
Variational Deep Logic Network for Joint
Inference of Entities and Relations

Wenya Wang
School of Computer Science
and Engineering
Nanyang Technological University,
Singapore
wangwy@ntu.edu.sg

Sinno Jialin Pan
School of Computer Science
and Engineering
Nanyang Technological University,
Singapore
sinnopan@ntu.edu.sg

Currently, deep learning models have been widely adopted and achieved promising results on
various application domains. Despite their intriguing performance, most deep learning models
function as black boxes, lacking explicit reasoning capabilities and explanations, which are
usually essential for complex problems. Take joint inference in information extraction as an
example. This task requires the identification of multiple structured knowledge from texts, which
is inter-correlated, including entities, events, and the relationships between them. Various deep
neural networks have been proposed to jointly perform entity extraction and relation prediction,
which only propagate information implicitly via representation learning. However, they fail to
encode the intensive correlations between entity types and relations to enforce their coexistence.
On the other hand, some approaches adopt rules to explicitly constrain certain relational facts,
although the separation of rules with representation learning usually restrains the approaches
with error propagation. Moreover, the predefined rules are inflexible and might result in negative
effects when data is noisy. To address these limitations, we propose a variational deep logic
network that incorporates both representation learning and relational reasoning via the varia-
tional EM algorithm. The model consists of a deep neural network to learn high-level features
with implicit interactions via the self-attention mechanism and a relational logic network to
explicitly exploit target interactions. These two components are trained interactively to bring
the best of both worlds. We conduct extensive experiments ranging from fine-grained sentiment
terms extraction, end-to-end relation prediction, to end-to-end event extraction to demonstrate
the effectiveness of our proposed method.

Submission received: 26 October 2020; revised version received: 9 July 2021; accepted for publication:
19 July 2021.

https://doi.org/10.1162/COLI a 00415

© 2021 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:wangwy@ntu.edu.sg
mailto:sinnopan@ntu.edu.sg
https://doi.org/10.1162/COLI_a_00415

Computational Linguistics Volume 47, Number 4

1. Introduction

Joint inference is commonly adopted in the field of information extraction (IE), for
example, end-to-end relation extraction and end-to-end event extraction. Compared
with a pipelined procedure, joint inference performs multiple correlated subtasks in
a single model simultaneously, which avoids error propagation and exploits inter-task
correlations. For example, end-to-end relation extraction involves both entity extraction
and relation classification between entities. As shown in Figure 1(a), given a text input
“W. Dale Nelson covers the White House for The Associated Press,” end-to-end relation
extraction requires the identification of W. Dale Nelson as an entity of type person (PER),
White House as an entity of type location (LOC), and The Associated Press as an entity
of type organization (ORG). At the same time, the relation between W. Dale Nelson and
The Associated Press needs to be classified as work for. For end-to-end event extraction,
an event consists of an event trigger and an arbitrary number of arguments. The task
involves the identification and classification of the following three items:

• Entity mention: An entity mention is a reference to an entity in the form of
a noun phrase or a pronoun.

• Event trigger: An event trigger usually refers to the main word that clearly
expresses an event occurrence. Event triggers can be verbs, nouns, and
occasionally adjectives.

• Event argument: Event arguments refer to entities that fill specific roles in
the event. They mainly include participants, namely, the entities that are
involved in the event, and general event attributes such as place and time.

For example, in Figure 1(b), there are four entity mentions with their corresponding
types labeled above. blow is a trigger for the event Conflict:Attack with two different
arguments: He (Attacker) and city (Place).

Various deep learning models have been proposed to jointly extract entities, or
events and their relations through either parameter/feature sharing (Miwa and Bansal
2016; Katiyar and Cardie 2017) to exploit task commonalities, or designing loss func-
tions that consider task correlations, for example, adopting a novel tagging scheme
(Li and Ji 2014; Miwa and Sasaki 2014; Gupta, Schütze, and Andrassy 2016; Zhang,
Zhang, and Fu 2017; Zheng et al. 2017). However, these joint deep models only exploit

W. Dale Nelson covers the White House for The Associated Press

PER LOC ORG

work for

He will blow a city off the earth in a minute if he can get the hold of the means to do it.

PER PERGPE LOC

Conflict:Attack

Attacker Place

(a)

(b)

Figure 1
Examples of IE tasks: (a) End-to-end relation extraction. (b) End-to-end event extraction.

776

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

task interactions implicitly via parameter sharing or high-level feature learning without
effective relational knowledge integration. We observe that intensive correlations or
relational patterns exist among targets being extracted. Take Figure 1(a) as an example;
if we know entity W. Dale Nelson is a person and it has relation work for with another
entity The Associated Press, we can probably infer that The Associated Press is an organi-
zation. Note that the widely used BIO segmentation scheme in entity segmentation can
be considered as a special case of correlation constraints among targets, for example, “I”
should not follow “O.”

To fuse such explicit dependencies among different targets, some early studies
enforce the model predictions with constraints (Yang and Cardie 2013; Roth, Yih, and
Yih 2007) or rely on global graphical models (Yu and Lam 2010) to produce structured
predictions. These approaches, however, fail to connect final predictions with feature
updates, resulting in error propagation. Logic rules have been integrated into deep
learning architectures for natural language processing as a form of prior knowledge in-
tegration recently (Hu et al. 2016; Li and Srikumar 2019; Wang and Pan 2020). However,
in existing methods, rules are explicitly given and kept fixed with learnable weights
during model learning, which limits the expressiveness and adaptation of knowledge
from training data.

To address these limitations, we propose a novel marriage between deep fea-
ture learning and relational logic reasoning, named Variational Deep Logic Network
(VDLN), for joint inference in the IE domain. The complex relationships among target
variables could be effectively captured both implicitly and explicitly via the mutual
enhancements of deep neural networks and automatic logic inference in a joint learning
framework. Specifically, VDLN consists of two modules: a deep learning moduleQ and
a logic reasoning module P . The deep learning module adopts the self-attention mech-
anism to explore the dependencies among each token in a sentence in order to generate
word-level and relation-level features. It is also flexible to incorporate structured mod-
els, for example, Conditional Random Fields (CRFs) (Lafferty, McCallum, and Pereira
2001) to produce structured outputs for entity segmentations. For the logic reasoning
module, we construct a novel logic network that parameterizes logic inference process
via a hierarchy of layers consisting of an atom layer and a rule layer. The final output
of the logic network simulates rule entailments and reflects the probability of the target
atom being true given the input atoms. The target atom could be regarded as a binary
classifier for each target label. The logic network aims to learn relational correlations
among the related variables, which is crucial for the task at hand. For example, the
aforementioned dependency between entity and relation labels could be reflected via
the first-order-logic rule: person(X1) ∧work for(X1, X2)⇒ organization(X2). It is worth
noting that the logic reasoning module is flexible enough to achieve both rule learning
given some simple rule templates and integration of predefined logic rules.

To smoothly integrate these two modules and to model dependencies of correlated
variables for joint inference, we propose a variational EM learning paradigm. The
E-step involves learning of module Q to produce probabilistic predictions for each
variable. For the M-step, the logic reasoning module P conducts knowledge inference
and updates its parameters according to the outputs of Q. The alternation between
E-step and M-step facilitates the integration and mutual enhancement of both knowl-
edge reasoning and abstractive feature learning to achieve the best of both worlds.

To demonstrate our model’s generality, we apply VDLN on a range of challenging
IE tasks, focusing on different kinds of correlations and with increasing levels of diffi-
culty. Specifically, we take Aspect and Opinion Extraction as the first IE task that focuses
on entity extraction by treating aspect and opinion terms as two different entity types

777

Computational Linguistics Volume 47, Number 4

and exploring their interactions to boost the extraction accuracy. The second IE task
is End-to-End Relation Extraction, which considers correlations among entities and their
relations. We use End-to-End Event Extraction as our third IE task, which contains rich
correlations between entities and events. The proposed model achieves better perfor-
mances across all these tasks without the need to construct any prior knowledge. To
summarize, our contributions include:

• We propose a novel logic-inspired network incorporating logic semantics
for probabilistic reasoning, which is more expressive and beneficial for
exploiting target interactions for joint inference. The logic network is able
to learn effective reasoning patterns given the training corpus, and at the
same time allows the integration of predefined logic rules.

• We design a variational EM algorithm within our deep logic networks for
IE tasks, which bridge the gap between deep feature learning and
knowledge reasoning to enhance the final performance.

• We conduct extensive experiments on 6 benchmark data sets across 3 IE
tasks with increasing levels of difficulty to demonstrate the effectiveness
and generality of our proposed model.

2. Related Work

2.1 Information Extraction

Information extraction aims to extract structured knowledge from texts (e.g., en-
tities, relational triplets). In this paper, we mainly review three IE tasks that are
related to our proposals. The first task is aspect and opinion extraction, which
focus on the identification of product aspects/attributes and their corresponding
opinion expressions. Existing work either relies on predefined rules and patterns
among aspect terms and opinion terms utilizing syntactic information of a sentence
(Hu and Liu 2004; Qiu et al. 2011; Li et al. 2010), or designs deep learning models
considering different types of dependencies, for example, contextual dependencies (Liu,
Joty, and Meng 2015; Wang et al. 2017; Li and Lam 2017; Xu et al. 2018a), syntactic
dependencies (Yin et al. 2016; Wang et al. 2016), and task dependencies (Chen and
Qian 2020). Another recent work (Yu, Jiang, and Xia 2019) exploits the combination
of explicit rules with deep feature learning via linear integer programming. However,
such integration only treats rules as fixed constraints to revise deep learning predictions,
without the ability to update rules and propagate information back to feature learning.

For end-to-end relation extraction, the early works adopt a pipeline procedure that
first learns an entity extraction model and then trains a relation classifier based on the
extracted entities (Chan and Roth 2011; Lin et al. 2016). This strategy is prone to error
propagation resulting from the extracted entities. To resolve this limitation, subsequent
works propose joint extraction models by sharing parameters (Miwa and Bansal 2016;
Katiyar and Cardie 2017; Bekoulis et al. 2018; Bekoulis, Deleu, and Demeester 2018;
Takanobu et al. 2019; Dixit and Al-Onaizan 2019; Dai et al. 2019a) or by designing loss
functions to encode the task interactions, for example, structured perceptron (Li and Ji
2014), novel labeling strategies (Miwa and Sasaki 2014; Gupta, Schütze, and Andrassy
2016; Zhang, Zhang, and Fu 2017; Zheng et al. 2017; Wang et al. 2018), global loss (Sun
et al. 2018; Adel and Schütze 2017), and triplet/answer generation (Zeng et al. 2018;
Li et al. 2019). Wang and Lu (2020) proposed combining both sequence encoder and

778

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

table encoder together with rich input embeddings for joint extraction. However, these
approaches only exploit correlations among the subtasks implicitly. Another strategy is
to enforce relational facts via explicit rule constraints (Roth, Yih, and Yih 2007; Yang and
Cardie 2013; Kate and Mooney 2010) or graphical models (Yu and Lam 2010), which are
separated from feature learning.

The third task, which is more challenging, is event extraction. Pipelined models
are first proposed, which require extensive feature engineering (Ji and Grishman
2008; Liao and Grishman 2010; Patwardhan and Riloff 2009; Hong et al. 2011; McClosky,
Surdeanu, and Manning 2011; Miwa et al. 2014). To capture interactions among different
subtasks, graphical and structured prediction models have been proposed for joint in-
ference of event triggers and event arguments (Poon and Vanderwende 2010; Venugopal
et al. 2014; Riedel et al. 2009; Li et al. 2014; Judea and Strube 2016; Yang and Mitchell
2016). Recently, deep neural networks were also introduced for joint prediction in the
domain of event extraction (Nguyen, Cho, and Grishman 2016; Sha et al. 2018; Liu,
Luo, and Huang 2018; Nguyen and Nguyen 2019; Zhang, Ji, and Sil 2019; Wadden et al.
2019). However, most of the existing research depends on external linguistic resources
to generate semantic and syntactic features in order to enhance the final prediction. Lin
et al. (2020) adopted manually designed global features to capture cross-task and cross-
instance interactions.

2.2 Deep Learning with Logic Reasoning

Considering the limitation of pure deep learning models, which lack the reasoning
capabilities, and the inflexibility of pure symbolic models, a marriage between them
has been proposed, namely, Neural-Symbolic Learning, which aims to equip dis-
tributed representation learning with some form of real intelligence, or, on the other
hand, assists symbolic models to handle uncertainties (Garcez, Broda, and Gabbay
2002; França, Zaverucha, and D’avila Garcez 2014; Serafini and d’Avila Garcez 2016;
Evans and Grefenstette 2018; Manhaeve et al. 2018; Dong et al. 2019; Xu et al. 2018b;
Tran and d’Avila Garcez 2018; Wang et al. 2019; Dai et al. 2019b; d’Avila Garcez
et al. 2019; Ciravegna et al. 2020; Lamb et al. 2020; Yang and Song 2020). Deep neural
networks have been used to simulate logic reasoning by parameterizing logic oper-
ators and logic atoms with neural weights (Franca, Zaverucha, and D’avila Garcez
2014; Tran and d’Avila Garcez 2018). Another group of research focuses on smooth
integration of logic rules within the deep learning frameworks (Manhaeve et al. 2018;
Xu et al. 2018b). A more challenging direction is to induce logic rules automati-
cally through representation learning and differentiable back-propagation (Evans and
Grefenstette 2018; Dong et al. 2019; Wang et al. 2019; Yang and Song 2020).

