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Abstract

A growing amount of psychiatric research in-
corporates machine learning and natural lan-
guage processing methods, however findings
have yet to be translated into actual clinical de-
cision support systems. Many of these stud-
ies are based on relatively small datasets in
homogeneous populations, which has the as-
sociated risk that the models may not perform
adequately on new data in real clinical prac-
tice. The nature of serious mental illness is
that it is hard to define, hard to capture, and
requires frequent monitoring, which leads to
imperfect data where attribute and class noise
are common. With the goal of an effective
Al-mediated clinical decision support system,
there must be computational safeguards placed
on the models used in order to avoid spurious
predictions and thus allow humans to review
data in the settings where models are unsta-
ble or bound not to generalize. This paper de-
scribes two approaches to implementing safe-
guards: (1) the determination of cases in which
models are unstable by means of attribute and
class based outlier detection and (2) finding the
extent to which models show inductive bias.
These safeguards are illustrated in the auto-
mated scoring of a story recall task via natu-
ral language processing methods. With the in-
tegration of human-in-the-loop machine learn-
ing in the clinical implementation process, in-
corporating safeguards such as these into the
models will offer patients increased protection
from spurious predictions.

1 Introduction

Artificial intelligence (Al)-based systems that incor-
porate language and behavioral data hold promise
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of increasing sensitivity, equity, and access in the
assessment and treatment of mental illness through
the use of remote and continuous monitoring via
clinical decision support systems. This is due to
the fact that the pattern and content of language,
as well as additional measures of behavior, such
as timing and neuropsychological task scores, pro-
vide rich information that can be traced back to an
individuals’ overall mental state.

In order to demonstrate clinical translational
value there are numerous risks and factors that
are necessary to consider. First, it is important
to collect data from large samples of the population
across differing ages, cultures, genders, clinical
conditions, and stages of disorder. Second, it is
critical to create models that are explainable, trans-
parent, and generalizable (Chandler et al., 2020b)
in order to nurture trust from both patients and
clinicians. And finally - the area that this paper
will address - it is necessary to add safeguards to
models such that they are capable of flagging cases
that show attribute noise (i.e., abnormalities in fea-
ture values) or class noise (i.e., erroneous or miss-
ing class labels), and of determining the extent to
which models will generalize to unseen data. These
safeguards will enable a human-in-the-loop system
where humans are required to review data abnor-
malities.

Al is used in a wide range of applications within
mental health, notably within clinical research set-
tings where data are used to aid in understanding
the nature of diagnoses and to improve diagnos-
tic accuracy (for reviews see Shatte et al., 2019;
Su et al., 2020; Thieme et al., 2020), as well as
in making complex and potentially lifesaving de-
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cisions (e.g., in suicidology - for review see Cox
et al., 2020). Acoustic measurements of speech
have been analyzed in automated applications for
detecting Mild Cognitive Impairment and dementia
(Roark et al., 2011; Konig et al., 2015), as well
as serious mental illness (Cohen et al., 2019) and
depression (McGinnis et al., 2019).

In the domain of techniques that specifically
leverage natural language processing (NLP), there
are a growing number of reports of using these
methods on social media data, notably to data mine
publicly shared written reports of mood on plat-
forms such as Twitter and Reddit (Zirikly et al.,
2019; Peng et al., 2019; Wu et al., 2012). There is
also a growing interest in using such methods on
electronic medical records to assist in the extraction
of diagnostic information or to enhance understand-
ing of medical conditions (Ryu et al., 2016; Wang
etal., 2012; Metzger et al., 2017). A broad range of
NLP metrics such as incoherence and tangentiality
have been used to automatically assess the clinical
state of patients with schizophrenia (Elvevag et al.,
2007) and predict the risk of psychosis onset (Bedi
et al., 2015; Rosenstein et al., 2015; Corcoran et al.,
2018). Deep language models and NLP feature-
based models have also been shown to differentiate
the language of healthy controls from those diag-
nosed with Mild Cognitive Impairment or dementia
(Orimaye et al., 2018; Eyigoz et al., 2020).

