (POS-LD). Clark et al. (2013) pro-
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HC MCI p
N (#Female) 34(6) 48(22) -
Age 73.56(6.74) 75.02(7.68) 0.40
Education 12.65(1.82) 10.71(4.01) 0.08
MMSE 28.76(1.28) 25.79(2.74) <0.01

Table 1: Demographic information for the French population used. Age and Education are given in years. The
Mini-Mental State Exam (MMSE) is a test to measure cognitive function (Max score 30). Means are given for the
populations with standard deviation in parentheses. Significance testing between groups is reported in p column.

posed another phonemic distance measure using
an English pronouncing dictionary and a formula
for measuring string overlap to estimate phonemic-
relatedness of adjacent words over the task.

Recently, (Linz et al., 2019) considered a
binning-based approach (Fernaeus et al., 2008)
for the automatic analysis of the SVF. In this ap-
proach, features were calculated separately on non-
overlapping, 10-second time bins, which alloweda
deeper investigation into the evolution of a partic-
ipant’s production strategy over time. Linz et al.
(2019) used temporal binning to analyse at what
points in time during SVF word production HC
differed from MCI and AD patients with respect to
word count, transition length, and word frequency.

To conclude, while previous works introduced
metrics for quantifying semantic as well as phone-
mic similarity in VF word productions, no com-
prehensive comparison of these metrics was per-
formed on the PVF in a clinical setting. This leaves
a gap between clinical theory of motivating cog-
nitive strategies and computational methods as to
how to automatically evaluate both phonemic and
semantic strategy for the PVF task. To allow for
a fine-grained analysis of production strategy over
the course of the PVF task, we analyze semantic
and phonemic distance metrics in the temporal bin-
ning framework.

3.2 PVF-based MCI Classification
Compared to the amount of work on HC ver-
sus MCI classification from the SVF (Linz et al.,
2017a; König et al., 2018), considerably less stud-
ies have investigated this classification task using
the PVF (Ryan, 2013; Lindsay et al., 2020). Ryan
(2013) used logistic regression to classify between
HC and MCI using only repetitions (AUC=0.53)
and word count (AUC=0.5) from the PVF. Lindsay
et al. (2020) reported a baseline PVF experiment
between HC and MCI and reported an AUC of
0.75 using only word count on a very small dataset
(8HC/19MCI). Additional temporal features low-

ered the classification (AUC=0.55). To the best of
our knowledge, no study at the present time has
investigated HC versus MCI classification with the
PVF using phonemic and semantic measures.

4 Methods

4.1 Data

The data used in this research was collected dur-
ing the Dem@Care (Karakostas et al., 2017) and
ELEMENT (Tröger et al., 2017) projects. Partic-
ipants were recruited through the Memory Clinic
located in Nice University Hospital at the Institute
Claude Pompidou in Nice, France. The study was
approved by the Nice Ethics Committee. All par-
ticipants were native speakers of French and asked
to give informed consent before participating in
the study. The French data was collected in the
form of speech recordings via an automated record-
ing application installed on a tablet computer. The
recordings were manually transcribed in PRAAT
(Boersma and Weenink, 2009) according to the
CHAT protocol (MacWhinney, 1991). Participants
were asked to complete a battery of cognitive tests,
including a 60 second phonemic verbal fluency task
for the letter category F. Demographics for the data
used are displayed in Table 1. A Mann-Whitney U
test was conducted between the HC and MCI popu-
lations to check for significant differences between
age (W = 1106, p-value = 0.40) and education (W
= 1492, p-value = 0.08) but none were found.

4.2 Binning, Clustering & Global
Resolutions of VF Analysis

We look at three resolutions of the verbal fluency
task that have been applied to the SVF task and
consider them for the PVF task; temporal binning,
clustering and switching and global features. Each
method provides a different resolution for looking
word retrieval strategy. Temporal binning (Linz
et al., 2019; Fernaeus et al., 2008) gives the finest
resolution of strategy. The clustering is motivated
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by clinical theory to investigate the different cogni-
tive processes (Troyer et al., 1998). Global features
are what are the current norm in clinical practice
(Troyer et al., 1998; Gomez and White, 2006).