In the NLP domain, Rocktäschel, Singh, and Riedel (2015) and Guo et al. (2016)
embedded logic rules into the distributed feature space for knowledge graph learning.
Hu et al. (2016) fused discrete logic rules into deep neural networks (DNNs) through
posterior regularization and Qu and Tang (2019) used a variational EM algorithm to
distill knowledge from a graph neural network into a Markov logic network. Another
work used logic rules to construct adversarial sets (Minervini et al. 2017; Minervini and
Riedel 2018), or as indirect supervision to improve model training (Wang and Poon
2018). Logic knowledge has also been inserted into deep architectures as named neurons
(Li and Srikumar 2019). Recently, differentiable theorem proving has been proposed
that parameterizes symbolic unification in the backward chaining process of prolog
(Gallaire and Minker 1978) with neural weight learning (Rocktäschel and Riedel 2017;
Campero et al. 2018; Minervini et al. 2020). Inspired by Qu and Tang (2019), we also

779

Computational Linguistics Volume 47, Number 4

adopt the variational EM algorithm for knowledge distillation. But different from the
previously mentioned studies, we design a semantically meaningful deep architecture
for automatic logic reasoning. The logic-inspired network is able to learn expressive
and useful reasoning patterns that are adapted given the training corpus, and at the
same time flexible to incorporate predefined logic rules. In the domain of information
extraction, Wang and Pan (2020) used predefined logic rules as a form of regularizer
to be imposed to the learning of DNNs. The regularizer is realized via a discrepancy
loss between the deep learning predictions and the satisfiability of their corresponding
logic rules. However, this mechanism only locally influences the learning of DNNs.
Compared with Wang and Pan (2020), our proposed model is able to learn different
combinations of logic atoms to form the rules and it is also flexible to incorporate prede-
fined knowledge. Moreover, our EM training algorithm alternates between an inference
step and a learning step to achieve mutual enhancement which globally enforces the
learning of both modules, instead of sample-wise regularization.

3. Problem Definition and Preliminary

For ease of illustration, we first list all the symbols used in this work together with their
descriptions in Table 1.

3.1 Problem Definition

For all three IE tasks, the target variables can be categorized as: (1) Entities, with the set
of all entity types denoted by E . (2) Events, with V denoting the set of all event types.
(3) Relational triplets (s, r, o) governed by a set of relation categories r ∈ R, with s and o
being the subject and object of relation r, respectively. For convenience, we use r(s,o) to
denote the relational triplet. Given an input sentence {w1, w2, . . . , wn}, entity extraction
is formalized as a sequence labeling problem to generate entity segmentation. Denote
the set of segmentation labels by E = {Bj, Ij, O}j∈E , with Bj, Ij, O indicating the beginning,
inside, and outside of an entity of type j, respectively. The output is a label sequence
{y1, y2, . . . , yn}, where yi ∈ E. End-to-end relation extraction aims to generate both entity
segmentation as well as a set of relational triplets r(ε1,ε2), where ε1 and ε2 correspond
to entities. End-to-end event extraction consists of 3 subtasks: entity extraction, event
trigger extraction, and event argument prediction. Event trigger extraction is formalized
as a token-based classification problem with |V| classes. Event argument prediction aims
to produce relational triplet r(ε,v) where ε is an entity, v is an event trigger, and r denotes
the argument relation between ε and v. For relational triplet prediction, we pair all
candidate entities (or entities with event triggers) that are extracted in the first place
to predict the relation label.

3.2 Variational EM

Given a model pφ parameterized by φ, the objective is to maximize L = log p(Y;φ)
with respect to φ, where Y is the target variable. We can re-formalize the objective by
introducing another model q parameterized by θ:

L = log
∫

q(Z;θ)
p(Y, Z;φ)

q(Z;θ) dZ ≥ Eq(Z;θ)[log p(Y, Z;φ)− log q(Z;θ)] (1)

780

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

Table 1
A table with all of the symbols used in this work and their descriptions.

Symbols Description

E ,R, V the set of all entity types, relation categories, event trigger categories

E the set of segmentation labels E = {Bj, Ij, O}j∈E with j∈ E an entity type

Nε, Nr the set of all words, the set of all relations within a sentence

D a set of atoms D = {d1, . . . , dN}

εi, r(εi ,εj), vi a constant representing an entity, a relation, an event trigger

wi, yi, yi an input word, an output label, an output prediction vector

θ, φ all the parameters corresponding to module Q, module P

xi, Xi a logic constant, a logic variable

di a logic atom consisting of a predicate and arguments di = pred(X1, . . . , Xm)

h the head atom of a clause d1 ∧ . . . ∧ dn ⇒ h

υ(·) the probabilistic value of an atom or a clause υ(·) ∈ [0, 1]

x, h, u, α a vector representation of an input, a hidden neuron, an entity type, attention scores

W, b a trainable transformation matrix, a trainable bias vector

vi,n, Vn a trainable transformation vector, bi-linear transformation matrix for atom evaluations

q, p an output probabilistic vector from module Q, module P

R, γ a logic rule identifier, the confidence score of a rule

m ∈ Nε ∪Nr a logic constant referring to either a word or a relation

ctx(m) the set of logic constants that form the context of m

ỹctx(m) a vector of probabilistic inputs for module P : ỹctx(m) = (qm1
, qm2

, . . . , qm|ctx(m)|
)

σ the sigmoid function

βt, d a weight vector that weighs each logic rule, a vector of atom values

Y, Z the set of target random variables, the set of hidden random variables

p(·), q(·) probabilistic distributions

Here p(Y;φ) =
∫

p(Y, Z;φ)dZ with Z being the hidden variables that are highly cor-
related with Y. The expectation in (1) is the Evidence Lower Bound (ELBO) of the
original objective. The equality of (1) holds when q(Z;θ) = p(Z|Y;φ). Hence, the original
problem can be optimized via the variational EM algorithm (Neal and Hinton 1999) that
alternates between an E-step and an M-step. In the E-step, p is fixed and q is updated to
approximate the equality

q(Z;θ) = p(Z|Y;φ). (2)

In the M-step, q is fixed, and p is updated by maximizing:

Eq(Z;θ)[log p(Y, Z;φ)], (3)

781

Computational Linguistics Volume 47, Number 4

given that the last term Eq(Z;θ)[log q(Z;θ)] of the ELBO is a constant with respect to p.
Such formulation has 2 advantages: (1) It promotes mutual learning from 2 different
perspectives when only optimizing the single model p is hard and insufficient. With
such consideration, we treat the logic module P as p and the deep learning module
Q as q in (1). (2) EM exploits the dependencies between input and hidden variables,
which is beneficial for modeling inter-dependencies for joint inference, for example, the
correlations between entity types and relation categories. But different from Qu and
Tang (2019), we design a semantically meaningful deep architecture for automatic logic
reasoning.

Note that Qu and Tang (2019) adopted this formulation to distill information from
graph neural networks for Markov logic networks with given logic rules. Compared
to other existing works that either used manually constructed logic rules to enhance
the learning of DNNs, or learn logic rules but are limited in terms of computational
efficiency, we build on top of Qu and Tang (2019) to achieve mutual learning of both
DNNs and logic reasoning.

3.3 First-Order Logic

A first-order logic (FOL) program associates constants, variables, and predicates with logic
connectives, namely, ∨, ∧, and ¬, and quantifiers. A constant x is an object, for example,
a word or a relation between two words. A variable X refers to a group of constants.
A predicate pred can be regarded as a function that maps constants or variables to True
or False. An FOL formula consists of atoms connected with ∨, ∧, or ¬, representing
logic “OR,” logic “AND,” and logic “NOT,” respectively. Here an atom is an n-ary
predicate taking constants or variables as arguments. For example, person(X) is a 1-ary
atom, same(X1, X2) is a 2-ary atom. An atom is said to be grounded if all of its variables
are instantiated with constants. Given these definitions, an FOL formula in the form of
entailment could be represented as

d1 ∧ d2 ∧ . . . ∧ dn ⇒ h (4)

where di = pred(X1, . . . , Xm) is a body atom and h is the head atom of the formula. ⇒
in (4) can be replaced with ∨ and ¬, converting (4) to an equivalent form: ¬d1 ∨ ¬d2 ∨
. . . ∨ ¬dn ∨ h consisting of valid connectives.

In our problem setting, we treat each different classifier as FOL entailments and
define each target label as the head atom of a set of FOL formula. For example, d1 ∧ d2 ∧
. . . ∧ dn ⇒ person(X) explains how person(X) can be deduced from its body atoms. In
this case, if d1 ∧ d2 ∧ . . . ∧ dn evaluates to True, person(X) will also be True.

In order to smoothly integrate FOL with deep learning, probabilistic logic has
been proposed that translates the hard assignment of True and False to a soft version
within [0, 1] that indicates the probability of an atom being true. Hence, we can define
υ(person(X)) = υ(d1 ∧ d2 ∧ . . . ∧ dn) ∈ [0, 1], where υ(·) denotes the probabilistic evalu-
ation of the input. Furthermore, we adopt T-norm (Klement, Mesiar, and Pap 2013) for
probabilistic evaluations of logic connectives:

υ(d1 ∧ . . . ∧ dn) = min(υ(d1), . . . ,υ(dn)) (5)

υ(d1 ∨ . . . ∨ dn) = max(υ(d1), . . . ,υ(dn)) (6)

υ(¬di) = 1− υ(di) (7)

782

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

To encode uncertainties within probabilistic logic, we assign each FOL formula d1 ∧
d2 ∧ . . . ∧ dn ⇒ h with a learnable confidence score γ ∈ [0, 1]. The higher the score, the
more confidence the formula plays in the computation process.

4. Motivation

Conventional deep learning usually lacks knowledge integration and fails to explicitly
model the crucial interactions among the targets. Recently, logic reasoning has been
adopted and integrated with DNNs to enhance performance by introducing knowledge
as FOL rules. Among them, probabilistic logic converts the hard 0/1 assignment to
soft probabilities (Nilsson 1986), which facilitates optimization through gradient de-
scent. However, the pre-designed FOLs may not be expressive enough to represent the
inherent patterns and prevents adaptation to a given training data set. To address
this limitation, we propose VDLNs, which inherit the representational power of deep
learning, and at the same time simulate the logic rule learning process via a novel logic
network consisting of a hierarchy of an atom layer, a rule layer, and an output layer.
Given some predefined rule templates, the atom layer implements a neural transforma-
tion process to convert the inputs to a set of abstract atoms. Then our logic network
learns to discriminatively select the most relevant atoms in the atom layer to compose a
logic rule in the rule layer. Our network design avoids a manual construction of atoms
for each rule that is task-dependent. It is also flexible to inject any prior knowledge
into the logic network if the rules are easy to obtain. The combination of automatically-
learned and predefined logic rules is realized via a form of residual connection.

To integrate a logic system with deep learning, most existing works only use knowl-
edge to regularize feature learning or feed deep learning outputs as the inputs to the
logic system, but ignore the mutual interactions. In this work, we introduce a novel in-
tegration of DNNs and knowledge reasoning via variational EM. Note that Qu, Bengio,
and Tang (2019) proposed to adopt variational EM for semi-supervised classification by
associating 2 graph neural networks. Qu and Tang (2019) further extended the algorithm
for efficient inference in Markov logic (Richardson and Domingos 2006). However, their
work only updates the weights for predefined rules without learning the predicates of
rules. Different from previous works, our proposed model automatically learns useful
predicates and the weights of different instantiations of those predicates that explore
the associations among highly dependent classifiers for joint inference.

5. Methodology

The overview of the proposed model VDLN is shown in Figure 2. It consists of 2
modules: (1) ModuleQ consists of a DNN that transforms the input sequence of text into
abstractive features hi’s and produces the probabilistic outputs qi’s. (2) A logic module
P consists of a set of logic networks (LNets), with one LNet corresponding to each
specific word wi and relation r. Each LNet takes ỹctx(wi) (ỹctx(r)) as input, which consists of
information from all of its associated variables to conduct knowledge reasoning among
these variables, and generates the final probabilistic evaluations {pi}’s. Note that in
VDLN, besides modeling complex correlations between targets, the logic module P also
implements the BIO labeling scheme. The entire model is trained via the variational EM
algorithm that alternates between an E-step (inference) and an M-step (learning). In
the E-step, the deep module Q generates soft predictions of each word and candidate
relation by distilling knowledge from P . In the M-step, the logic module P takes the
predictions of Q as input and generates a probabilistic output for each target class of

783

Computational Linguistics Volume 47, Number 4

W.

Dale

Nelson

Associated

Press

h1

h2

h3

attModule ModuleQ

self-a
tten

tio
n h10

h11

+

B
iG

R
U

M-Step

E-Step

LNet

LNet

LNet

P

ỹctx(r)

LNet

ỹctx(w1)

ỹctx(w10)

ỹctx(w11)

Figure 2
An overview of the proposed model. The left part corresponds to module Q and the right part
corresponds to module P . Module Q transforms the text input to a set of prediction vectors qi’s,
which can be fed as input to module P to produce a set of prediction vectors pi’s. Then an EM
algorithm is used to train all the parameters that alternate between an E-step and an M-step.

each word and relation. With a more concrete example, the overall procedure is the
following: Given an input sentence of 11 tokens “W. Dale Nelson covers the White House for
The Associated Press,” module Q first produces the hidden representations {h1, . . . , h11}
and the output vectors {q1, . . . , q11}, as shown in Figure 2. Likewise, a relation output
vector qr is generated for each pair of candidate entities predicted via hi, for example,
(W. Dale Nelson, Associated Press), based on their hidden representations {hi}i∈{1,2,3,10,11}
and their attention scores. Then these vectors {{qr}′s, q1, . . . , q11}, where {qr}′s collects
the set of all entity pairs for relation predictions, are used to form the input ỹctx(wi) (or
ỹctx(r)) for each word (or relation) in module P to produce the final probabilistic output
vectors {{pr}′s, p1, . . . , p11} for all the words and relations from Module P . With the
output vectors from both modules, we conduct EM training algorithm that first update
the parameters inQ by treating the predictions from pi’s as the supervision labels. Then
in the next iteration, we update the parameters in P by treating the predictions from
qi’s as the supervision labels.