There is clear evidence that the clinical data used
in Al-based research applications hold predictive
power in detection and diagnosis, prognosis, sup-
port and treatment, and as a second opinion mea-
surement for illness severity, but it is unclear about
the degree to which these models will be stable
on new data. Many psychiatric studies that har-
ness Al tend to do so on relatively small datasets
(i.e., 10-100 participants) in fairly homogeneous
populations (e.g., the WEIRD (Western, Educated,
Industrialized, Rich, and Democratic) phenomenon
- Henrich et al., 2010; and the predominance of
male participants in psychiatric research studies
- Longenecker et al., 2010). These shortcomings
may lead to insufficient accuracy on unseen data
retrieved from different experimental settings (e.g.,
in a lab vs. remote; prompted free speech vs. natu-
ral; as a component of a larger testing battery vs. on
its own), populations (e.g., southern vs. northern;
different English speaking countries; monolingual
vs. multilingual participants), and clinical states
(e.g., hallucinating vs. not hallucinating). One

must keep in mind that in small datasets, spurious
features may not be generalizable to a larger pop-
ulation, especially if they are not of any apparent
clinical relevance (Chandler et al., 2020b; Whelan
and Garavan, 2014). While these research exper-
iments are noteworthy, they must be re-evaluated
on larger and more diverse sets of participants to
test for robustness and generalizability.

Incorrect or ill-advised decisions and predictions
in psychiatry can be dangerous and life altering for
patients, and the difficulty in decision making is
further confounded by the very short time frame in
which changes in mental state occur and the asso-
ciated clinical decisions must be made. Thus, we
must build systems that have the ability to instan-
taneously flag data abnormalities - both in the re-
search phase and when translated into real clinical
use - and pass these cases on for human review. Fur-
thermore, rather than selecting a preferred machine
learning model based on metrics such as accuracy,
sensitivity, or correlation as is common in Al and
NLP applications, we must seek to understand the
underlying mechanisms and the context in which
they will be used (Ethayarajh and Jurafsky, 2020;
Hand, 2006).

Researchers in machine learning have proposed
assessing models with stability metrics which de-
fine ways to quantify and compare the stability of
results rather than simply focusing on the afore-
mentioned metrics (Turney, 1995; Lange et al.,
2002). Specifically, Zhu and Wu (2004) differ-
entiated data-based noise and outliers into class
noise and attribute noise, and advocated for ana-
lyzing their effects on machine learning models
separately. Uncertainty estimation, as well as in-
and out-of-distribution error detection has been crit-
ically important in the use of Al in a wide range
of applications such as self driving cars (Mohseni
et al., 2020), general medicine (Kompa et al., 2021),
education (Foltz et al., 2013), and in many other
domains.

In this paper we illustrate an example of NLP and
machine learning methods applied to the automated
scoring of a story recall task, a core component of
psychiatric neuropsychological assessments. We
focus on two approaches to safeguarding such a
model: 1) the detection of attribute and class noise
that can affect the predictions of a model and 2) the
evaluation of the extent to which the model may or
may not generalize to unseen data. We first applied
methods to determine where noise exists with an
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outlier detection algorithm and data visualization.
For the issue of model generalizability, we studied
the effect of dataset size on the results, and we il-
lustrate how such results change as we randomly
remove portions of our training data. Addition-
ally, we show the results of this particular story
recall model applied to a new collection of data.
We advocate that these computational safeguards,
which have major implications in regard to their
use in human-in-the-loop clinical support systems,
must be placed on each machine learning model
that is developed to automate or assist in clinical
assessments.

