LFG Generation from Acyclic F-Structures
is NP-Hard

Jiirgen Wedekind
University of Copenhagen
Department of Nordic Studies
and Linguistics
jwedekind@hum.ku.dk

Ronald M. Kaplan
Stanford University
Linguistics Department
rmkaplan@stanford.edu

The universal generation problem for LFG grammars is the problem of determining whether
a given grammar derives any terminal string with a given f-structure. It is known that this
problem is decidable for acyclic f-structures. In this brief note, we show that for those f-structures
the problem is nonetheless intractable. This holds even for grammars that are off-line parsable.

The universal generation problem for LFG grammars (Kaplan and Bresnan 1982) is
the problem of determining for an arbitrary grammar G and an arbitrary f-structure
F whether G derives any terminal string with F. This has been shown to be undecidable
even for grammars that are off-line parsable (Wedekind 2014). If F is acyclic, however,
Wedekind and Kaplan (2012) have shown that the problem is decidable. They prove
that the set of strings that an LFG grammar relates to an acyclic f-structure can be
described by a context-free grammar. Decidability of the problem then follows because
the emptiness problem is decidable for context-free languages. To date, however, the
complexity status of this problem has been unknown.

In this brief note, we show the intractability of LFG’s generation problem from
acyclic f-structures by polynomial-time reduction from the 3-SAT problem, a problem
that is known to be NP-complete. The 3-SAT problem is the problem of determining
the satisfiability of a Boolean formula in conjunctive normal form where each of the
conjoined clauses is a disjunction of three literals. That is, each formula is a conjunction
of the form C; A .. A Cy;, each clause C; is a disjunction of the form [iV l i, V l iy and each
literal I;, k =1, .., 3, is a propositional variable p; or a negated variable —p;. Without loss
of generality, we assume in the following that every literal occurs only once in a clause
and a clause does not contain both, a variable and its complement.

Submission received: 13 March 2021; revised version received: 10 June 2021; accepted for publication:
16 July 2021.

https://doi.org/10.1162/COLI_a_00419
© 2021 Association for Computational Linguistics

Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:jwedekind@hum.ku.dk
mailto:rmkaplan@stanford.edu
https://doi.org/10.1162/COLI_a_00419

Computational Linguistics Volume 47, Number 4

To state the generation problem more formally, recall that an LFG grammar G
defines a binary derivation relation Ag between terminal strings and f-structures, as
given in (1).

(1) Ag(s, F) if and only if G derives terminal string s with f-structure F

The generation problem from acyclic f-structures is then the problem of determining
for an arbitrary LFG G and an arbitrary acyclic f-structure F whether {s | Ag(s, F)} is
empty or not.

Reductions to Problem-specific Grammars

For any instance { = C; A.. ACy, of the 3-SAT problem over variables p1, .., pn, we
construct an LFG grammar Gy, and an acyclic f-structure Fy, such that there is a string s
and (s, Fy,) € Ag,, if and only if is satisfiable.

The grammar G, includes the start rule

(2) S — Py .. Py
t=4 1=|

and for each propositional variable p; two terminal rules of the form (3a,b).

(3) a. Pi — $ b. Pi — $
A (T Cj)=TRUE A (T Cj) =TRUE
pi occurs in Cj —p; occurs in C;
j=1,..,m j=1,.,m

(The conjunction symbol is usually omitted.) In this construction, the rules in (3)
record for each variable p; the clauses C; that are true if p; is true (by the annotations
(r Cj) =TRUE in (3a)) and the clauses that are true if —p; is true (3b). Thus, there must
be a truth assignment for the variables that makes all clauses C; of C; A .. A Cpy =
true if and only if Gy, derives terminal string $" with the f-structure

(4) [c; TRUE
Cp TRUE

in which for all clauses C; the C; attributes have value TRUE. Hence, 1 is satisfiable if
and only if Gy, derives a terminal string with the f-structure Fy, in (4).