In the following, we will describe the architecture of VDLN in Section 5.1 and
Section 5.2 in detail.

5.1 Deep Learning with Self-Attention

As shown in Figure 2,Q is a deep neural network based on the self-attention mechanism
and a bidirectional Gated Recurrent Unit (BiGRU) in order to model both non-local and
contextual token-level interactions, respectively. Specifically, we use a transformer-style
framework with multihead self-attentions to generate a hidden representation for each
word incorporating its correlation with other tokens. Given input embeddings {xi}’s
corresponding to a text sequence {w1, w2, . . . , wn}, the multihead self-attention model
generates a hidden representation h̄i for each word through a linear transformation of
all attention heads

h̄i = W[h̄1
i : ... : h̄C

i] (8)

784

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

where each attention head c produces

h̄c
i =

m∑
j=1

αc
ij(W

c
vxj), with αc

i = softmax
((Wc

qxi)(Wc
kx)

√
d

)
(9)

It is flexible to stack multiple layers of self-attentions. Then a BiGRU network, fG, is
applied on top of h̄i to generate the final feature hi incorporating sequential interactions:

hi = [
−→
h i :
←−
h i] = [fG(h̄i,

−→
h i−1) : fG(h̄i,

←−
h i+1)] (10)

A softmax classifier is used to produce the final prediction for each token corresponding
to the entity labels as

qi = softmax(Wthi + bt) (11)

For end-to-end event extraction, we use two separate classifiers for entity and event
trigger prediction, respectively, which corresponds to two different sets of parameters:
{Went

t , bent
t } and {Wevent

t , bevent
t } in (11).

To generate entity-relation triplets, we first construct candidate entity pairs for each
sentence by enumerating all the predicted entities. For each entity pair (ε1,ε2), the
relation feature is a concatenation of its associated entity features, entity types, and
attention scores obtained through the transformer network:

hr = [h̃1; h̃2; uε1 ; uε2 ;α12;α21] (12)

where h̃1 = 1
|ε1|

∑
wi∈ε1

hi with |ε1| representing the number of words wi within a candi-

date entity ε1. Similarly, h̃2 is obtained from another candidate entity ε2. uε1 and uε2

denote the entity type embedding for ε1 and ε2, respectively, by looking up an entity
type embedding matrix U with |E | (the total number of entity types) columns that are
randomly initialized and trained through the learning process. The attention vector α12
corresponds to the averaged multihead attention score between wi ∈ ε1 and wj ∈ ε2,
while α21 records the reverse order of the 2 entities. The final prediction for relation r of
the entity pair, that is, the triplet (ε1, r,ε2), is produced via

qr = softmax(Wrhr + br) (13)

For end-to-end event extraction, the event argument relation triplet (ε, r, v) is gen-
erated in a similar manner by replacing ε2 with event trigger v. We additionally use
a binary classifier to decide whether there is a relation between the entity and event
trigger due to the sparsity of relation labels.

5.2 Logic Network

As described in Section 5.1, the deep learning model only implicitly learns word correla-
tions via high-level features and attentions, but ignores the explicit correlations among
target variables, especially for those of different types. In fact, the entity/event labels are
highly dependent on the relation types, for example, “person(wi) ∧work for(r(wi,wj))⇒
organization(wj).” Moreover, the segmentation labels are highly correlated within a
context window. Although such segmentation interactions could be captured in Q via
structured loss, it is more efficient and capable of modeling more complex correlations

785

Computational Linguistics Volume 47, Number 4

together with relation information. Here, we treat such segmentation dependencies as
a form of knowledge reasoning.

Recently, some approaches have been proposed to combine deep learning with logic
reasoning to regularize the learning process or induce new rules. However, most of
them are not expressive enough by limiting themselves to the tasks within the logic
domain, or are computationally expensive to work on real application domains. There
is also a lack of focus on directly modeling rules for classifiers. For expressiveness,
Shanahan et al. (2019) proposed a relational neural network, which only translates to a
single logic rule that is propositional in nature. We propose a novel logic network within
the logic module P that simulates FOL and enhances reasoning capabilities through
multilevel rule constructions within a deep architecture.

As shown in Figure 2,P consists of a separate logic network (LNets) applied on each
word and relation. Following the introduction of FOL in Section 3.3, we first adapt the
problem into the logic domain, where a logic variable corresponds to a word w or a re-
lational triplet r(ε1,ε2). All possible words and relations form the set of logical constants.
Each target class y ∈ E ∪ V ∪R could be regarded as a predicate, and when taking
constants as arguments, becomes a grounded atom. When the target class y ∈ E ∪ V
is an entity type or event type, it takes a single word (or phrase) as the argument,
for example, person(W. Dale Nelson) with y = person. When the target class y ∈ R is a
relation, it takes a relational triplet as the argument. For example, work for(r(ε1,ε2)) with
y = work for specifies entity ε1 and entity ε2 has relation work for. We use d(x1, . . . , xn)
to denote an n-ary atom and υ(d) ∈ [0, 1] to denote the probability of the atom be-
ing true. For example, υ(work for(r(ε1,ε2)) = 0.8 indicates that ε1, and ε2 has relation
“work for” with probability 0.8.

As discussed in Section 3.3, we treat each target class as a form of logic entail-
ment where the target class is the head atom h of a set of logic rules/formula R∈
{R1, . . . , RS} with R : d1 ∧ d2 ∧ . . . ∧ dT ⇒ h. Here R is a rule identifier. As a concrete
example, if we aim to predict whether a text segment εj belongs to the target class
“organization (entity),” we may define a logic rule to entail the target entity type
“organization”: person(εi) ∧work for(r(εi,εj))⇒ organization(εj), where the head atom
h = organization(εj) corresponds to the target entity type. The result depends on its
precondition, which consists of two atoms d1 = person(εi) and d2 = work for(r(εi,εj)).
Then an FOL program aims to produce the truth probability of h given the set of all
possible rules {R1, . . . , RS}. In most cases, such rules may not be readily available.
Hence, it is desirable to learn the FOL rules automatically. To achieve that, we use a
separate logic network (LNet) to generate relevant rules corresponding to the same head
atom and evaluate its truth probability through its preconditions.

The detailed computation process for each LNet is shown in Figure 3. For a logic
constant m ∈ Nε ∪Nr referring to either a word or a relation, we build a set consisting
of its relevant contexts ctx(m)={m1, . . . , m|ctx(m)|}. Then the input to a LNet becomes
ỹctx(m) = (qm1

, qm2
, . . . , qm|ctx(m)|

), which combines deep learning predictions of each ele-
ment in ctx(m).1 The LNet aims to produce probabilistic evaluations of a set of N atoms
D={d1, . . . , dN} in the atom layer, which are in turn used to form a logic program
consisting of a set of logic rules {R1, . . . , RS} of the form dj1 ∧ . . . ∧ djT ⇒ h. All these
rules share an identical head atom h = ym that indicates whether m belongs to a target
class ym ∈ E ∪ V ∪R. The final output is a probabilistic evaluation υ(h) by accumulating
all the logic rules and considering their confidence scores γ1, . . . ,γS. In this way, the

1 How to construct relevant context for each m ∈ Nε ∪Nr is explained in detail in Section 6.

786

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

qm1 qm2 qmr1
qmr2

v1,1

v1,n1

v2,1

v2,n1

V1

Vn2

d1 dN

Input layer

Synthetic atoms

Rs RSR1
α1 αS

Rule layer

Output layer
γ1

γs

υ(h) LNet

ỹctx(m)=()

γS

concat

Atom layer

D
(1)
m1 D

(2)

Dctx(m)

dNctx(m)

D

D
(1)
m2

Figure 3
An example of a logic network. The input consists of prediction vectors qi’s from module Q.
The synthetic atoms consist of {D(1)

mi }’s, consisting of 1-ary synthetic atoms, the value of which is
obtained by transforming from qmi

using a vector vi,n, and D(2), a set of 2-ary synthetic atoms, the
value of which is obtained by transforming from 2 input vectors qmr1

, qmr2
using a bilinear

matrix Vn. The set of synthetic atoms can be combined with predefined atoms via a
concatenation operation to form the atom layer. The rule layer then selects relevant atoms in the
atom layer to form logic rules to generate the final value υ(h) for the head atom.

LNet is able to model the correlations of related constants formed by each word’s or
relation’s relevant contexts.

As shown in Figure 3, to produce the set of N atoms, each LNet first creates a set of
1-ary atoms D(1)

mi ={d
(1)
i,1 , . . . , d(1)

i,n1
} corresponding to a context mi∈ctx(m), where d(1)

i,n ∈
D(1)

mi records a unique property of its corresponding input mi. It also produces a set
of 2-ary atoms D(2) = {d(2)

1 , . . . , d(2)
n2 }, where d(2)

n ∈ D(2) indicates a relation between 2
interacting contexts mr1 , mr2 ∈ ctx(m). The value for each atom is computed automati-
cally via parameterized transformations:2

υ(d(1)
i,n) = σ(vi,n

>qmi
) (14)

υ(d(2)
n) = σ(qmr1

>Vnqmr2
) (15)

where σ is the sigmoid function for probabilistic evaluations. vi,n∈R
|qmi
| and Vn∈

R|qmr1
|×|qmr2

| are transformation parameters that convert the input vector to a scalar.
We can view (14) and (15) as computing the probability of a specific property of the
input (e.g., qmi

) being true. Then Dctx(m) = {D(1)
mi }mi∈ctx(m) ∪D(2) could be regarded as

recording different properties or relationships of the input context ctx(m). We treat these
automatically generated atoms Dctx(m) as synthetic atoms.

2 Here n1 and n2 are hyperparameters corresponding to the number of 1-ary atoms and 2-ary atoms,
respectively, for each input.

787

Computational Linguistics Volume 47, Number 4

Take the sentence “W. Dale Nelson covers the White House for The Associated Press” as
an example. To make predictions on the word Dale in Module P , we first identify its
context ctx(Dale) = {W., Dale, Nelson, The Associated Press, r(Dale, The Associated Press)} if
The Associated Press is extracted as an entity. Then the input ỹctx(Dale) is the concatenation
of all the prediction vectors q’s corresponding to each element in ctx(Dale) obtained
from moduleQ: ỹctx(Dale) = (qW., qDale, qNelson, qThe Associated Press, qr(Dale,The Associated Press)

). Given
ỹctx(Dale), the values of the synthetic atoms are obtained in the following process.
Specifically, for the first input vector qW. corresponding to the previous word of
Dale, we produce D(1)

W. = {d(1)
1,1, . . . , d(1)

1,n1
}with values υ(d(1)

1,1) = σ(v1,1
>qW.), . . . ,υ(d(1)

1,n1
) =

σ(v1,n1
>qW.) corresponding to n1 with different properties from the previous word of

Dale, according to (14). We treat these atoms as unary synthetic atoms. In a similar
manner, we obtain D(1)

Dale and D(1)
Nelson as another 2 sets of n1 1-ary atoms. Each of the n2

produced 2-ary atoms d(2)
n ∈ D(2) corresponds to an interaction property among Dale,

The Associated Press and r(Dale,The Associated Press) via υ(d(2)
n) = σ(qThe Associated Press

>Vn
qr(Dale,The Associated Press)

), according to (15).
To make the logic network flexible and comprehensive, we further enhance LNet

with residual connections to incorporate predefined atoms and logic rules when pro-
vided. As shown in Figure 3, a concat operation concatenates the synthetic atoms and
original inputs to form the atom layer D = {d1, . . . , dNctx(m)

, dNctx(m)+1
, . . . , dN}, where the

first Nctx(m) = |Dctx(m)| atoms are the synthetic atoms, while the last N −Nctx(m) atoms
are the predefined atoms. Different from synthetic atoms, which do not have exact
semantic meanings, the predefined atoms are formed by the original inputs qi speci-
fying the probability of each target class corresponding to the input word/relation, for
example, dj = person(ε), Nctx(m) + 1 ≤ j ≤ N will inherit the value as υ(dj) = (qε)[person],
which indicates the probability of label person for ε. The predefined atoms facilitate
the incorporation of prior knowledge, for example, person(εi) ∧work for(r(εi,εj))⇒
organization(εj), into the rule layer.

The rule layer aims to learn a set of logic rules {R1, . . . , RS} corresponding to the
same head atom h by choosing proper body atoms from D. It consists of two kinds
of logic rules: learned rules and fixed rules. The learned rules are constructed based
on an iterative selection process via attention mechanism. Given the set of all possible
atoms D, a logic rule R : dj1∧, . . . ,∧djT ⇒ h is formed by learning to select djt ∈ D at each
iteration t ∈ {1, . . . , T}. The selection process is parameterized and approximated using
attention mechanism, where a trainable weight vector βt ∈ RN is used to record the
relevance of all N atoms in D at each iteration t. To achieve sparse selection, we adopt
sparsemax (Martins and Astudillo 2016):

sparsemax(βt)=argminx∈∆N−1‖x− βt‖2 (16)

with ∆N−1 =
{

x ∈ RN|1>x=1, x≥0
}

. Intuitively, sparsemax(βt) transforms βt to a
sparse probabilistic vector indicating the most relevant atoms to be selected. Note that
βt is randomly initialized and trained throughout the learning process. To produce the
value for the head atom h, we follow (5) to obtain

υR(h) = min{υ(dj1), . . . ,υ(djT)}

= min
1≤t≤T

{d>sparsemax(βt)}, (17)

788

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

where d=[υ(d1), . . . ,υ(dN)] denotes the vector of atom evaluations. Specifically, for each
timestamp t, d>sparsemax(βt) ≈ υ(dt) when βt assigns the most probabilistic mass
to dt, which should be expected using sparsemax, compared to softmax. Then after T
iterations of selection, the resulted logic rules should have the form dj1 ∧ . . . ∧ djT ⇒ h.
Fixed rules correspond to prior knowledge which is manually constructed. These
rules can be used to enhance the final prediction when the learned rules are not
expressive enough. To incorporate such prior knowledge, we transform the body
atoms of each given rule into 1-hot attention weights. For example, for person(εi) ∧
work for(r(εi,εj))⇒ organization(εj), we construct its corresponding attention weight
β̄1 = 1(di = person), β̄2 = 1(dj = work for), where 1(·) is a indicator function. These
weight vectors are kept fixed during training.