4.2.1 Binning Methods
To produce temporal bins for the PVF, we follow
the methodology in (Linz et al., 2019) that was pre-
viously used for SVF. The complete 60-second PVF
response is split into into six 10-seconds bins. This
produces a new resolution of the task from which
we can then compute features. As done in (Linz
et al., 2019), we include the word count as well as
the average temporal distance(TD) between con-
secutive words. In addition, we include the average
semantic distance between consecutive words as
well as the averages of the three phonemic distance
measures LD, PHON-LD, and POS-LD. This al-
lows for a separate investigation of the phonemic,
semantic and temporal measures that guide search
processes during the span of the word production
in the PVF task.

Semantic Distance (SD) We follow Linz et al.
(2017a) who computed semantic similarity be-
tween two words as the cosine distance between
their embedding vectors. To construct word embed-
dings, FastText models (Bojanowski et al., 2016)
are used. For this paper, the cosine distance is used,
where Cosinedistance = 1− Cosinesimilarity.

Levenshtein Distance (LD) Lindsay et al.
(2019) used the Levenshtein distance as a mea-
sure of phonetic distance when evaluating the PVF
task. They first phonetically transliterate the word
using the python package epitran (Mortensen et al.,
2018). They then proposed using the traditional
levenshtein distance to measures the number of ed-
its (insertions, substitutions and deletions) between
consecutive words (Levenshtein, 1966). They also
proposed two weighted measures of LD as de-
scribed below.

Phonemic-weighted Levenshtein Distance
(PHON-LD) In addition to LD, Lindsay et al.
(2019) proposed a phonemically weighted version
of levenshtein distance. Using the epitran package,
each phoneme has a corresponding 21-length
phonological vector to represents the characteris-
tics of the sound (e.g. voice/unvoiced, front/back).
When computing the levenshtein distance, they
weighted substitutions as the cosine between the to
phonological vectors. Insertions and deletion are

still valued at 1.

Position-weighted Levenshtein Distance (POS-
LD) Lindsay et al. (2019) also investigated a po-
sition weighted levenshtein distance as the distance
between phonetic representations of consecutive
words, weighted for position in the word. Dele-
tions, insertions and substitutions are set weighted
by exponential distribution (with λ = 0.5) at the
position of the phoneme in the word.

Temporal Distance (TD) The temporal distance
is defined as the time in seconds between the bound-
aries of consecutive words in the PVF production.

4.2.2 Clustering Methods
Clustering-based approaches for VF evaluation con-
sist of two steps. First, the produced word sequence
is partitioned into a set of clusters. Second, features
(e.g. mean cluster size) are computed from the au-
tomatically produced clusters. In this study, we
consider a rule-based phonemic clustering as well
as an automated version of semantic clustering, and
temporal clustering to investigate production. For
each both phonemic and semantic clustering types,
the mean cluster size and number of switches are
computed.

Phonemic Clustering In the case of phone-
mic clustering features, we determine clusters in
the word sequence following the phonemically-
motivated, clinical approach from Troyer et al.
(1997) that was automated by Lindsay et al. (2019).
This approach uses phonemic similarity rules to
determine whether subsequent words belong to the
same cluster or not.

Semantic Clustering Semantic Clusters are de-
termined as in Linz et al. (2017a). Using the seman-
tic distance method described previously, a seman-
tic threshold is determined for each participant by
averaging the semantic distance between all words
in the production. If the semantic distance between
consecutive words is lower than the threshold, the
words are said to be in a cluster. If the semantic
distance between consecutive words is greater than
the threshold, this introduces a cluster boundary.

To obtain semantic word embeddings, the pre-
trained French fastText model is used. This model
is trained on Common Crawl and Wikipedia cor-
pora using the continuous bag of words (CBOW)
algorithm with a negative sampling loss function.
FastText models are trained at the character level us-
ing a character n-gram model. The 300-dimension
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HC MCI HC v. MCI

Mean SE Mean SE W p

Average Over Bins
Word Count 2.70 0.17 2.00 0.11 1145 0.002
Semantic Distance 0.54 0.12 0.57 0.12 584 0.040
Temporal Distance 4.25 0.29 5.96 0.36 496 0.002
LD 3.09 0.13 2.57 0.11 1125 0.004
PHON-LD 1.92 0.08 1.70 0.06 1016 0.060
POS-LD 1.66 0.05 1.49 0.04 1096 0.008