2 Experimental overview

2.1 The dMSE

The data in the present work were collected from a
mobile phone application (the delta Mental Status
Examination, henceforth called ?MSE) designed to
assess patient state via various neuropsychological
assessments, with many relying on patient language
(Chandler et al., 2020a; Cohen et al., 2019; Holm-
lund et al., 2019; Holmlund et al., 2020). A total
of 12 behavioral assessment tasks were employed
to specifically assess the language, cognition, mo-
tor skill, and mental state of patients - areas where
assessment is critical in those with serious mental
illness - and integrated into the JMSE smart device
application. The behavioral assessment tasks were
similar to standardly employed neuropsychologi-
cal tests (for an overview of neuropsychological
testing, see Lezak et al., 2012), but adapted such
that they could be remotely and frequently self-
administered with variations of each task presented
over time (Chandler et al., 2020a; Holmlund et al.,
2019). As an automated measurement tool that can
be used remotely, frequently and self-administered,
this approach has the potential to enable greater ac-
cess to mental health services. It permits patients to
be monitored longitudinally outside of clinical insti-
tutions and can alert clinicians to critical changes in
mental states, thereby providing greater availability
to assistance, regardless of age, gender, ethnicity,
location, or socioeconomic status.

The data comprised N = 25 patients and N =
79 presumed healthy undergraduate students from
Louisiana State University who all provided in-
formed written consent. These participants com-
pleted N = 118 and N = 226 sessions (i.e., one
completion of the full battery of tasks in a single
use of the application) with the dMSE, with an

average of 4.72 (stdev = 1.14) and 2.90 (stdev =
0.90) per person, respectively. The patients were
severely mentally ill outpatients on the psychosis
spectrum. Two-thirds of the patients met the crite-
ria for schizophrenia (N = 16), and the remaining
met the criteria for major depressive disorder (N
= 8) and bipolar disorder (N = 1). This study was
approved by the Louisiana State University Institu-
tional Review Board (#3618) and participants pro-
vided their informed written consent before partici-
pation. The application was designed specifically
for use in remote settings, such as rural Louisiana
and Northern Norway, where access to in-person
clinical support can be quite difficult.

2.2 The story recall regression model

The machine learning model we use to illustrate
safeguarding techniques automatically scored a
variant of the immediate and delayed Logical Mem-
ory story recall task (of the Wechsler Memory test;
Wechsler, 1997) that was employed in the JMSE.
The story recall task is critical in neuropsychologi-
cal assessment as memory function is of core inter-
est in the evaluation of many neurodevelopmental,
neurodegenerative and neuropsychiatric conditions,
as well as in brain injuries (Baddeley and Wilson,
2002). Further, it is of enormous interest in mental
illness research because of its value as a critical en-
dophenotype (Cirillo and Seidman, 2003), as well
as the fact that the process of recollecting has simi-
larities to what is required by patients when their
medical history is taken.

In our version of this task, a participant listens
to a short story of on average 74 words (min =
62, max = 87) and then is asked to retell it both
immediately and after a delay of 30 minutes in as
much detail as possible, thus following the same
format as the traditional Wechsler version. Stories
were either narrative or instructional. The narrative
stories contain two characters, a setting, an action
that caused a problem, and a resolution. The in-
structional passages described how to accomplish
some sort of goal, such as how to assemble a skate-
board or how to clean a fish bowl. This dMSE story
recall task was developed such that there could be
many different versions capable of being scored
with automated NLP methods (e.g., Chandler et al.,
2021, Holmlund et al., 2020) rather than traditional
rubric-based methods.

Three trained human raters with clinical expe-
rience assigned scores to the recall transcriptions
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based on the quality and amount of details (e.g.,
characters, events, dates, descriptors, feelings) re-
called. The rubric was on a scale from 1 to 6, with 1
indicating no details were recalled, and 6 indicating
all major and almost all minor details were recalled.
Each participant completed one immediate narra-
tive recall, one immediate instructional recall, and
one delayed narrative recall per session. After the
removal of responses with no words, the dataset
contained N = 846 samples (N = 285 immediate
narrative, N = 285 immediate instructional, and N
= 276 delayed narrative).