The final value for h considering all the relevant rules {R1, . . . , RS} is obtained via

υ(h) = γ>[υR1 (h), ...υRS (h)] (18)

where γ ∈ RS indicates the confidence level for each rule and is trainable. υ(h) can
be regarded as a binary classifier for its corresponding target class, for example, “or-
ganization (entity).” We use the same atom set D with different attention vectors to
parameterize different target classes. When denoting by υ(hl) the output from an LNet
for each target class l, we can produce the final multi-class predictions pm in module P as

pm = softmax([υ(h1), . . . ,υ(hL(m))]) (19)

for m ∈ Nr ∪Nε. The number of nodes in the output layer is L(m) = |E| for entity (m ∈
Nε), L(m) = |V| for event trigger (m ∈ Nε) and L(m) = |R| for relation (m ∈ Nr).

As shown both in Figure 2 and (19), the output of LNet υ(h) is used to pro-
duce the probabilistic vector pm as the output of module P for each constant m.
These probabilistic vectors pm’s, together with the outputs qm’s from module Q,
will further be used to train our joint model via the EM algorithm, as discussed in
the sequel.

6. Learning with Expectation-Maximization

6.1 Inference

The E-step involves inference and update of moduleQ by taking the output pm from the
logic module P . Recall from Section 3.2 that the objective is to solve q(Z;θ) = p(Z|Y;φ)
with p fixed. Here we have Z = {ym}m∈Nε∪Nr corresponds to the predictions for all
the words Nε and relations Nr, and Y = {yctx(m)}m∈Nε∪Nr , with ctx(m) denoting the
context of node m, which will be introduced later. Using the mean-field variational ap-
proximation, the above probabilities factorizes as q(Z) =

∏
m∈Nε∪Nr

q(ym) and p(Z|Y) =∏
m∈Nε∪Nr

p(ym|yctx(m)) (θ and φ are omitted for ease of illustration). To train our model
with an EM algorithm, we associate p(ym|yctx(m)) with the logic module P such that
p(ym = y|yctx(m)) = (pm)[y] representing the probability when m has label y, where pm is
the output of the logic module obtained from (19). The subscription [y] denotes the y-th
entry of the corresponding vector. Similarly, we associate q(ym) with module Q, where
q(ym = y) = (qm)[y]. For relation prediction, q(yr = y) = (qr)[y] with r ∈ Nr. Note that the

789

Computational Linguistics Volume 47, Number 4

bold symbols (e.g., ym, yr, y) within distributions p(·) and q(·) denote random variables
for label predictions and the non-bold symbols (e.g., yi, y) indicate the actual label
assignment. According to Qu, Bengio, and Tang (2019), the optimal solution satisfies
the approximated condition:

log q
(
ym
)
≈ Eq(yctx(m))

[
log p

(
ym|yctx(m)

)]
(20)

for m ∈ Nr ∪Nε with Nr and Nε denoting the set of relations and words, respectively.
Here θ and φ is omitted for ease of illustration. The above condition can be further
converted to

log q
(
ym
)
≈ log p

(
ym|ỹctx(m)

)
(21)

by approximating the expectation via sampling ỹctx(m) from q(yctx(m)) in module Q.
Intuitively, (21) aims to align the distributions from two modules. To update q in terms
of θ, we minimize the following objective fixing p:

OE = −
∑

m∈Nε∪Nr

Ep(ym|ỹctx(m)) log q(ym) (22)

To achieve that, we first generate the prediction ym = argmaxyp(ym = y|ỹctx(m)) through
the logic moduleP using (19) given ỹctx(m) (will be discussed later). We use the predicted
label ym as the target label to train moduleQ, replacing Ep(ym|ỹctx(m)) log q(ym) in (22) with
log q(ym = ym).

During training, as the ground-truths are available, we also utilize label information
to update q. Specifically for each m, we update q using the aforementioned strategy
with probability 0.5, otherwise we replace ym (or {y1, . . . , yn}) predicted from P with
the ground-truth label to update q.

6.2 Learning

The M-step involves learning and update of module P . Recall the objective in (3), we fix
Q and use it to update P . Assuming conditional independence given the contexts, we
have

log p(Y, Z) =
∑

m∈Nr∪Nε

log p(ym|yctx(m)) (23)

Then the objective of maximizing (3) becomes

OM = Eq(Z)[log p(Y, Z)] ≈
∑

m∈Nr∪Nε

log p(ym = ym|ỹctx(m)) (24)

Here ym = argmaxyq(ym = y) is the predicted label which corresponds to the maxi-
mum probability in q(ym) from module Q. To avoid randomness brought by sampling
ỹctx(m), we directly use the real-valued outputs given by module Q such that ỹctx(m) =

(qm1
, . . . , qm|ctx(m)|

) with ctx(m) = {m1, . . . , m|ctx(m)|}. This aligns with the input of the

790

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

logic network shown in Figure 2. (24) can be viewed as maximizing the log-likelihood
of the predictions given byQ using module P . To incorporate label supervision, we use
ym with probability 0.5, otherwise we replace ym in (24) with m’s true label to update p.

To compute p(ym|ỹctx(m)) within the logic module P , we define the context ctx(m) of
each variable m to be those variables that have intensive correlations with m for the task
at hand by constructing some rule templates given the output {qi}’s from module Q.
When m = wi ∈ Nε, we use 3 types of dependencies for the rule templates:

• The prediction of a word wi from Q is a direct precondition: qi → pi.

• The prediction of another word wj from Q that has relation with wi could
inform the target prediction: qj, qrij

→ pi.

• The prediction of wi’s preceding and following words from Q could
inform the target prediction: qi−1, qi+1 → pi. Note that this type of
dependency is applicable when the structured prediction is implemented
in the logic module (P), not the deep learning module (Q).

For relation prediction when m = rij ∈ Nr, we use 2 templates:

• The prediction of rij from Q is a direct precondition: qrij
→ prij

.

• The predictions of wi and wj from Q could inform the target: qi, qj → prij
.

Given these dependency templates, we construct the input of the logic network
ỹctx(m) for m = wi ∈ Nε as ỹctx(m) = (qi−1, qi, qi+1, qj, qrij

) for entity (or event) predic-
tion of each word wi, where qi−1, qi and qi+1 are separately used to construct 1-ary
atoms, and both qj and qrij

are used to construct 2-ary atoms in module P . Intu-
itively, the corresponding words and relations form the context of wi, denoted by
ctx(i) = {wi−1, wi, wi+1, wj, rij}. Similarly, the input ỹctx(m) when m = rij ∈ Nr for relation
prediction of rij is ỹctx(m) = (qrij

, qi, qj). We use qrij
, qi, qj, respectively, to produce 1-ary

atoms. Again, both qi and qj are used to produce 2-ary atoms. Given the construction of
ỹctx(m), the output pm of the logic network will then be computed following (19).

6.3 Optimization

Overall, the training process involves alternating between variational E-step and M-step
to update module P using (24) and module Q using (22). For both steps, the output of
P is obtained by sampling the context predictions of the target using Q, which reflects
the intensive interactions between these two modules. This interaction is also enhanced
by learning to approximate these two distributions throughout the training process. To
facilitate training, we first pretrainQ using the ground-truth labels for several iterations
before the variational EM procedure. In the testing phase, both P andQ can be adopted
to generate the predictions. In our experiments, we use a similar strategy as ensemble
learning that assigns each module a weight that is tuned according to the validation
set to compute a weighted average of the two modules as our final predictions. The
complete training procedure for end-to-end relation extraction is shown in Algorithm 1.

791

Computational Linguistics Volume 47, Number 4

Algorithm 1 Variational Deep Logic Network
Input: A sequence of input words {w1, . . . , wn} and their corresponding word embed-
dings x = {x1, . . . , xn}. Ground-truth entity label for each word {y1, . . . , yn}. Relation
label for each candidate entity pairs {yr(ε1,ε2)

}’s.
Output: Trained parameters θ for Module Q, and φ for Module P .
1: Pretrain Module Q
for k = 1, 2, . . . , K do

Produce hidden representations {h1, . . . , hn} from self-attentions and Bi-GRU.
Produce softmax probabilities {q1, . . . , qn} using (11).
Compute loss via cross-entropy LE

pretrain = −
∑n

i=1 yi log qi.
Produce softmax predictions for relations from candidate entity pairs as {qr}’s
using (13).
Compute relation loss via cross-entropy LR

pretrain = −
∑

r yr log qr.

Update θ := θ− δ
∂LE

pretrain+LR
pretrain

∂θ where δ is the learning rate.
end for
2: EM training between P and Q
Generate ỹctx(m) = (qm1

, . . . , qmctx(m)
) from outputs of module Q.

for each iteration do
3: Inference
for k = 1, 2, . . . , K′ do

Produce probabilistic output pm in module P from LNets using (19).
Obtain predictions ym = argmaxyp(ym = y|ỹctx(m)) = argmaxy(pm)[y].

Update module Q via θ := θ− δq
∂OE
∂θ , where δq is the learning rate for the

E-step. OE is obtained through (22).
end for
4: Learning
for k = 1, 2, . . . , K′ do

Obtain predicted label ym = argmaxyq(ym = y) from module Q.
Compute distribution p(ym|ỹctx(m)) = pm from module P using (19).
Update module P via φ := φ− δp

∂OM
∂φ , where δp is the learning rate for the

M-step. OM is obtained through (24).
end for

end for

7. Experiment

7.1 Tasks and Data

We conduct experiments on 6 benchmark data sets from 3 IE tasks:

• Aspect and Opinion Terms Extraction: Aspect terms refer to the product
features or attributes that the users commented on in the customer
reviews. Opinion terms are those carrying subjective opinions toward the
products or services. For example, given a review sentence “The service
staff is terrible.”, service staff is an aspect term and terrible is the opinion
term. We use a restaurant review corpus and a laptop review corpus from

792

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

Table 2
Data set statistics for aspect and opinion terms extraction.

Data # Sentences Entity Type

Restaurant 14 train 3,041 aspect, opiniontest 800

Laptop 14 train 3,045 aspect, opiniontest 800

Table 3
Data set statistics for end-to-end relation extraction.
Data # Sentences # Entities # Relation Entity Type Relation Type

CoNLL04 1,437 5,336 2,040 person, location, located in, org based In,
organization, other work for, live in, kill

ACE04 6,789 22,740 4,368

person, vehicle, physical, PER/ORG-affiliation,
organization, location, employment-organization,
facility, weapon, person-social, GPE-affiliation,
geographical entity Agent-Artifact, discourse

ACE05
train 7,273 26,470 4,779 person, vehicle, physical, ORG-affiliation,
dev 1,765 6,421 1,179 organization, location, employment-organization,
test 1,535 5,476 1,147 facility, weapon, agent-artifact, part-whole,

geographical entity person-social, GPE-affiliation

SemEval 2014 (Pontiki et al. 2014). The statistics of the two data sets are
shown in Table 2.

• End-to-end Relation Extraction: This task involves the identification and
classification of both entities and relations between entities. For this task,
three benchmark data sets are used, including CoNLL04 (Roth and Yih
2004), ACE04 (Doddington et al. 2004), and ACE05 (Li and Ji 2014). As
shown in Table 3, CoNLL04 consists of 4 entity types and 5 relation
categories. ACE04 defines 7 entity types with 7 relation categories and
ACE05 adopts the same entity types as ACE04 but defines 6 relation types.
CoNLL04 and ACE04 do not provide official train/test split, hence we
conduct 3-fold and 5-fold cross-validation for CoNLL04 and ACE04,
respectively, to report our final results. We follow the same preprocessing
and data split as (Li and Ji 2014) on ACE05 data set.

• End-to-end Event Extraction: This task involves three subtasks, namely,
extraction and classification of entity mentions, extraction, and
classification of event triggers, and discovering of relationships between
entity mentions and event triggers for event argument extraction and
classification. For this task, the same ACE05 data set is used. For entity
mentions, we consider ACE entity types PER, ORG, GPE, LOC, FAC, VEH,
WEA, and ACE VALUE and TIME expressions, following the common
setting of the existing works. There are in total 33 event subtypes that are
involved in the event trigger classification task. The total number of
different argument roles for entities participating in various events is 35
and we collapse 8 of them that are time-related, following Yang and
Mitchell (2016). The detailed statistics of ACE05 data set for event
extraction is shown in Table 4. For evaluation, we treat an entity as correct

793

Computational Linguistics Volume 47, Number 4

Table 4
Data set statistics for end-to-end event extraction.

Data # Sentences # Entities # Triggers # Argument

ACE05
train 14,837 48,797 4,337 7,768
dev 863 3,917 497 933
test 672 4,184 438 911

if both its entity type and offset matches one of the ground-truth entities.
An event trigger is correctly identified if its offset matches one of the
reference event triggers, and it is regarded as correctly classified if its
type is also correct. An argument role is correctly identified if the
corresponding entity type, entity offset, and event type matches one of the
reference argument roles, and it is correctly classified if the argument role
is also correct.