Rule-Based Phonemic Clustering
Mean Cluster Size 4.63 1.74 4.02 1.57 1042 0.033
Number of Switches 2.51 1.17 2.19 0.98 947.5 0.195

Automatic Semantic Clustering
Mean Cluster Size 2.81 0.79 2.63 0.83 928.5 0.287
Number of Switches 9.09 4.15 7.04 3.27 1077 0.014

Table 2: Significance testing results between HC and MCI for the binning and clustering methods with a Mann-
Whitney U test. The p-value is reported and a significance level is set at 0.05. Significant values are shown in bold
type face. Standard Error (SE). Means and SE are provided to understand relationship between the groups. The
top half of the table reports values for the binning analysis. The bottom half of the table reports significance results
for the clustering analysis.

model is used for this analysis. For specific numer-
ical parameter values, or to download the models
used in this research, please see the link in the
footnote1.

4.3 Global Features

In addition to the binning features and clustering
features in (Section 4.2.2), we include the tradi-
tional way of evaluating verbal fluency tasks, which
computes aggregate features for the whole 60 sec-
ond long word production. For an overview of all
features used, please see Appendix A. The most
general and widely adopted measures of verbal
fluency are the word count and repetition count
(Spreen et al., 1991; Tombaugh et al., 1999). The
word count is the count of all relevant words pro-
duced in (e.g. all words said start with the letter F ),
excluding repeated words. The repetition count is
the number of words produce more than once.

4.4 Experiments

Statistical Analysis was done in R Studio (R Core
Team, 2017). All coding experiments are imple-
mented using python 3.7. For significance testing,
a non-parametric Mann-Whitney U test for signifi-
cance is always reported.

4.4.1 Comparing Strategic Processes With
Binning Methods

To visualize what the strategic process over the du-
ration of the PVF task, we plot the group averages

1https://fasttext.cc/docs/en/crawl-vectors.html

of each feature across the bins. For overall perfor-
mance, we plot the average word count and transi-
tion time by bin. To investigate semantic processes
we plot the semantic distance between the words
in each bin. To investigate the phonemic measures,
we plot the LD, PHON-LD, and POS-LD.

In addition, we compute the bin average and
standard error (se) for each group over all distance
measures. A non-parametric Mann-Whitney U test
for significance is reported to see if the bin averages
differ between groups.

4.4.2 Classification Experiments
The classification models are created using the
scikit-learn library2 (Pedregosa et al., 2011).

For the classification application of these fea-
tures, we focused on an early diagnostic scenario;
distinguishing between healthy controls and mild
cognitive impairment. To observe how age and
education bias our classifier, we trained individ-
ual models on each potential bias (Nogueira et al.,
2016; Petti et al., 2020). For the clinical baseline,
a model was produced by training on only word
count (word count) (Lindsay et al., 2020). To com-
pare to previous work, a model was trained on
number of repetitions (Ryan, 2013).

In addition to the baseline comparison experi-
ments, we investigated individual and combined
models. Four individual models were built using
the features for semantic clustering, semantic bin-
ning, phonemic clustering or phonemic binning.

2sklearn version==0.24.0 for python 3.7
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To investigate the proposed analysis modes and
cognitive strategies, we built four combined mod-
els; all binning features (binning), all clustering
features (clustering), all semantic features (seman-
tic), and all phonemic features (phonemic).

Finally, we investigate a model using all features
(All) and compare the models performance to the
proposed baselines.

Classification Specifications To compare these
methods, the extremely randomized trees (also
known as extra trees) algorithm is used to train
a classifier for each experimental scenario. This al-
gorithm was chosen due to its ability to reduce
variance and lesser likelihood of overfitting on
a relatively small dataset with high dimensional-
ity. Due to the limited amount of data available
(34HC/48MCI), training-testing data splits were
created using leave one out cross validation to max-
imize the amount of training data available, while
still testing on every available data point. Due to
the extreme randomness of the algorithm chosen,
performance metrics can fluctuate between runs.
To nullify the potential of the bias effects of ran-
dom initialization, the experiment is repeated 50
times. For each model, the Area Under the Re-
ceiver Operator Curve (AUC) is averaged of the 50
iterations and reported.