A ridge regression model was created to predict
the rating a trained professional would assign to
a story recall. The model was trained on (1) the
number of word types (i.e., unique words) in the
recall, (2) the number of common word types be-
tween the original story and the recall, and (3) the
BERTScore (Zhang et al., 2020) between the origi-
nal story and the retell (the model was created in
the same manner as that of Chandler et al., 2019
besides a change in the last feature from the word
mover’s distance to BERTScore). BERTScore is
a similarity metric that was created to produce a
score of how close a machine generated transla-
tion is to the gold standard(s) of some piece of text.
Specifically, it creates a matrix of BERT (Devlin
et al., 2019) cosine distances between words in one
text to words in another. Alignment between words
in both texts is produced greedily with the maxi-
mum cosine distance for each word in one text to
another in the reference. All distances are averaged
and inverse document frequency weightings are
optionally incorporated.

The ridge regression model was trained and
tested using 10-fold cross-validation and controlled
such that sessions from the same participant did
not occur simultaneously in both the train and test
sets. The rating prediction model resulted in an
average Pearson r correlation with human ratings
of r = 0.91. These results indicate that we can au-
tomatically derive a range of semantic and surface
level features from spoken recalls, and that these
features can be harnessed to accurately predict the
ratings of expert humans.

3 Effects of attribute and class noise

We begin our analysis of computational safeguards
by discussing the determination of attribute and
class noise in the context of model stability. Model
stability analysis allows us to establish how un-

Attribute Attribute | Attribute | Class
1: Number | 2: Number | 3: BERT- | rating
word types | common Score

word types
4 2 091 1
3 x 0.70 1
36 25 0.93 6
4 3 0.71 6

Table 1: Hypothetical subset of story recall data show-
ing attribute noise (underlined) and class noise (bold
and italicized). First, 0.91 in the first row constitutes
potential attribute noise as the average BERTScore for
examples with a rating of 1 is 0.80 (stdev = 0.05), and
furthermore the average BERTScore for examples with
4 word types and 2 common words is 0.79 (stdev =
0.04) and 0.80 (stdev = 0.05), respectively. Thus, it is
far out of the expected distribution. Second, ‘X’ in the
second row constitutes attribute noise because this at-
tribute expects numbers and there is a string in its place.
Thus, it is erroneous. The class label of 6 in the last row
constitutes class noise as the distribution of the feature
values resembles a much lower recall score.

usual variations in input data will affect the output
of the model. Put simply, we wish to find where
in the feature space models may be the most un-
stable. We illustrate an approach that will allow
researchers to detect attribute and class noise in
data that could be due to construct-irrelevance or
errors in assumptions.

Specifically, attribute noise is where values of
individual attributes do not make sense; whether
they are erroneous or missing. Class noise is where
a label does not make sense given the distribution
of the features for other data with the same label;
whether it is mislabeled or contradictory. In order
to make the notions of attribute noise and class
noise concrete, see Table 1 for a hypothetical dis-
tribution of the story recall data with an emphasis
on what could potentially constitute both types of
noise. In this section, we explore instability that
could be due to outliers in training data, disagree-
ment between features, or incorrect assumptions of
the data.

Our first outlier analysis was based on research-
stage settings where we have access to both at-
tribute values and class labels. While this exact
approach may not always be feasible in the even-
tual clinical application stage (since there are not
always ground truth class labels available), the
approach itself can nonetheless be harnessed in
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Figure 1: Distribution of the first dimension of Principal Component Analysis (PCA) of the 3 features of the story
recall data separated by rating. The darker colored peak on the left represents the lowest rating (1 point) which
increases by one point per peak to the lighter colored peak on the right hand side (6 points). Outliers found with
the Isolation Forest algorithm are shown with a cross and the color of the cross represents the human rating given

to that example.

the same manner but with the omission of ratings,
classes, or labels. Here, we discovered outliers us-
ing the Isolation Forest algorithm (Liu et al., 2018).
Most outlier detection algorithms first find the nor-
mal region of data and subsequently define any-
thing outside of this defined region to be an outlier.
The Isolation Forest algorithm, on the other hand,
discovers minority data points that have attribute
values that differ from those of the usual instances.
Specifically, the algorithm isolates examples by se-
lecting an attribute at random and then selecting
a random split value between the maximum and
minimum values of the selected feature. Anoma-
lous examples will have shorter paths from the root
to the leaves in their isolation trees than the nor-
mal examples since they need fewer partitions to
be isolated. This algorithm is well-suited for high
dimensional datasets and has proven to be an effec-
tive way of detecting outliers and anomalies (Ding
and Fei, 2013). Furthermore, it works especially
well for behavioral data as “normal” regions tend
to be more variable than in other domains.