Gy, has 2n + 1 rules, a single start rule (2) of length n with n annotations and two
rules (3) of constant length for each of the n propositional variables with a total of 3m
annotations. The input structure Fy, has size m (measured in the number of attribute-
value pairs). The rules and the input can be constructed just by scanning 1\, which
is of length 3m, from left to right. However, in each step, the list of rules already
built is scanned to check whether a new annotation has to be added to an existing
P; rule or a new P; rule has to be created. During the same scan a new daughter is
added to the start rule if needed. Thus, the total time needed to construct the grammar
rules and the input is at most of order m -, a polynomial in the size of the original
3-SAT problem.

940

Wedekind and Kaplan LFG Generation from Acyclic F-Structures is NP-Hard

/T\
Py P, Ps
T‘i TTi TTi
$ $ $

(1 C2)=TRUE (1 C1)=TRUE (1 C1)=TRUE
(1 C3)=TRUE (1 C3)=TRUE (1 C2)=TRUE

Figure 1

One of 5 annotated c-structure derivations that the LFG grammar with the rules in (6) provides
for the input f-structure (7). This derivation corresponds to the truth-value assignment on which
p1 is false and p, and p3 are true.

By construction, there are 2" annotated c-structure derivations in Gy, for any 3-SAT
instance 1) over n propositional variables, and all those derivations derive the string $".
Thus, in the worst case, 2" annotated c-structure derivations may have to be examined
to determine whether (s, Fy,) € Ag,,, for any string s.!

As a simple illustration consider the satisfiable formula in (5).

() b=CiACACs=(p1Vp2Vp3) A(=p1V-p2Vps) A(=p1Vp2V—ops)
For this formula the construction results in the rules in (6) and the input structure (7).

The P rules in the left column reflect the positive literals and the ones in the right the
negative ones.

(6) S — P1 P2 P3

t=tt=41=4
Py — $ Py — $
(T C1) =TRUE (T C2) =TRUE
(T C3) =TRUE
P, — $ P, — $
(1 C1) =TRUE (1 C2) =TRUE
(1 C3) =TRUE
P3 — $ P; — $
(1 C1) =TRUE (1 C3) =TRUE
(T C2) =TRUE
(7) [cy TRUE
Cp TRUE
C3 TRUE

There are 8 annotated c-structure derivations that this grammar provides for the ter-
minal string $$$, but only 5 of them are assigned the f-structure (7). One of those
derivations is depicted in Figure 1.

1 On this analysis the number of derivations depends on the number of variables but not on the number of
clauses m. Tovey (1982) relates these parameters by showing that 3-SAT is NP-complete for instances
where each variable or its complement appears in at most four clauses. Thus, 3m < 4n, and hence
n > %m. This establishes that the number of annotated c-structure derivations that have to be inspected
in order to solve the acyclic generation problem can also be exponential in (a fraction of) the number of
clauses.

941

Computational Linguistics Volume 47, Number 4

In order to guarantee decidability of the recognition problem, Kaplan and Bresnan
(1982) introduced a constraint, later called the Off-line Parsability Constraint, that
proscribes empty productions and nonbranching dominance chains and thus bounds
the number and size of the c-structures of a string by a function of the length of that
string. Because the grammars G, do not contain empty productions and do not produce
nonbranching dominance chains, the acyclic generation problem is intractable even for
off-line parsable LFGs.

Note also that a transposition of this reduction can be used to show the intractability
of the recognition problem for off-line parsable LFGs. This transposition is intrinsically
simpler than Berwick’s original reduction (Berwick 1982). The grammar G{b includes
the start rule

t=4 1=|

and for each literal [;, of I; V I;, V I;; = C; a terminal rule of the form (9).

N TRUE 1 jx = Pi
(Tpi)= {FALSE if Ij = —p;

Here, the rules in (9) encode truth-value assignments for the variables that could sep-
arately satisfy each clause and the annotations of (8) ensure that the assignments are
consistent. By construction, there are 3" annotated c-structure derivations for a string
of length m that may have to be inspected to determine whether there is an f-structure
F with ($",F) € A%.