5 Results

Results from the experiments to investigate strate-
gic process as described in Section 4.4.1 are visual-
ized in Figure 1. Significance testing between the
HC and MCI groups are given in Table 2

5.1 Strategic Processes

For all binning features, excluding word count,
a lower average bin distance represents a higher
similarity between adjacent words. Compared to
the HC group, the MCI group has a lower aver-
age word count, is less semantically motivated and
more phonemically related. They also have longer
transition times. The MCI group also show sig-
nificantly smaller phonemic cluster (p=0.03) and
lower number of semantic switches (p=0.01).

5.2 Classification results

To reduce the complexity of Figure 2, baseline
and combined classifications are visualized with
ROC-AUC curves and additional classification ex-
periments are reported in the text of this section.

Both the age (AUC=0.41) and education
(AUC=0.24) models perform below chance. The
most common clinical evaluation, word count, per-
forms at chance (AUC=0.50). The model trained
using all features (AUC=0.71) proposed in this
study improves over all baselines including the
previous Ryan (2013) model (AUC=0.42) by 29
points.

Not shown in Figure 2, we compare each of the
semantic and phonemic process in combination
with the binning and clustering methods. Seman-
tic clustering methods (AUC=0.61) achieve similar
performance when used for binning (AUC=0.64)
where as phonemic features are best when com-
bined with the binning methods (AUC=0.70) but
perform poorly for clustering (AUC=0.45).

As shown in Figure 2, the combined binning
methods (AUC=0.67) perform similarly to the com-
bined clustering methods (AUC=0.64). The com-
bined phonemic features (AUC=0.76) perform the
best overall for the early diagnostic classification
scenario.

6 Discussion

The phonemic verbal fluency task remains under-
explored in its use for clinical assessment as well
as research of MCI.

However, in this paper we show, that with state-
of-the-art semantic as well as phonemic distance
metrics, the PVF can reveal neurocognitive func-
tion involvement that is crucial to better assess
MCI. Our data shows that with recent semantic
and phonemic similarity metrics, we can capture
MCI-related impairments, such as a general se-
mantic impairment, that have also been reported
in the SVF (Verma and Howard, 2012; Taler and
Phillips, 2008) but not on the PVF. Our results
show significantly lower semantic distance for HC
responses when compared to the MCI group in the
PVF task which is, by nature, phonemically moti-
vated. In return, MCI patients show significantly
lower phonemic distance. This could possibly be
explained by the MCI group relying heavily on a
phonemic strategy to guide their search rather than
a utilizing a semantic strategy. The higher semantic
distance for the MCI group could be interpreted
as a structural deficit to access semantic memory
efficiently as has been shown to be very prominent
at all stages of AD-related dementia (Verma and
Howard, 2012).

This is especially striking as one would expect



39

Diagnosis HC MCI

1

2

3

4

5

1 2 3 4 5 6

W
or
d 
Co
un
t

 

0.50

0.55

0.60

0.65

1 2 3 4 5 6
Se
m
an
tic
 D
is
ta
nc
e

 

2.5

5.0

7.5

1 2 3 4 5 6

Te
m
po
ra
l D
is
ta
nc
e

 

2.0

2.5

3.0

3.5

1 2 3 4 5 6

Le
ve
ns
ht
ei
n 
D
is
ta
nc
e

 

1.1

1.3

1.5

1.7

1.9

2.1

1 2 3 4 5 6

PO
S 
Le
ve
ns
ht
ei
n 
D
is
ta
nc
e

 

1.5

2.0

1 2 3 4 5 6
PH
O
N
 L
ev
en
sh
te
in
 D
is
ta
nc
e

 

Figure 1: Graphical representation of binning results for each distance measure. Standard error bars are given for
the HC and MCI groups at each bin. The dashed line represents the group average overall bins. For interpreting
semantic and phonemic (LD, POS-LD, PHON-LD) distance metrics, a lower distance is interpreted as indicating
a higher similarity.

the phonemic distance to increase as more words
are produced (with a larger number of words per
bin, the mean distance of adjacent words should
be higher). Such an increase is the case for the
phonemic distance where MCIs produce fewer
words overall and are more phonemically related in
comparison to HC, who produce more words and
have a larger average phonemic distance over the
bins. However, the exact opposite is the case for
the semantic distance where MCIs produce fewer
words while generating a list of less semantically
related words in comparison to the HC group. This
strongly points towards the conclusion that MCI
patients struggle to exploit the associative network
of their semantic memory.