7.2 Experimental Setting

To integrate self-attention mechanism, we use a pretrained BERT model (base-uncased)
(Devlin et al. 2019) to initialize all the word embeddings and to produce the attention
scores for each pair of words. The batch size is 20 and the dimension for BiGRU is 100
with dropout rate 0.1. For the logic network, we set the number of 1-ary atoms (n1)
and 2-ary atoms (n2) for each input variable to 20 and the number of body atoms in
each rule as T = 8. The total number of rules is set to S = 30. During training, we use
Adadelta with initial learning rate 0.01 for module Q and Adam with initial learning
rate 0.01 for module P . The sampling rate for both E-step and M-step is set to 0.5, that
is, for 50% of the time, the ground-truth label is used for learning desired modules.
For each experiment, we first pretrain Q for 50 epochs and then alternate between P
and Q with every 2 epochs for each module. The final prediction is made by ensemble
strategy with weight 0.6 and 0.4 for Q and P , respectively. All the hyperparameters are
selected via the validation set. For evaluation, we use micro-F1 scores on non-negative
classes. An entity is correct if both segmentation and entity type are correct. A relation
is correct if both of its entities (events) and the relation type matches the ground-
true label. We use the same evaluation metric as (Yang and Mitchell 2016) for event
extraction.

For time complexity, we report the duration using 1 GPU of Tesla V100 250W. Pure
neural model (e.g., BERT) takes 38s and 28s for training 1 epoch on Res14 and Lap14
data set, respectively. It takes 556s and 522s for training 1 iteration of VDLN that consists
of 2 epochs of both modules on Res14 and Lap14 data set, respectively. On CoNLL04,
it takes 56s for training 1 epoch of BERT and 271s for training 1 iteration of VDLN. On
ACE04, it takes 131s for training 1 epoch of BERT and 967s for training 1 iteration of
VDLN. On ACE05, it takes 242s for training 1 epoch of BERT and 1713s for training 1
iteration of VDLN. For memory usage, experiments on Res14 and Lap14 data occupy
around 8.9G. Experiment on CoNLL04 takes 15.9G. Experiments on ACE04 and ACE05
occupy around 6.7G. All these memory usages are almost the same when compared
with pure deep learning models.

794

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

7.3 Result

Aspect and Opinion Terms Extraction: To demonstrate the effectiveness of our pro-
posed model, we compare with the following most recent baselines:

• GInf: A pipelined model combining deep neural networks with integer
linear programming (Yu, Jiang, and Xia 2019). The predictions produced
from the deep neural networks are taken as input to the integer linear
programming system where explicit relational constraints among aspect
terms and opinion terms are enforced considering syntactic information.

• Rule-distill: A posterior-regularization-based framework to regularize
deep learning predictions via prior knowledge. The training is conducted
via a teacher-student knowledge distillation (Hu et al. 2016). To adapt this
model to our problem setting, we construct a few logic rules, as shown in
Table 14 to form the teacher network. For fairness, we use the same neural
model (module Q) as the student network.

• DLogic: A joint model incorporating explicit logic rules into the deep
learning model (Wang and Pan 2020). The deep learning predictions are
made as probabilistic evaluations of input atoms to produce the output for
the head atom of each rule. Then a discrepancy loss is computed to align
the deep learning predictions with a set of predefined logic rules.

• DLogic*: Replace the deep neural networks of DLogic with the one used in
our proposed model for fair evaluations.

• VDLN: The proposed model consisting of a logic module P and a deep
learning module Q.

• SOTA (Chen and Qian 2020): The current state-of-the-art model on aspect
and opinion terms extraction, which implements BERT-large with
collaborative learning considering the interactions among aspect terms,
opinion terms, and sentiment polarities.

Table 5 shows the result for aspect and opinion terms extraction. Because some of
the baseline models do not have published code, we only conduct 3 different runs over
Rule-distill, DLogic, DLogic*, and our proposed model VDLN. For the other baseline
models, we use fixed results as reported. The numbers in italic form indicate the average
results over 3 different runs. This task can be cast as a special case of entity extraction
by treating aspect terms and opinion terms as 2 different entity types. Yu, Jiang, and

Table 5
Results on 2 benchmark data sets for aspect and opinion extraction. The italic numbers show the
average results over 3 different runs. * indicates the results are significant with p < 0.05.

Model GInf Rule-distill DLogic DLogic* VDLN SOTA (Chen and Qian 2020)

Res14 Aspect 84.50 87.27* 85.41* 86.57* 87.71 86.71
Opinion 85.20 86.40* 84.21* 86.11* 87.32 87.18

Lap14 Aspect 78.69 81.05* 81.01* 81.25* 82.44 82.34
Opinion 79.89 80.56* 79.57* 79.89* 81.40 81.00

795

Computational Linguistics Volume 47, Number 4

Xia (2019) incorporated explicit relational knowledge among aspect and opinion words
through integer linear programming. However, the separation of knowledge reasoning
from DNN during learning makes the result suboptimal. As a comparison, VDLN
makes these 2 components interactive via variational learning. Compared with Rule-
distill (Hu et al. 2016), VDLN outperforms the teacher-student network, demonstrating
the advantage of EM algorithm for mutual learning and the ability to learn correlation
patterns as logic rules. To verify the expressiveness of our proposed logic network
for knowledge reasoning, we compare with explicit rule integration (Wang and Pan
2020), which bridges the DNN outputs with explicit logic rules by minimizing their
discrepancies. For fair comparison, we replace their DNN module with ours, denoted
by DLogic*. Clearly, VDLN gives better performances at all times, which proves the
advantage of automatically learning a logic network over fixed rules. The SOTA model
(Chen and Qian 2020) adopted BERT-large as the feature learning backbone and im-
plemented multitask learning framework with collaborative learning mechanism to
explore interactions among target terms and sentiment polarities for joint extraction.
It is obvious that VDLN with logic reasoning outperforms the SOTA model even with
BERT-base neural component. In general, VDLN significantly outperforms all baselines
with p <0.05 using paired t-test, except the SOTA model on opinion extraction of Res14.

End-to-End Relation Extraction: Besides the aforementioned baseline DLogic and
DLogic*, we further adopt the following baselines:

• Gopt: A globally optimized neural model for end-to-end relation
extraction (Zhang, Zhang, and Fu 2017). The work converts the entity and
relation extraction problem into a single table filling task, which produces
a score for each label in the next step given the state of a partially-filled
table. Moreover, global optimization is used, which treats the entire
sentence as a unit.

• MtQA: The extraction of entities and relations is cast as the task of
identifying answer spans from the context given some question templates
(Li et al. 2019). The question encodes relevant information corresponding
to the target entity or relation to be identified.

• SpanRel: An end-to-end deep learning model based on span-level
predictions (Dixit and Al-Onaizan 2019). Instead of token-level modeling,
span-based models take the features corresponding to all possible spans
within a sentence for both entity and relation predictions.

• SOTA (Wang and Lu 2020): A joint model using two different encoders,
namely, a table encoder and a sequence encoder to intensively exploit the
target interactions, together with rich encodings combining word vectors,
character vectors, and strong pretrained contextualized vectors.

Table 6 lists the performances of the proposed models and baseline models for
each end-to-end relation extraction data set. Note that although Luan et al. (2019) also
showed promising results on ACE04 and ACE05 data sets, their model depends on
auxiliary coreference supervisions, which is not fair to be compared with. Nevertheless,
we still achieve comparable performance. MtQA (Li et al. 2019) treats the task as a
question answering problem with predefined question templates and uses BERT as a
backbone. Compared with Gopt (Zhang, Zhang, and Fu 2017) without self-attention, the
improvement shows the advantage of modeling token-level dependencies for informa-

796

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

Table 6
Results on 3 benchmark data sets for end-to-end relation extraction. Italic numbers on CoNLL04
and ACE04 indicate average results over 3 random splits and 5 random splits, respectively, and
those on ACE05 are averaged over 3 different runs. * indicates the results are significant with
p < 0.05.

Data set Model Entity Relation

CoNLL04

Gopt (Zhang, Zhang, and Fu 2017) 85.6 67.8
MtQA (Li et al. 2019) 87.8 68.9
Rule-distill (Hu et al. 2016) 88.2* 71.6*
DLogic (Wang and Pan 2020) 87.1* 64.6*
DLogic* (Wang and Pan 2020) 88.3* 69.9*
VDLN (ours) 89.1 72.4
SOTA (Wang and Lu 2020) 90.1 73.6

ACE04

MtQA (Li et al. 2019) 83.6 49.4
Rule-distill (Hu et al. 2016) 87.7 58.1
DLogic (Wang and Pan 2020) 81.6* 50.2*
DLogic* (Wang and Pan 2020) 85.6* 55.9*
VDLN (ours) 87.9 57.8
SOTA (Wang and Lu 2020) 88.6 59.6

ACE05

MtQA (Li et al. 2019) 84.8 60.2
Rule-distill (Hu et al. 2016) 87.8* 62.8*
SpanRel (Dixit and Al-Onaizan 2019) 86.0 62.8
DLogic (Wang and Pan 2020) 83.8* 59.3*
DLogic* (Wang and Pan 2020) 87.2* 62.4*
VDLN (ours) 88.5 63.7
SOTA (Wang and Lu 2020) 89.5 64.3

tion extraction. The results also verify our consistent improvement over Rule-distill (Hu
et al. 2016). Compared with the SOTA model (Wang and Lu 2020), which adopted rich
encodings combining word vectors (GloVe), character embeddings, and contextualized
embeddings (ALBERT-large, which is an extensively pretrained large model), our model
produces slightly lower performance. We conjecture that the high result of the SOTA
model depends on its rich encodings, as when replacing ALBERT-large with BERT in
their model, the F1 score for entity extraction on ACE05 drops to 87.8, according to
Wang and Lu (2020). In general, VDLN significantly outperforms the other baselines
except SOTA, and Rule-distill on entity extraction of ACE04 with p < 0.05.

End-to-End Event Extraction: For this task, the state-of-the-art models to be compared
are listed in the following.

• JEventEntity: A probabilistic model taking into consideration of intensive
dependencies between event triggers and entity mentions, as well as
relationships among events (Yang and Mitchell 2016). A joint inference
procedure is then proposed to globally optimize all the predictions within
a text input.

• dbRNN: A novel dependency-bridged recurrent neural network for event
extraction (Sha et al. 2018), which fully utilizes both the sequential and
syntactic structure of a sentence to enhance the extraction performance.

797

Computational Linguistics Volume 47, Number 4

Table 7
Comparisons with SOTA models on ACE05 for end-to-end event extraction.

Model Entity Event trigger Event trigger Event argument Event argument
extraction identification classification identification classification

JEventEntity 81.8 71.0 68.8 50.6 48.4
dbRNN – – 69.6 57.2 50.1
GAIL 87.1 73.9 72.0 55.1 52.4
Joint3EE – 72.5 69.8 59.9 52.1
DYGIE++ 89.7 – 69.7 53.0 48.8
VDLN 87.7 75.6 73.2 56.1 52.7
SOTA (ONEIE) 90.2 78.2 74.7 59.2 56.8

• GAIL: A deep learning model based on generative adversarial imitation
learning (Zhang, Ji, and Sil 2019). The authors use reinforcement learning
to model sequential predictions and aims to produce proper reward values
estimated from discriminators in GAN.

• Joint3EE: A joint deep learning model to simultaneously achieve
end-to-end event extraction (Nguyen and Nguyen 2019) by decomposing
the joint probability into a product of the probability of each target
variable conditioned on the processed units.

• DYGIE++: A joint model for end-to-end event extraction based on
contextualized span representations (Wadden et al. 2019). The span
representations encode local and global interactions with a dynamic graph
update to propagate long-range information.

• SOTA (ONEIE): A joint neural model consisting of contextualized text
representations and manually designed global features to capture the
cross-task and cross-instance interactions (Lin et al. 2020).

The results on end-to-end event extraction is listed in Table 7. JEventEntity (Yang
and Mitchell 2016) adopts joint inference with extensive manually designed linguistic
features. Its performance is inferior compared to deep learning models. On the other
hand, DNNs alone lack explicit knowledge that is crucial for the task at hand. Hence,
dbRNN (Sha et al. 2018) and Joint3EE (Nguyen and Nguyen 2019) incorporate linguis-
tically informed features (e.g., dependency relations) to enhance the performance of
DNNs. From the comparison results, VDLN achieves the best performance among the
baselines except the last row without requiring any external linguistic resources and
only needs to generate simple rule templates that associate extracted entities and events
with the argument relation predictions in an automatic manner. SOTA (ONEIE) (Lin
et al. 2020) produces the best result mainly originating from the manually designed
global features to enforce cross-task and cross-instance relationships, for example, A
TRANSPORT event has only one DESTINATION argument.

7.4 Analysis

Our default experimental setting uses BERT as the neural component. To demonstrate
the generality of our proposed VDLN architecture, we conduct extra experiments by
replacing BERT with three other strong contextualized neural models, namely, Span-
BERT, RoBERTa, and BERT-large, respectively, with fine-tuning, as well as a non-
pretrained model using pure transformers. The results are listed in Table 8. We denote

798

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

Table 8
Comparison using different pretrained models for the neural component.