The current outlier analysis was specifically
based on the number of types (i.e., unique words),
the number of common types between the origi-
nal story and the recall, the BERTScore between
the original story and the recall, and the human
rating given to the recall. Figure 1 shows the re-
sults of applying the Isolation Forest algorithm to

the story recall data. It is shown that 18 outliers
were detected. Such instances would be flagged for
human review, where researchers can determine if
attribute or class noise is present and either fix the
erroneous values or exclude them from the model-
ing in the case that the examples are entirely invalid.
When the approach is used in clinical settings to
flag attribute noise, clinicians can review the raw
data and make determinations for themselves rather
than relying on a machine prediction.

Out of the 18 examples flagged by the Isolation
Forest algorithm, 9 were determined to be invalid
responses (i.e., participants stating that they simply
do not remember or responses that are insufficient
for data analysis) and 9 were valid responses with
either sparse amounts of language or large amounts
of language but poor performance. The average ab-
solute error on the outliers was 1.34 (stdev = 0.80);
the valid response outliers generated a higher abso-
lute error (average = 1.63, stdev = 0.91) than the
invalid response outliers (average = 1.05, stdev =
0.63). The performance of the model on outlier
data is far lower than the models overall perfor-
mance.

As the contamination threshold of the Isolation
Forest algorithm is increased (i.e., the criteria for
an outlier is relaxed), additional responses are cho-
sen that mirror the behavior of these 18. This is
a parameter that would need to be tuned such that
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Figure 2: Scatter plot depicting the relationship be-
tween the number of common word types and the
BERTScore of each example. The color represents the
absolute error between the model rating and the hu-
man rating in each instance. Cross symbols indicate
attribute noise (with two specific examples colored red
and detailed at a high level in the text).

all true outliers are detected yet it does not extend
into the normal data range. Furthermore, this pa-
rameter will need to be learned by investigating
the true distribution of these phenomena and will
depend on the application. Interestingly, the model
performance did not change with the removal of
these outliers. As approximately 2% of the data
was flagged in this experiment, the model behaved
indifferently to their exclusion. The exclusion of ex-
tremes (which help the performance of the model)
combined with noise (which harm the performance
of the model) potentially balanced out the effects
of both. This Isolation Forest analysis can be per-
formed on the same data without ratings in the
eventual clinical stage to find attribute noise and
extremes. We also present an analysis of features
alone that can be done in any stage of the modeling
process.

A basic noise detection approach that can be
used at any stage of the modeling process is to sim-
ply find the examples with low attribute agreement
(assuming that the attributes are collinear). Figure
2 depicts the distribution of two of the most pre-
dictive features of the story recall rating prediction
model (the number of common word types and the
BERTScore between the original story and the re-
call). There is a steady agreement between the two
features, with some outliers (marked with crosses)
outside of the diagonal where the features do not
agree. The color of the circles represent how far off
the model rating was from the human rating. Two

examples with exceptionally high error (~2.5-3.0)
are identified in red. The bottom-most red example
is a response with a mixture of correct and incorrect
(random) details, as well as incoherent language.
The top-most red example is a response with a high
BERTScore even though only a recitation of the ti-
tle of the story was spoken. This high disagreement
between features in turn uncovered a faulty feature
score potentially due to flawed weighting param-
eters in the BERTScore model. We have shown
that examples located off of the diagonal in plots
such as these should be passed on for human eval-
uation as disagreement in two objective collinear
attributes of story recall may raise concern.

Finding these outliers is critical because if a
model has not been exposed to certain combina-
tions of features or labels in its training set, then
we cannot assume that it will produce accurate pre-
dictions in such settings. Outliers are important
to detect both in the research stage in order to up-
date or exclude certain examples from affecting
the model in a negative manner and in the clinical
setting so that spurious decisions are not made on
abnormal data.