By making neurocognitive processes visible in
the PVF that are traditionally reserved for the SVF
in clinical practice, the PVF becomes significantly
more relevant to real-world MCI and dementia as-
sessment. In order to support the diagnostic usage
of the PVF for MCI assessment, we simulate a

diagnostic decision scenario through downstream
machine learning classification using the seman-
tic as well as phonemic features in the PVF. Our
results show that by using semantic and phone-
mic features we can improve classification results
over previous clinical and automatic baselines. The
all features model (AUC=0.71) out performs both
the word count (AUC=0.50) and previous work of
Ryan (2013) (AUC=0.42).

Both clustering (AUC=0.64) and binning
(AUC=0.67) methods of analysis perform com-
paratively. Both the semantic (AUC=0.65) and
phonemic (AUC=0.76) measures outperform the
clinical baselines (0.50). The classification results
support that while the task is overall a phonemic
task, semantic investigation of the PVF is relevant
for future research and capable of discriminating
between HC and MCI better than the clinical base-
line.

As an additional finding, the machine learning
task benefits from a combined binning and cluster-
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Figure 2: Visualzation of the ROC curve for the binary classification results between HC and MCI. Baseline
methods are dashed in shades of gray. Ryan et al. 2013 is a previously published approach for comparison.
Resolution modes are given in red. Strategy classifications are given in blue. The over all experiment is in green.
AUC scores are given in the legend in the lower right corner. A perfect classification is 1.0. Chance is illustrated
at 0.50.

ing approach when modelling the phonemic pro-
cesses (AUC=0.76), increasing over only phonemic
clustering (AUC=0.45) or phonemic binning meth-
ods (AUC=0.70) for classification.

7 Conclusion

This paper set out to investigate the ability of com-
putational linguistic techniques for understanding
phonemic and semantic cognitive processes of the
under-explored phonemic verbal fluency task. Uti-
lizing three resolutions of analysis, temporal bin-
ning, clustering and global measures, combined
with semantic and phonemic distance measures,
we found semantic impairment in a phonemic task
as has been hypothesized in previous clinical re-
search. In addition to giving a finer-resolution for
understanding the PVF task, the additional phone-
mic and semantic features improved classification
over previous clinical and automatic baselines for
early dementia detection with the PVF task. Future
work should investigate these measures in addi-
tional languages and possibly combine the features
presented in this paper with medical imaging tech-
niques to see if the findings can be replicated.
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A Appendix

Category Feature Name Description

Global Measures that span over the task as a whole
Features

Word Count The total number of words excluding repetitions. Scoring system used
in clinical practice

Number of Repetitions Number of repetitions said during the task. Previously suggested
in Ryan (2013).

Phonemic Rule-based measures for phonemic clustering strategies proposed by Troyer et al. (1997) and
Features automated by Lindsay et al. (2019)

Mean Cluster Size Average number of words in clinical phonemic clusters
Number of Switches Total number of switches between clinical phonemic clusters

Semantic Automatic data-driven methods for determining semantically motivated clusters as proposed in Linz et al. (2017a)
Features ...

Mean Cluster Size Average number of words in a semantic cluster
Number of Switches Total number of switches between semantic clusters

Binning 10-second binning approach for finer resolution of task proposed by Linz et al. (2019);
Features The following features are computed for each of the six, 10-second bins.

Word Count by Bin The number of words per 10 second bin
LD by Bin Levenshtein distance per 10 second bin
POS-LD by Bin Position-weighted Levenshtein distance per 10 second bin
PHON-LD by Bin Phonemic-weighted Levenshtein distance per 10 second bin
Semantic Distance by Bin Semantic Distance between consecutive words per 10 second bin
Mean Temporal Distance by Bin The average transition time in seconds between the end

of one word and the onset of the next word by 10 second bin

Table 3: The following features were extracted from the PVF task produced by the participants.