Model Res14 Lap14 CoNLL04 ACE04 ACE05
Aspect Opinion Aspect Opinion Entity Relation Entity Relation Entity Relation

BERT 86.2 86.1 80.2 79.5 87.6 69.3 85.8 55.5 87.4 61.3
VDLN (BERT) 87.5 87.1 82.7 81.3 89.1 72.4 87.9 57.8 88.3 63.8
BERT-large 87.9 86.5 80.7 81.1 88.1 71.0 88.1 59.8 87.8 63.2
VDLN (BERT-large) 88.4 87.1 81.6 81.8 88.6 72.6 88.2 59.4 87.6 64.6
SpanBERT 87.1 86.3 79.4 77.6 87.1 67.6 85.9 54.9 85.7 59.6
VDLN (SpanBERT) 88.2 86.4 81.2 78.8 87.2 70.3 86.2 55.1 86.2 61.6
RoBERTa 86.6 86.2 79.3 78.4 89.3 72.1 85.1 55.8 86.2 61.0
VDLN (RoBERTa) 86.9 85.7 80.3 79.1 90.1 73.4 85.3 56.5 86.4 61.5
transformer 84.3 84.2 76.2 77.3 85.8 62.7 82.1 51.4 83.4 59.1
VDLN (transformer) 85.2 85.7 76.8 78.3 86.5 63.3 82.7 53.1 83.9 58.8

Table 9
Performance for each separate module and its variations on the task of aspect/opinion
extraction and end-to-end relation extraction.

Model Res14 Lap14 CoNLL04 ACE04 ACE05
Aspect Opinion Aspect Opinion Entity Relation Entity Relation Entity Relation

Q 86.2 86.1 80.2 79.5 87.6 69.3 85.8 55.5 87.4 61.3
P 86.0 86.5 81.1 79.9 88.0 70.4 86.0 55.7 87.5 60.9
Q* 87.3 87.1 82.5 81.2 88.9 72.5 87.9 57.8 87.8 63.8
P* 87.6 87.0 82.7 81.2 89.1 71.9 87.3 57.6 88.1 63.5
P +Q 87.5 87.1 82.7 81.3 89.1 72.4 87.9 57.8 88.3 63.8

by “VDLN (*)” as the proposed joint model with the neural component Q replaced by
∗ = BERT-large, SpanBERT, RoBERTa, transformer. All the experiments with pretrained
models involve fine-tuning of the pretrained parameters. The transformer model fol-
lows the one in Wang and Pan (2020). From Table 8, we observe that large models
(BERT-large) usually produce the best results, whereas VDLN (RoBERTa) performs best
on CoNLL04. SpanBERT has inferior performance on average. Clearly, the joint model
VDLN outperforms its neural component alone across almost all experiments. With
such observation, we show that the proposed methodology is able to benefit a wide
variety of its neural counterpart.

To analyze the effect of each module within the proposed framework and the effect
of the EM training procedure, we conduct experiments on each separate module as well
as some variations within a module. The results are shown in Tables 9 and 10 for all
three different tasks. Specifically, Q and P record the performance of each individual
module alone, respectively, without the EM training alternation. Because P requires the
output from the deep learning predictions as its input for logic reasoning, we initialize
P with the output from a pretrained module Q. Q* and P* record the performance
using Q and P , respectively, for final predictions after jointly training both modules
alternatively via variational EM. It could be observed that for separate models, P is
slightly better than Q because it inherits the result from Q and further conducts logic
reasoning based on the intensive interactions among the output variables. However,
both of them are inferior to those with variational learning paradigm, which proves that
the EM algorithm encourages a mutual enhancement between two different modules.
For final predictions, the results from P* andQ* are comparable most of the time. In the
end, we use the ensemble model P +Q, which produces the best result on Laptop-14,
ACE04, and ACE05.

799

Computational Linguistics Volume 47, Number 4

Table 10
Performance for each separate module and its variations on end-to-end event extraction.

Model Entity Event trigger Event trigger Event argument Event argument
extraction identification classification identification classification

Q 86.5 75.0 72.7 54.7 51.2
P 86.9 74.7 72.7 55.3 51.5
Q* 87.5 75.2 73.2 55.7 52.6
P* 87.8 75.3 72.8 56.0 52.3
P +Q 87.7 75.6 73.2 56.1 52.7

Table 11
Ablation study for each component of the proposed model on aspect/opinion extraction and
end-to-end relation extraction.

Model Res14 Lap14 CoNLL04 ACE04 ACE05
Aspect Opinion Aspect Opinion Entity Relation Entity Relation Entity Relation

DNN w/o BiGRU 86.5 85.8 79.0 79.2 87.2 70.8 86.2 56.7 86.9 61.5
DNN 86.2 86.1 80.2 79.5 87.6 69.3 85.8 55.5 87.4 61.3
DNN+CRF 87.2 86.2 80.7 80.3 88.3 70.8 87.4 57.2 87.6 62.4
VDLN (seg) 87.1 87.0 82.0 82.5 88.8 70.7 87.6 57.6 88.0 62.8
VDLN (rel) 87.4 87.2 80.6 81.7 88.4 71.9 86.9 58.2 87.7 63.5
VDLN w/o BiGRU 87.1 86.6 81.9 80.7 88.3 71.9 86.1 54.2 87.8 61.5
VDLN 87.5 87.1 82.7 81.3 89.1 72.4 87.9 57.8 88.3 63.8
VDLN (softmax) 86.7 87.0 81.5 81.2 88.5 71.4 87.5 57.9 87.7 62.3
VDLN+CRF (rel) 87.2 86.9 81.9 81.4 88.2 72.1 87.6 58.4 87.8 63.7
VDLN+CRF 87.8 87.3 82.3 82.2 88.5 72.7 87.9 58.6 88.0 63.5

Table 12
Ablation study for each component of the proposed model on end-to-end event extraction.

Model Entity Event trigger Event trigger Event argument Event argument
extraction identification classification identification classification

DNN w/o BiGRU 86.1 75.4 72.7 54.4 51.0
DNN 86.5 75.0 72.7 54.7 51.2
DNN+CRF 87.2 74.6 72.8 54.3 50.9
VDLN (seg) 87.5 74.9 72.7 54.9 51.7
VDLN (rel) 86.8 74.7 71.8 55.2 52.0
VDLN w/o BiGRU 86.7 74.9 72.5 54.8 51.8
VDLN 87.7 75.6 73.2 56.1 52.7
VDLN+CRF (rel) 87.1 75.8 72.8 55.7 52.5
VDLN+CRF 87.4 75.4 72.8 55.4 52.2

We further verify the effect of each component within the framework via ablation
studies. As shown in Tables 11 and 12, the first column indicates different model varia-
tions. DNN is the deep learning component we adopt, which corresponds to module Q
in VDLN. DNN w/o BiGRU removes the BiGRU layer on top of the BERT model and
DNN+CRF further connects a linear-chain CRF with structured loss as the last layer.
Clearly, the performance with and without BiGRU is similar. However, BiGRU brings
some performance gain when associated with the joint model VDLN, compared with
VDLN w/o BiGRU, which removes BiGRU in the joint model. A CRF layer is able to
bring some performance gain compared to DNN alone for both aspect/opinion extrac-
tion and end-to-end relation extraction. However, it is not beneficial for event trigger
and event argument prediction, most probably due to the fact that most event triggers
are made from a single word. Another two variations, namely, VDLN (seg) and VDLN

800

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

Table 13
Investigations of the logic network.

Model GNN+Q GCN+Q VDLN VDLN+rules

Res14 Aspect 86.2 86.8 87.5 88.0
Opinion 86.5 86.4 87.1 87.3

Lap14 Aspect 81.3 81.8 82.7 82.9
Opinion 81.0 81.3 81.3 82.1

CoNLL04 Entity 87.9 88.2 89.1 89.1
Relation 71.3 71.4 72.4 72.7

ACE04 Entity 85.7 86.7 87.9 87.7
Relation 56.2 56.7 57.8 58.3

ACE05 Entity 86.1 86.3 88.3 88.0
Relation 62.3 62.6 63.8 64.1

ACE05

Entity 87.1 87.9 87.7 87.5
Trigger (I) 73.9 75.1 75.6 75.6
Trigger (C) 71.8 72.3 73.2 72.7
Argument (I) 53.6 54.4 56.1 55.8
Argument (C) 51.7 52.0 52.7 52.5

(rel), refer to the model with only segmentation-based rule templates and relation-based
rule templates, respectively, within module P . Specifically, segmentation-based rule
templates only associate token-level interactions, for example, q(yi−1), q(yi+1)→ p(yi).
On the other hand, relation-based rule templates associate relational triplets with token
predictions, e.g., q(yj), q(yrij

)→ p(yi). The results for these two variations demonstrate
the contribution of each kind of interaction for the proposed model. From Table 11, we
can observe that VDLN (seg) is beneficial for entity predictions, whereas VDLN (rel)
mostly works for relation extraction. The last row VDLN+CRF takes DNN+CRF model
as module Q in the joint model VDLN. It has similar performance compared to VDLN,
which shows VDLN already learns structured information in a CRF model. VDLN+CRF
(rel) only adopts relation-based rule templates in module P . By comparing it with
VDLN, we can verify that the segmentation rule used in module P is more beneficial
than using a simple graphical model. We also verify the effect of using sparsemax for
the rule learning process. The sparsemax operator explicitly constrains the number of
atoms to be selected to form the body of a rule. By replacing it with softmax (VDLN
(softmax)), the results show that sparsemax provides better result and is semantically
more meaningful.

To investigate the advantage of the logic-inspired network within module P , we
compare the proposed model with another popular and effective deep learning model,
that is, graph neural networks (GNNs) (Dai, Dai, and Song 2016) and graph convo-
lutional networks (GCNs) (Kipf and Welling 2017) for information propagation. The
results are shown in Table 13. Specifically, we replace the logic network in P with a
GNN (or GCN), which takes the context ctx(m) of each target node m as the neighboring
nodes to update its own feature via non-linear transformations (spectral-based graph
convolutions). In a word, the graph structure of the GNN (GCN) is provided by the rule
templates used in the logic network where two nodes are connected if they appear in
the same rule. We denote this model by GNN+Q (GCN+Q). GCN+Q is more expressive
than GNN+Q. Clearly, GCN+Q outperforms GNN+Q in general, but is still inferior
than our proposed model across all except one experiment, indicating that the pro-

801

Computational Linguistics Volume 47, Number 4

Table 14
Predefined logic rules for each task and data set.
Task FOL formula

Aspect and opinion extraction

aspect(x)∧ posnoun(x)∧ depnn(x, y)∧ posnoun(y)⇒ aspect(y)
aspect(x)∧ posnoun(x)∧ depconj(x, y)∧ posnoun(y)⇒ aspect(y)
opinion(x)∧ posadj(x)∧ depconj(x, y)∧ posadj(y)⇒ opinion(y)
aspect(x)∧ posnoun(x)∧ depnsubj(x, y)∧ posadj(y)⇒ opinion(y)
opinion(x)∧ posadj(x)∧ depnsubj(y, x)∧ posnoun(y)⇒ aspect(y)
aspect(x)∧ posnoun(x)∧ depamod(y, x)∧ posadj(y)⇒ opinion(y)
opinion(x)∧ posadj(x)∧ depamod(x, y)∧ posnoun(y)⇒ aspect(y)

CoNLL04

person(x)∧ live in(r(x,y))⇒ location(y)
location(x)∧ live in(r(y,x))⇒ person(y)
organization(x)∧ org based in(r(x,y))⇒ location(y)
location(x)∧ org based in(r(y,x))⇒ organization(y)
location(x)∧ located in(r(x,y))⇒ location(y)
person(x)∧ kill(r(x,y))⇒ person(y)
person(x)∧work for(r(x,y))⇒ organization(y)
organization(x)∧work for(r(y,x))⇒ person(y)
person(x)∧ person− social(r(x,y))⇒ person(y)
person(x)∧ discourse(r(x,y))⇒ person(y)
geographical(x)∧ discourse(r(x,y))⇒ geographical(y)

End-to-End relation ACE04 organization(x)∧ discourse(r(x,y))⇒ organization(y)
extraction person(x)∧ employment(r(x,y))⇒ organization(y)∨ geographical(y)

geographical(x)∧ employment(r(y,x))⇒ organization(y)∨ person(y)
organization(x)∧GPE− affiliation(r(x,y))⇒ geographical(y)
person(x)∧GPE− affiliation(r(x,y))⇒ geographical(y)
person(x)∧ person− social(r(x,y))⇒ person(y)
vehicle(x)∧ part−whole(r(x,y))⇒ vehicle(y)
geographical(x)∧ part−whole(r(x,y))⇒ geographical(y)

ACE05 organization(x)∧ part−whole(r(x,y))⇒ organization(y)
person(x)∧ORG− affilliation(r(x,y))⇒ organization(y)∨ geographical(y)
organization(x)∨ geographical(x)∧ORG− affilliation(r(y,x))⇒ person(y)
organization(x)∧GPE− affilliation(r(x,y))⇒ location(y)
location(x)∧GPE− affilliation(r(y,x))⇒ organization(y)

End-to-End event extraction

Movement Transport(x)∧ person(y)⇒ Destination(r(x,y))
(Personnel Elect(x)∨ Personnel StartPosition(x)∨ Personnel EndPosition(x)
∨Life Marry(x)∨ Justice Arrest− Jail(x))∧ person(y)⇒ Position(r(x,y))

(Personnel StartPosition(x)∨ Personnel EndPosition(x))
∧organization(y)⇒ Attacker(r(x,y))

(Contact Meet(x)∨ Contact PhoneWrite(x)∨ Conflict Demonstrate(x))
∧person(y)⇒ Attacker(r(x,y))

(Movement Transport(x)∨ Contact Meet(x)∨ Conflict Attack(x)∨ Life Die(x))
∧time(y)⇒ Target(r(x,y))

(Justice Sentence(x)∨ Justice ChargeIndict(x)∨ Justice Convict(x))
∧person(y)⇒ Adjudicator(r(x,y))

Justice Sentence(x)∧ sentence(y)⇒ Crime(r(x,y))
Justice ChargeIndict(x)∧ crime(y)⇒ Prosecutor(r(x,y))

posed logic module has better reasoning capabilities than graph-based models in this
problem domain.