4 Effects of model generalizability

As previously stated, one of the most critical safe-
guards to spurious Al-based predictions is using
large, diverse, and representative data (Cirillo et al.,
2020), but this is not always possible. When us-
ing human behavioral data in machine learning
algorithms, researchers inadvertently make the as-
sumption that there is one canonical representation
of specific groups of humans (i.e., those with se-
rious mental illness), but this is simply not true.
Those with psychiatric disorders exhibit extremely
diverse symptoms and behaviors. Human behav-
ior displays patterns indicative of a chaotic system
(Paulus and Braff, 2003; Guess and Sailor, 1993),
which holds true for behavior within one person
as well as behavior within a group. To approach
the topic of generalizable data, we first explored
whether choosing different subsets within a train-
ing dataset would affect the output of the resulting
model and whether there are spurious results when
using smaller subsets.

The story recall regression model was trained
on N = 846 samples, a large size relative to clini-
cal experiments in the mental health domain. We
used stratified sampling to create smaller subsets
of the data that retain the proportions of each rating
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Percent of data (N) | Average model rating | Average BERTScore | Average common types
correlation (stdev) correlation (stdev) correlation (stdev)
100% (846) 0.91 0.86 0.82
75% (634) 0.91 (0.01) 0.86 (0.01) 0.82 (0.01)
50% (423) 0.90 (0.01) 0.82 (0.01) 0.79 (0.01)
25% (212) 0.88 (0.02) 0.81 (0.03) 0.79 (0.02)

Table 2: The change in the average and standard deviation (stdev) of the correlations between (1) the human rating
and the model rating, (2) the human rating and BERTScore, and (3) the human rating and common word types as
smaller subsets of the data are randomly chosen in a stratified manner for training and testing. The first column
displays the percent of data and the number of data points used in each data reduction setting.

and tested how the model behaved on these smaller
subsets. Table 2 depicts the changing accuracy of
the model and correlations of features to human
ratings when these smaller subsets of the data were
used for training and testing. We found the aver-
age correlation over a 10-fold cross-validation of
the sampled subsets controlled such that sessions
from the same participant did not occur simultane-
ously in both the training and testing sets. So as to
show the low effect on the randomness involved in
sampling smaller subsets, we report these metrics
after 10 random re-samplings. It is shown that this
regression model is stable when smaller subsets of
the training data are used. Had the model shown
significant drops in accuracy when restricting the
dataset size, it could be concluded that the model
was unstable or had overfit the training data.

Since experiments based on subsets of data re-
trieved from the same experimental population and
setting do not necessarily show the true extent of
model generalizability, we also performed trans-
fer tests of the story recall model. Specifically, a
second dataset was collected from inpatients at a
substance abuse program in Louisiana (N = 99),
most of whom suffered from co-occurring mood,
psychotic, anxiety and personality spectrum disor-
ders, as well as an additional collection from pre-
sumed healthy undergraduates at Louisiana State
University (N = 124). Together, the inpatients and
the presumed healthy undergraduates completed
N = 1254 story recalls. A ridge regression model
with the same NLP features as previously reported
was trained on the initial dataset and tested on the
new dataset, as well as vice versa. The first experi-
ment resulted in a Pearson r correlation of 0.86 and
the reverse an r of 0.84. Here, we conclude that
the story recall regression model will generalize
to differing clinical populations as well as illness
severities. The same may not hold true for differing

cultural populations as language differences may
prove to be a confounding variable in transferring
such a model. We thus advocate testing models on
each new population prior to implementation.

Neuropsychological task scoring is a much more
objective application area than other modeling ap-
plications in this field in which less is known and
gold standard labels are often disagreed upon (e.g.,
disease detection, mental state tracking, and so on).
Thus, generalizability is much more critical to test
in these other applications and will potentially not
yield such robust conclusions. Nonetheless, the
understanding of when a model will yield accurate
output and when it will not is an extremely impor-
tant endeavor. Finding representative data is of the
utmost importance in machine learning. In some
cases, such as the story recall regression model, it
is best to get as much data from as many people as
possible. In other cases, especially when dealing
with extreme diversity between individuals or sub-
sets of individuals, it may be best to only use data
that behaves in a similar fashion to the example
currently being tested.