G!, has 3m + 1 rules: One rule of constant size for each literal in each disjunctive
clause C; (i.e., in total 3m rules) and a single start rule of length m with m annotations.
Because the rules for the literals of each clause are independent of the rules for the
literals in other clauses, rescanning of already constructed rules is not required. Thus,
the total time needed to construct the grammar rules is at most of order m.

We have demonstrated that LFG’s acyclic generation and recognition problems can
be reduced from the 3-SAT problem in polynomial time. Because the satisfiability of the
f-description of a given annotated c-structure can be tested quickly, LEG’s recognition
problem is in NP and hence NP-complete. For the acyclic generation problem, however,
it is not yet clear whether it belongs to NP, because the problem of deciding whether
the input f-structure and the f-structure assigned to a given derivation are structurally
identical is an instance of the isomorphism problem for labeled directed acyclic graphs.
Because it is not yet known whether that problem can be solved in polynomial time
(Basin 1994), with current knowledge we can only establish that the acyclic generation
problem is NP-hard.

In these reductions, the size parameters n and m of the 3-SAT problem instances
are reflected in certain size parameters of the corresponding LFG grammars, namely,
the length of the rules and the number of attributes. These technical demonstrations
reveal the expressive power of the basic LFG formalism, but they do not immediately
carry over to the way that the formalism is deployed in linguistic practice. Grammars
of natural language are not revised and specialized for every input that is presented
for recognition or generation. Rather, they describe particular natural languages with a
fixed number of rules and attributes that are intended to operate correctly on inputs

942

Wedekind and Kaplan LFG Generation from Acyclic F-Structures is NP-Hard

of arbitrary size. We can make our analysis more directly relevant by providing a
grammatical framework with a fixed set of rules and attributes that can reduce 3-
SAT problems of any size. In this framework the particular problem to be solved is
not encoded in the grammar but is presented as the input, either as a string or an
f-structure.

Reductions to Generic Grammars

We first describe the generic reduction for the recognition problem. We encode the
specific literals p;, —p; as sequences of i $ terminals followed by + or — ($/+, $'—).
The literal —p3 is thus represented as the string $$ $—. A clause is represented as
the concatenation of the representations of its 3 literals and a whole problem as the
concatenation of the representations of its clauses. Hence, the 3-SAT formula (5) is repre-
sented as the terminal string$ + $$+$$$+$ —$$-$%$$+$—-$$+$$$ —. The LFG
grammar consists of the 8 rules in (10). The S rules generalize the start rule in (8) to an
unlimited number of clauses. As now string encodings of satisfiable 3-SAT instances are
to be recognized, the C rules expand to three L daughters for deriving representations
of the three literals and they guess, similar to (9) but now through trivial annotations,
the true literal in each clause. The L rules derive the string representations of the literals
$' + or $ — and assign to them attribute-chain encodings of the form P’ VAL TRUE or
P! VAL FALSE.

(10) s - C s S— C
t=11=1 t=1
C— L LL C—-L L L C—-LL L
t=1 t=1 t=1
L—+$% L L — + L — —
(te)=J (1 VAL) =TRUE (1 VAL) =FALSE

In this construction, the trivial annotations ensure the consistency of the truth assign-
ments guessed in the C rules because there will be a clash if two chain-encodings of the
same variable bottom out in different VAL assignments. Thus a 3-SAT problem instance
is satisfiable if and only if its terminal-string representation belongs to the language of
the LFG. The terminal-string representation of a 3-SAT instance 1\ with m clauses can
be constructed by scanning 1 from left to right. Thus the total time needed to construct
the input string is at most of order m.

The generic reduction for the acyclic generation problem is more involved. For con-
venience, we use the traditional parenthetic notation for optional annotated categories
and optional annotations and {..|..} for disjunction.

We define a generic grammar G and construct for any 3-SAT problem instance J an
f-structure F, such that G derives a terminal string with Fy, if and only if 1 is satisfiable.
F,, contains an encoding of \» and a solution structure, and the units of both structures
are linked by edges labeled with the attribute s.