As mentioned in Section 5.2, the logic network is able to learn relevant knowledge
automatically, as well as encode prior knowledge if provided. In all the previous ex-
periments, we do not feed any manually designed logic rules into the logic network
for fair comparisons and a demonstration of our model’s generality. To investigate
how the given rules contribute to the actual task, we design some easily acquired
logic rules for each task and incorporate them into the learning of LNet. The manually
designed rules for each specific task and data set are listed in Table 14. For aspect and
opinion terms extraction, we design rules involving dependency relations and POS tags,
as adopted in Qiu et al. (2011) and Yu, Jiang, and Xia (2019). For example, the FOL

802

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

rule “aspect(x) ∧ posnoun(x) ∧ depamod(y, x) ∧ posadj(y)⇒ opinion(y)” states that if x is
an aspect word having POS tag noun, we can infer that y with POS tag adj is an opinion
word when there is a dependency relation amod between x and y. The dependency
structures and POS tags are generated using Stanford CoreNLP (Manning et al. 2014).
For end-to-end relation extraction, we mainly adopt relational rules demonstrating the
correlations between entity types and relation types. Lastly, for event extraction, we use
event trigger types and entity types as preconditions to design the FOL rules in order
to entail the target relations. The results are shown in the last column of Table 13 (i.e.,
“VDLN+rules”). It can be observed that performance is improved on the task of aspect
and opinion terms extraction. For end-to-end relation extraction, additional rules are
more beneficial for relation extraction. However, we could observe a degradation in the
performance of event extraction when inserting the manually designed logic rules. This
might be caused by inaccurate event trigger predictions as well as uncertain rules with
sparse coverage in the given corpus.

We would like to emphasize that compared with the predefined logic rules, the
learned logic rules are different in the way that the atoms in the rule bodies are rather
abstract and composited. More concretely, if we define the set of all generated synthetic
atoms in the atom layer as Dctx(m) = {d1, . . . , d80},3 we are able to list a few learned logic
rules for relations on CoNLL04.

• d11 ∧ d2 ∧ d58 ∧ d31 ∧ d7 ⇒ (r = located in).

• d18 ∧ d34 ∧ d16 ∧ d4 ∧ d10 ⇒ (r = work for).

• d5 ∧ d4 ∧ d31 ⇒ (r = live in).

Here each atom dn is a linear combination of all different classes for a word or a relation.
As shown in (14) and (15), each atom dn is either a 1-ary atom corresponding to a linear
combination of the DNN predictions of an argument word, or a 2-ary atom correspond-
ing to a bi-linear property of two arguments. For predictions of a relation r(ε1,ε2) in
the logic network, the input is ỹctx(r(ε1,ε2)) = (qr(ε1,ε2)

, qε1
, qε2

). Then {d1, . . . , d20} are
1-ary atoms corresponding to different linear combinations of qr(ε1,ε2)

. {d21, . . . , d40}
are 1-ary atoms corresponding to different linear combinations of qε1

, which is the
entity class distribution of the head entity ε1 from DNNs. Similarly, {d41, . . . , d60} are
1-ary atoms corresponding to linear combinations of qε2

for tail entity ε2. The last 20
atoms {d61, . . . , d80} are 2-ary atoms corresponding to bilinear interactions of qε1

and
qε2

. To interpret the example rule “d11 ∧ d2 ∧ d58 ∧ d31 ∧ d7 ⇒ (r = located in)” for the
CoNLL04 data set, suppose the pair of entities being queried for the relation is (the
White House, U.S.); we will have d11, d2, and d7 representing linear transformations of
qr(the White House,U.S.)

, d58 representing a linear transformation of qU.S., and d31 representing a
linear transformation of qthe White House. To be more specific, when those learned linear
transformation weights favor a particular entity/relation class, a more concrete inter-
pretation of the above rule could be

located in(r(the White House,U.S.)) ∧ live in(r(the White House,U.S.)) ∧ location(U.S.)

∧organization(the White House) ∧ located in(r(the White House,U.S.))⇒ (r = located in).

3 According to the experimental setting, we have 80 generated atoms.

803

Computational Linguistics Volume 47, Number 4

Table 15
Example outputs by DNN alone and VDLN, respectively.

DNN VDLN

“The ambience is also more laid-back and relaxed.” “The ambience is also more laid-back and relaxed.”

“The folding chair I was seated at was uncomfortable.” “The folding chair I was seated at was uncomfortable.”

“It is robust, with a friendly use as all Apple products.” “It is robust, with a friendly use as all Apple products.”

“. . . on duty with the 6th Fleet in the Mediterranean,...” “. . . on duty with the 6th Fleet in the Mediterranean,...”
Entity: location, location; Relation: located in (1,2) Entity: organization, location; Relation: org based in(1,2)

“. . . get them all home, said Ms. Say in Nashville, Tenn.” “. . . get them all home, said Ms. Say in Nashville, Tenn.”
Entity: people, location, location; Relation: located in(1,2) Entity: people, location, location; Relation: located in(2,3)

“. . . the legislature of the state of Florida ...” “. . . the legislature of the state of Florida ...”
Entity: facility, geographical; Relation: None Entity: organization, geographical; Relation: emp-org(1,2)

Note that these learned rules are all generic rules learned for each specific data set,
because the linear and bi-linear transformations to compose those atoms are identical
across each training instance and are learned throughout the training process.

For qualitative analysis, we use Table 15 to list a few examples showing that the
incorporation of logic reasoning is able to more correctly extract target terms/relations
compared to pure neural networksQ. Specifically, the words in bold indicate aspects or
entities and the words in italic form indicate opinions. For entity and relation extraction,
the second row in each example represents the predicted entity types and relations. The
numbers in the relation indicate the indices of its corresponding entities. For aspect
and opinion terms extraction, VDLN is able to identify target aspects or opinions with
certain syntactic relations that are missed by pure DNN. For example, the opinion term
laid-back can be extracted by associating it with the aspect term ambience and another
opinion term relaxed. For entity and relation extraction, VDLN modifies incorrect predic-
tions from DNN. For example, the output relation located in(6th Fleet, Mediterranean)
is corrected as org based in(6th Fleet, Mediterranean) by VDLN.

To demonstrate the model’s robustness, we conduct experiments with varying
hyperparameters. We choose three parameters, namely, the sampling rate ρ during the
EM updates, the number of atoms T in the rule body for each rule formed in the logic
network, and the number of rules in the rule set {R1, . . . , RS} that share the same head
atom h. Specifically, we use different sampling rates ranging from ρ = 0.1 to ρ = 0.9
when updating both P and Q. Here ρ is the probability of using the predictions from
P or Q when learning the parameters of Q or P , respectively, during the variational
EM updates. With probability 1− ρ, the ground-truth label is used to supervise each
module. The results for aspect and opinion terms extraction are shown in Figure 4
and the results for CoNLL04 and ACE05 data set are shown in Figure 5. Both figures
demonstrate the robustness of VDLN against different sampling rates. The performance
drop for ρ = 0.9 is reasonable as only 10% of the ground-truth labels are used for
supervision during the EM training procedure.

Figures 6, 7, and 8 correspond to the F1 scores for entity extraction and relation
prediction on ACE05, ACE04, and CoNLL04 data set, respectively. The x-axis on the left
subfigure indicates the number of atoms T in the body of each rule (i.e., dj1∧, . . . ,∧djT ⇒
h). The x-axis on the right subfigure indicates the number of rules S for each head atom
h. As indicated in the figures, the final performance of our proposed framework is not
sensitive to such hyperparameters within the logic network. For ACE05 and ACE04,
varying T from 1 to 10 results in more stable performance for entity extraction compared

804

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sampling rate

0.80

0.82

0.84

0.86

0.88

0.90

f1
 s

c
o
re

res-aspect

res-opinion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sampling rate

0.76

0.78

0.80

0.82

0.84

0.86

lap-aspect

lap-opinion

Figure 4
F1 with different sampling rates on the task of aspect and opinion extraction for Restaurant14
data (left) and Laptop14 data (right).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.84

0.86

0.88

0.90

0.92

f1
-e

n
ti

ty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sampling rate (CoNLL04)

0.68

0.70

0.72

0.74

0.76

0.78

f1
-r

e
la

ti
o
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.84

0.86

0.88

0.90

0.92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sampling rate (ACE05)

0.58

0.60

0.62

0.64

0.66

0.68

Figure 5
F1 with different sampling rates on the task of end-to-end relation extraction.

with relation prediction. On the other hand, the model’s performance is relatively less
dependent on the number of rules S. When changing S from 10 to 50, the results stay
within a small range. As for CoNLL04, the performance decreases when S is higher than
25. This might result from the fact that the interactions between entities and relations
are simpler in the smaller CoNLL04 data set, which becomes easy to be overfitted.

7.5 Error Analysis and Future Work

For error analysis, our model has limitations when the entities (triggers) are not cor-
rectly extracted. Specifically, if the entities (triggers) are not extracted in the entity
(trigger) prediction phase in module Q, that is, generating predictions from qi for each
word, it becomes hard to rectify such predictions in the logic networks and during the
EM training procedure. The reason is that the relations and rules are all based on the
extracted candidate entities from Q. Indeed, when some entities are not identified in Q,
there will be no bilinear interactions between the missed entities and other entities to
be modeled in the logic network. Hence, it is difficult for VDLN to learn useful rules to
correct its predictions.

805

Computational Linguistics Volume 47, Number 4

1 2 3 4 5 6 7 8 9 10
0.86
0.87
0.88
0.89
0.90

f1
-e
nt
ity

10 15 20 25 30 35 40 45 50
0.86
0.87
0.88
0.89
0.90

1 2 3 4 5 6 7 8 9 10
Number of atoms in the rule body: T

0.61
0.62
0.63
0.64
0.65

f1
-re

la
tio

n

10 15 20 25 30 35 40 45 50
Number of rules: S

0.61
0.62
0.63
0.64
0.65

Figure 6
Sensitivity study for the logic network on ACE05 data set.

1 2 3 4 5 6 7 8 9 10
0.86
0.87
0.88
0.89
0.90

f1
-e
nt
ity

10 15 20 25 30 35 40 45 50
0.86
0.87
0.88
0.89
0.90

1 2 3 4 5 6 7 8 9 10
Number of atoms in the rule body: T

0.56
0.57
0.58
0.59
0.60

f1
-re

la
tio

n

10 15 20 25 30 35 40 45 50
Number of rules: S

0.56
0.57
0.58
0.59
0.60

Figure 7
Sensitivity study for the logic network on ACE04 data set.

1 2 3 4 5 6 7 8 9 10
0.87
0.88
0.89
0.90
0.91

f1
-e
nt
ity

10 15 20 25 30 35 40 45 50
0.87
0.88
0.89
0.90
0.91

1 2 3 4 5 6 7 8 9 10
Number of atoms in the rule body: T

0.70
0.71
0.72
0.73
0.74

f1
-re

la
tio

n

10 15 20 25 30 35 40 45 50
Number of rules: S

0.70
0.71
0.72
0.73
0.74

Figure 8
Sensitivity study for the logic network on CoNLL04 data set.

806

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

In our future work, we plan to solve the above limitations by revising the extraction
mechanism in the neural component where entities are first predicted followed by
relation predictions. A table filling mechanism might be a good choice (Miwa and
Sasaki 2014). We also plan to design more interpretable networks in terms of logic
reasoning so that the learned rules can be explicitly explained. In terms of application,
our future work may include generalizing our proposed framework to work with more
challenging cases, for example, cross-sentence correlations, cross-instance consistencies,
in order to be applied on other application domains, for example, document-level event
extraction, cross-sentence relation extraction, etc.

8. Conclusion

We propose a variational deep logic network to inherit both the representational power
of deep learning and the reasoning capabilities of logic systems for joint inference in IE.
These two paradigms communicate through the variational EM algorithm. For knowl-
edge reasoning, we introduce a novel logic network that transforms logic semantics to a
deep hierarchical architecture to facilitate logic inference automatically. Meanwhile, the
logic network enhances the expressiveness over manually designed rules by learning
more effective atom combinations according to the training data. It is also flexible to
incorporate predefined logic rules to further enhance the final performance.

Acknowledgments
This work is supported by NTU Nanyang
Assistant Professorship (NAP) grant
M4081532.020, 2020 Microsoft Research Asia
collaborative research grant, and Singapore
Lee Kuan Yew Postdoctoral Fellowship.

References
Adel, Heike and Hinrich Schütze. 2017.

Global normalization of convolutional
neural networks for joint entity and
relation classification. In EMNLP,
pages 1723–1729. Copenhagen. https://
doi.org/10.18653/v1/D17-1181

Bekoulis, Ioannis, Johannes Deleu, and
Thomas Demeester. 2018. Joint entity
recognition and relation extraction as a
multi-head selection problem. Expert
Systems with Applications, 114:34–45.
https://doi.org/10.1016/j.eswa
.2018.07.032

Bekoulis, Ioannis, Johannes Deleu, Thomas
Demeester, and Chris Develder. 2018.
Adversarial training for multi-context joint
entity and relation extraction. In EMNLP,
pages 1–7. Brussels. https://doi.org/10
.18653/v1/D18-1307

Campero, Andres, Aldo Pareja, Tim Klinger,
Josh Tenenbaum, and Sebastian Riedel.

2018. Logical rule induction and theory
learning using neural theorem proving.
CoRR, abs/1809.02193.

Chan, Yee Seng and Dan Roth. 2011.
Exploiting syntactico-semantic structures
for relation extraction. In ACL-HLT,
pages 551–560. Portland, OR.