5 Discussion

Mental health is extremely dynamic as it can
change on the scale of seconds, minutes, hours,
or days, and language offers an objective and po-
tentially unobtrusive way to assay such changes.
Mental state in some conditions can change quickly
with fatal consequences (e.g., suicide attempts) and
more frequent monitoring of language and behav-
ioral data, combined with machine learning meth-
ods, has the potential to offer clinicians unprece-
dented support in tracking patient state. Language
can be harnessed for many applications as it of-
fers a quantitative conceptualization of a person’s
underlying thought processes and mental health.
Tracking such phenomena is extremely important
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yet increasingly complex, and as such there is a
need for greater reliance on model outputs in this
field.

In experiments involving NLP methods, it is
common to deal with high dimensionality from
features like word embeddings, parser outputs, and
so on, which makes interpretation and understand-
ing of models difficult. Features often go beyond
normal distributions and as such there tends to be
high variability in data distributions. Thus, it is
especially important to create methods and tools
that allow us to better understand the feature space
and determine whether attributes or classes may
violate assumptions.

An eventual goal of this line of work is to have a
human-in-the-loop system where models analyze
streams of high dimensional patient data and pro-
duce predictions of mental state and well-being.
In the research stage of this implementation, real
data must be analyzed to determine what normal
distributions of attributes and classes appear to be.
Aberrant instances of patient data can be flagged
and reviewed by researchers to either update or ex-
clude from models. Researchers must also test their
models’ generalizability by collecting additional
samples or performing validation techniques to ver-
ify performance on unseen data. This process will
allow for models to be based on the most accurate
and representative data.

In the eventual clinical decision support system
implementation, models must be realized such that
attribute outliers are not predicted on, but rather
the raw data is passed to a clinician to make a
judgment. If the outlier is due to faulty feature
values, clinicians can update these values or they
can create their own labels and update the system
such that future similar cases would not necessarily
need to be verified by a human. In such a situation,
there is a “best of both worlds” where models can
execute the tasks that they are best at (high dimen-
sional data analysis) and humans can execute the
tasks that they are best at (handling anomalies and
interpreting patient data).

For NLP and machine learning methods to be
adopted in current research experiments as well as
in eventual clinical practice, they require critical
peer evaluation. What is needed is transparency in
terms of data collection, validation, reproducibility,
and clinical agreement in the association of lan-
guage features to underlying illness. This paper
showcases how essential it is that clinicians are

involved in all stages of development. As such,
it is a large step towards bringing more ethics and
transparency into Al-based studies in mental health.
Ethics review boards must demand this type of
transparency and fairness in the creation of mod-
els so that systems that harness machine learning
can be implemented in real clinical practice with
low risk. Some discussion of this path forward has
been brought to light by Friesen et al. (2021) who
reported on IRBs as a means of ethics oversight in
health research that harnesses Al

6 Conclusion

This paper illustrates the importance of understand-
ing the assumptions and distributions that underlie
training data and the algorithms used, as well as
the need to flag data that have characteristics that
violate these assumptions. Not only is this knowl-
edge important, but so too is having the tools to do
this. We found model instabilities in a story recall
regression model with the use of outlier detection
algorithms and error analyses with respect to vary-
ing input. We advocate that approaches such as
these be incorporated into machine learning and
NLP-based clinical research and implementation.
With the complexities inherent to models based on
many features, high numbers of parameters, highly
variable human behavioral data, and extremely high
(and potentially fatal) stakes for mistakes, it is crit-
ical to establish methods beyond model designer
intuition in assuring robustness and that predictions
cannot be made on out of range data or data that
lies in areas of instability. It should now be obvi-
ous that high predictive power on a relatively small
dataset does not entail clinical relevance or gen-
eralizability, and that it is essential to use larger
data sets, have more data collection outside of con-
trolled settings, incorporate modeling safeguards,
and use human-in-the-loop methodologies at all
steps of the process.
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