We represent the problem with attribute-chain encodings for the literals and also for
the clauses: p; is represented by P! POS, =p; by P/ NEG, and C; by C/. Then, a 3-SAT
problem with n variables and m clauses is encoded in the input f-structure through
chains that match the regular expression P’ {POS|NEG} C/OCC +, with i <n,j < m,
where P! POSC/ OCC + records that p; occurs in C; and P! NEG ¢/ OCC + records that

943

Computational Linguistics Volume 47, Number 4

Figure 2

A schematic representation of the input f-structure for our 3-SAT example (5). The problem
encoding is depicted in black, the solution structure in green, and the S edges in red. Only the
encodings for p3 and —p3 are shown in detail.

—p; occurs in C;. For our 3-SAT example (5), the problem encoding is schemati-
cally illustrated in the black substructure of the input f-structure depicted in Figure 2.

The solution structure corresponds to an attribute-chain conversion of the in-
put structure (4) of the problem-specific reduction, that is, it is represented through
attribute-value chains ¢/ VAL TRUE, j = 1,..,m. The S edges link the encoding of every
literal to the root of the solution structure and the encoding of every clause to its
encoding in the solution structure. For our 3-SAT example (5), these components of the
input f-structure are depicted in green (solution structure) and red (S edges).

The rules in (11) derive the chain encodings for an arbitrary number of literals.

(11) s— P
(rp)=1
(ts)=Ws)
P— P Crrue C C Crrue
((TP)— \L>{(TPOS)—¢(T G)={| (T Pos)=| (1 NEG)= ¢}
(rs)=(s) (ts)=s)(ts)=s) | (Ts)=Us)(Ts)=(5s)

The s reentrancies link all encodings to the same solution structure. The disjunction
guesses either the positive or the negative literal to be true and this nondeterminis-
tic guess is marked at the end of the derivation of the literals for a variable by the
TRUE tag.

The C productions in (12) allow it to encode through the optional OCC + annotations
for each literal all possible occurrences in an arbitrary number of clauses, and the s
reentrancies link every derived clause representation to the representation of that clause
in the solution structure.

944

Wedekind and Kaplan LFG Generation from Acyclic F-Structures is NP-Hard

Figure 3

For the encoding of the simple unsatisfiable 3-SAT problem (p1 V p1 V p1) A (=p1 V —p1 V —p1),
the TRUE guess for the POsitive literal of the P rule results in the f-structure on the left side

and the alternative TRUE guess for the NEGative in the one on the right side (if the option 0CcC +
of the L rules is exactly selected for those clauses in which the literal occurs). Because both
structures are missing the VAL TRUE information at one clause representation, the problem is
unsatisfiable.

(12) CTRUE — CTRUE $ C — C $
(to)=1 (to)=1
(tsc)=(s3) (tsc)=(1s)
(J occ)=+ (L occ)=+)
((¢ SVAL) :TRUE)

The given rules can certainly derive for any 3-SAT problem 1 a string with an f-
structure that contains the encoding of . To see that the rules derive the problem
encoding together with the solution structure only if 1 is satisfiable, let us consider
the derivations that yield the problem encoding for a particular 3-SAT instance with n
variables and m clauses. Because the disjunction of the P rules encodes the possible truth
assignments to a variable, the recursive application of the P rule alternatives encodes in
2" derivations all possible truth assignments for the n variables of the given problem. By
construction only Crryg but not C rules expand derivations for literals that are assigned
true. Also, if a literal occurs in C]- then only those rules add VAL TRUE to the encoding
of Cj in the solution structure, to indicate that the variable assignment that makes that
literal true also makes C; true.

Thus, if a clause representation in the solution structure is missing the VAL TRUE
information, the truth assignment encoded in that derivation does not make that clause
true. Hence, individual derivations match the input if and only if there is at least
one variable assignment that satisfies every clause. A problem is unsatisfiable if no
derivation matches the input. This can be made particularly clear by the trivial un-
satisfiable 3-SAT problem instance (p1V p1 V p1) A (=p1V —p1 V —p1), even though it
does not comply with the simplifying assumptions that we made at the beginning. For
the encoding of this problem, the LFG grammar provides the derivations depicted in
Figure 3.

The generic LFG has 11 rules. The input f-structure, which has maximum depth
n + m + 2, can be constructed by scanning 1\ (with length 3r) from left to right and by
creating in each step an occurrence encoding of a literal in a clause. Because the input

945

Computational Linguistics Volume 47, Number 4

structure has to be scanned top-down in each step, the total time needed to construct
the input is at most of order m? + mn.2

Concluding Remarks

This note has introduced new results concerning the complexity of LFG generation
(and recognition) for grammars that assign acyclic f-structures to input strings. We
observed that reductions to problem-specific grammars where the size parameters of the
3-SAT problem instances are reflected in grammar-size parameters are not particularly
relevant to the linguistic enterprise. More relevant are the generic reductions where
the LFG grammar is kept fixed across all possible 3-SAT problem instances. These
show that computational complexity in the worst case can grow exponentially as a
function of the size of the input f-structure or string, and that grammar or deriva-
tion restrictions of some sort must be imposed for tractability of LFG generation and
recognition.

Wedekind and Kaplan (2020) introduced a subclass of LFG grammars with particu-
lar restrictions that exclude our generic reduction grammars but ensure that at least the
recognition problem is tractable for inputs of arbitrary length. Wedekind and Kaplan
further argue that grammars that meet the conditions of this k-bounded subclass are
still expressive enough for natural language description (see also Kaplan and Wedekind
2019). However, it is at this point still an open question whether generation is polyno-
mial for arbitrary grammars in this linguistically plausible subclass or whether poly-
nomial generation can be established only for grammars within a yet more restricted
proper subclass of the k-bounded class.

Acknowledgments

The authors would like to thank the three
anonymous reviewers for their helpful
suggestions and comments on earlier drafts
of this squib.

References
Basin, David A. 1994. A term equality

problem equivalent to graph isomorphism.

Information Processing Letters, 51(2):61-66.
https://doi.org/10.1016/0020
-0190(94)00084-0

Berwick, Robert C. 1982. Computational
complexity and Lexical-Functional
Grammar. American Journal of
Computational Linguistics, 8(3—4):97-109.

Kaplan, Ronald M. and Joan Bresnan.
1982. Lexical-Functional Grammar: A
formal system for grammatical
representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, MA,
pages 173-281.

Kaplan, Ronald M. and Jiirgen Wedekind.
2019. Tractability and discontinuity.

In Proceedings of the International
Lexical-Functional Grammar Conference
2019, pages 130-148, Stanford, CA.

Tovey, Craig A. 1982. A simplified
NP-complete satisfiability problem.
Discrete Applied Mathematics,
8(1):85-89.

Wedekind, Jiirgen. 2014. On the universal
generation problem for unification
grammars. Computational Linguistics,
40(3):533-538. https://doi.org/10.1162
/COLI_a_00191

Wedekind, Jiirgen and Ronald M. Kaplan.
2012. LFG generation by grammar
specialization. Computational Linguistics,
38(4):867-915. https://doi.org/10
.1162/C0OLI_a_00113

Wedekind, Jiirgen and Ronald M. Kaplan.
2020. Tractable Lexical-Functional
Grammar. Computational Linguistics,
46(3):515-569. https://doi.org/10.1162
/coli_a_00384

2 Note that the generic reduction for generation, as well as the problem-specific reductions, also work for
general SAT problem instances, and that the 3-literal rule for the recognition problem can easily be

extended so that it solves such problem instances too.

946

https://doi.org/10.1016/0020-0190(94)00084-0
https://doi.org/10.1016/0020-0190(94)00084-0
https://doi.org/10.1162/COLI_a_00191
https://doi.org/10.1162/COLI_a_00191
https://doi.org/10.1162/COLI_a_00113
https://doi.org/10.1162/COLI_a_00113
https://doi.org/10.1162/coli_a_00384
https://doi.org/10.1162/coli_a_00384