Chen, Zhuang and Tieyun Qian. 2020.
Relation-aware collaborative learning
for unified aspect-based sentiment
analysis. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 3685–3694. Online.
https://doi.org/10.18653/v1/2020
.acl-main.340

Ciravegna, Gabriele, Francesco Giannini,
Stefano Melacci, Marco Maggini, and
Marco Gori. 2020. A constraint-based
approach to learning and explanation. In
AAAI, pages 3658–3665. New York, NY.
https://doi.org/10.1609/aaai
.v34i04.5774

Dai, Dai, Xinyan Xiao, Yajuan Lyu, Shan Dou,
Qiaoqiao She, and Haifeng Wang. 2019a.
Joint extraction of entities and overlapping
relations using position-attentive sequence
labeling. In AAAI, pages 6300–6308.
Honolulu, HI. https://doi.org/10
.1609/aaai.v33i01.33016300

Dai, Hanjun, Bo Dai, and Le Song. 2016.
Discriminative embeddings of latent

807

https://doi.org/10.18653/v1/D17-1181
https://doi.org/10.18653/v1/D17-1181
https://doi.org/10.1016/j.eswa.2018.07.032
https://doi.org/10.1016/j.eswa.2018.07.032
https://doi.org/10.18653/v1/D18-1307
https://doi.org/10.18653/v1/D18-1307
https://doi.org/10.18653/v1/2020.acl-main.340
https://doi.org/10.18653/v1/2020.acl-main.340
https://doi.org/10.1609/aaai.v34i04.5774
https://doi.org/10.1609/aaai.v34i04.5774
https://doi.org/10.1609/aaai.v33i01.33016300
https://doi.org/10.1609/aaai.v33i01.33016300

Computational Linguistics Volume 47, Number 4

variable models for structured data. In
ICML, pages 2702–2711. New York, NY.

Dai, Wang-Zhou, Qiuling Xu, Yang Yu, and
Zhi-Hua Zhou. 2019b. Bridging machine
learning and logical reasoning by
abductive learning. In NeurIPS,
pages 2815–2826. Vancouver. https://doi
.org/10.1007/s11432-018-9801-4

d’Avila Garcez, Artur S., Marco Gori, Luis C.
Lamb, Luciano Serafini, Michael Spranger,
and Son N. Tran. 2019. Neural-symbolic
computing: An effective methodology for
principled integration of machine learning
and reasoning. FLAP, 6(4):611–632.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In NAACL, pages 4171–4186. Minneapolis,
MN.

Dixit, Kalpit and Yaser Al-Onaizan. 2019.
Span-level model for relation extraction. In
ACL, pages 5308–5314. Florence. https://
doi.org/10.18653/v1/P19-1525

Doddington, George, Alexis Mitchell, Mark
Przybocki, Lance Ramshaw, Stephanie
Strassel, and Ralph Weischedel. 2004. The
automatic content extraction (ACE)
program – tasks, data, and evaluation. In
LREC. Lisbon.

Dong, Honghua, Jiayuan Mao, Tian Lin,
Chong Wang, Lihong Li, and Denny Zhou.
2019. Neural logic machines. In ICLR.
New Orleans, LA.

Evans, Richard and Edward Grefenstette.
2018. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence
Research, 61:1–64. https://doi.org/10
.1613/jair.5714

França, Manoel V., Gerson Zaverucha, and
Artur S. D’avila Garcez. 2014. Fast
relational learning using bottom clause
propositionalization with artificial neural
networks. Machine Learning, 94(1):81–104.
https://doi.org/10.1007/s10994
-013-5392-1

Gallaire, H. and J. Minker. 1978. Logic and
data bases, symposium on logic and data
bases, Centre D’études et de Recherches de
Toulouse, 1977. In Advances in Data Base
Theory. https://doi.org/10.1007/978-1
-4684-3384-5

Garcez, Artur S. d’Avila, Krysia B. Broda,
and Dov M. Gabbay. 2002. Neural-Symbolic
Learning Systems - Foundations and
Applications. Perspectives in neural
computing. Springer.

Guo, Shu, Quan Wang, Lihong Wang,
Bin Wang, and Li Guo. 2016. Jointly

embedding knowledge graphs and logical
rules. In EMNLP, pages 192–202. Austin,
TX. https://doi.org/10.18653/v1
/D16-1019

Gupta, Pankaj, Hinrich Schütze, and Bernt
Andrassy. 2016. Table filling multi-task
recurrent neural network for joint entity
and relation extraction. In COLING,
pages 2537–2547. Osaka.

Hong, Yu, Jianfeng Zhang, Bin Ma, Jianmin
Yao, Guodong Zhou, and Qiaoming Zhu.
2011. Using cross-entity inference to
improve event extraction. In ACL-HLT,
pages 1127–1136. Portland, OR.

Hu, Minqing and Bing Liu. 2004. Mining and
summarizing customer reviews. In KDD,
pages 168–177. Seattle, WA. https://
doi.org/10.1145/1014052.1014073

Hu, Zhiting, Xuezhe Ma, Zhengzhong Liu,
Eduard Hovy, and Eric Xing. 2016.
Harnessing deep neural networks with
logic rules. In ACL, pages 2410–2420.
Berlin. https://doi.org/10.18653
/v1/P16-1228

Ji, Heng and Ralph Grishman. 2008.
Refining event extraction through
cross-document inference. In Proceedings of
ACL-08: HLT, pages 254–262.
Columbus, OH.

Judea, Alex and Michael Strube. 2016.
Incremental global event extraction. In
COLING, pages 2279–2289. Osaka.

Kate, Rohit J. and Raymond Mooney. 2010.
Joint entity and relation extraction using
card-pyramid parsing. In CoNLL,
pages 203–212. Uppsala.

Katiyar, Arzoo and Claire Cardie. 2017.
Going out on a limb: Joint extraction of
entity mentions and relations without
dependency trees. In ACL, pages 917–928.
Vancouver. https://doi.org/10.18653
/v1/P17-1085

Kipf, Thomas N. and Max Welling. 2017.
Semi-supervised classification with graph
convolutional networks. In Proceedings of
the 5th International Conference on Learning
Representations, ICLR ’17. Toulon.

Klement, Erich Peter, Radko Mesiar, and
Endre Pap. 2013. Triangular Norms.
Springer Science and Business Media.

Lafferty, John D., Andrew McCallum, and
Fernando C. N. Pereira. 2001. Conditional
random fields: Probabilistic models for
segmenting and labeling sequence data. In
ICML, pages 282–289. Williamstown, MA.

Lamb, Luis C., Artur S. d’Avila Garcez,
Marco Gori, Marcelo O. R. Prates, Pedro
H. C. Avelar, and Moshe Y. Vardi. 2020.
Graph neural networks meet

808

https://doi.org/10.1007/s11432-018-9801-4
https://doi.org/10.1007/s11432-018-9801-4
https://doi.org/10.18653/v1/P19-1525
https://doi.org/10.18653/v1/P19-1525
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.5714
https://doi.org/10.1007/s10994-013-5392-1
https://doi.org/10.1007/s10994-013-5392-1
https://doi.org/10.1007/978-1-4684-3384-5
https://doi.org/10.1007/978-1-4684-3384-5
https://doi.org/10.18653/v1/D16-1019
https://doi.org/10.18653/v1/D16-1019
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/P17-1085
https://doi.org/10.18653/v1/P17-1085

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

neural-symbolic computing: A survey and
perspective. In IJCAI, pages 4877–4884.
Yokohama. https://doi.org/10.24963
/ijcai.2020/679

Li, Fangtao, Chao Han, Minlie Huang,
Xiaoyan Zhu, Ying-Ju Xia, Shu Zhang, and
Hao Yu. 2010. Structure-aware review
mining and summarization. In COLING,
pages 653–661. Beijing.

Li, Qi and Heng Ji. 2014. Incremental joint
extraction of entity mentions and relations.
In ACL, pages 402–412. Baltimore, MD.

Li, Qi, Heng Ji, Yu Hong, and Sujian Li. 2014.
Constructing information networks
using one single model. In EMNLP,
pages 1846–1851. Doha. https://doi.org
/10.3115/v1/D14-1198

Li, Tao and Vivek Srikumar. 2019.
Augmenting neural networks with
first-order logic. In ACL, pages 292–302.
Florence.

Li, Xiaoya, Fan Yin, Zijun Sun, Xiayu Li,
Arianna Yuan, Duo Chai, Mingxin Zhou,
and Jiwei Li. 2019. Entity-relation
extraction as multi-turn question
answering. In ACL, pages 1340–1350.
Florence. https://doi.org/10.18653
/v1/P19-1129

Li, Xin and Wai Lam. 2017. Deep multi-task
learning for aspect term extraction with
memory interaction. In EMNLP,
pages 2886–2892. Copenhagen.
https://doi.org/10.18653/v1/D17
-1310

Liao, Shasha and Ralph Grishman. 2010.
Using document level cross-event
inference to improve event extraction. In
ACL, pages 789–797. Uppsala.

Lin, Yankai, Shiqi Shen, Zhiyuan Liu,
Huanbo Luan, and Maosong Sun. 2016.
Neural relation extraction with selective
attention over instances. In ACL,
pages 2124–2133. Berlin. https://doi
.org/10.18653/v1/P16-1200

Lin, Ying, Heng Ji, Fei Huang, and Lingfei
Wu. 2020. A joint neural model for
information extraction with global
features. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7999–8009. Online.
https://doi.org/10.18653/v1/2020
.acl-main.713

Liu, Pengfei, Shafiq Joty, and Helen Meng.
2015. Fine-grained opinion mining with
recurrent neural networks and word
embeddings. In EMNLP. Lisbon.
https://doi.org/10.18653/v1/D15-1168

Liu, Xiao, Zhunchen Luo, and Heyan Huang.
2018. Jointly multiple events extraction via

attention-based graph information
aggregation. In EMNLP, pages 1247–1256.
Brussels. https://doi.org/10.18653
/v1/D18-1156

Luan, Yi, Dave Wadden, Luheng He, Amy
Shah, Mari Ostendorf, and Hannaneh
Hajishirzi. 2019. A general framework for
information extraction using dynamic
span graphs. In NAACL, pages 3036–3046.
Minneapolis, MN. https://doi.org/10
.18653/v1/N19-1308

Manhaeve, Robin, Sebastijan Dumancic,
Angelika Kimmig, Thomas Demeester,
and Luc De Raedt. 2018. DeepProbLog:
Neural probabilistic logic programming.
In NeurIPS, pages 3749–3759. Montreal.

Manning, Christopher D., Mihai Surdeanu,
John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The
Stanford CoreNLP natural language
processing toolkit. In ACL (System
Demonstrations), pages 55–60. Baltimore,
MD. https://doi.org/10.3115/v1
/P14-5010

Martins, Andre and Ramon Astudillo. 2016.
From softmax to sparsemax: A sparse
model of attention and multi-label
classification. In ICML, volume 48,
pages 1614–1623. New York, NY.

McClosky, David, Mihai Surdeanu, and
Christopher Manning. 2011. Event
extraction as dependency parsing. In
ACL-HLT, pages 1626–1635. Portland, OR.

Minervini, Pasquale, Matko Bosnjak, Tim
Rocktäschel, Sebastian Riedel, and Edward
Grefenstette. 2020. Differentiable reasoning
on large knowledge bases and natural
language. In AAAI, pages 5182–5190.
New York, NY. https://doi.org/10
.1609/aaai.v34i04.5962

Minervini, Pasquale, Thomas Demeester,
Tim Rocktäschel, and Sebastian Riedel.
2017. Adversarial sets for regularised
neural link predictors. In UAI. Sydney.

Minervini, Pasquale and Sebastian Riedel.
2018. Adversarially regularising neural
NLI models to integrate logical
background knowledge. In CoNLL,
pages 65–74. Brussels. https://doi.org
/10.18653/v1/K18-1007

Miwa, Makoto and Mohit Bansal. 2016.
End-to-end relation extraction using
LSTMs on sequences and tree structures.
In ACL, pages 1105–1116. Berlin.
https://doi.org/10.18653/v1/P16-1105

Miwa, Makoto and Yutaka Sasaki. 2014.
Modeling joint entity and relation
extraction with table representation. In
EMNLP, pages 1858–1869. Doha.

809

https://doi.org/10.24963/ijcai.2020/679
https://doi.org/10.24963/ijcai.2020/679
https://doi.org/10.3115/v1/D14-1198
https://doi.org/10.3115/v1/D14-1198
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/D17-1310
https://doi.org/10.18653/v1/D17-1310
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/D15-1168
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1609/aaai.v34i04.5962
https://doi.org/10.1609/aaai.v34i04.5962
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/P16-1105

Computational Linguistics Volume 47, Number 4

https://doi.org/10.3115/v1/D14
-1200

Miwa, Makoto, Paul Thompson, Ioannis
Korkontzelos, and Sophia Ananiadou.
2014. Comparable study of event
extraction in newswire and biomedical
domains. In COLING, pages 2270–2279.
Dublin.

Neal, Radford M. and Geoffrey E. Hinton.
1999. A view of the EM algorithm that
justifies incremental, sparse, and other
variants. In Learning in Graphical Models,
pages 355–368. https://doi.org/10
.1007/978-94-011-5014-9 12

Nguyen, Thien Huu, Kyunghyun Cho, and
Ralph Grishman. 2016. Joint event
extraction via recurrent neural networks.
In NAACL, pages 300–309. San Diego, CA.
https://doi.org/10.18653/v1/N16
-1034

Nguyen, Trung Minh and Thien Huu
Nguyen. 2019. One for all: Neural joint
modeling of entities and events. In AAAI,
pages 6851–6858, Honolulu, HI. https://
doi.org/10.1609/aaai.v33i01.33016851

Nilsson, Nils J. 1986. Probabilistic logic.
Artificial Intelligence, 28(1):71–87.
https://doi.org/10.1016/0004
-3702(86)90031-7

Patwardhan, Siddharth and Ellen Riloff.
2009. A unified model of phrasal and
sentential evidence for information
extraction. In EMNLP, pages 151–160.
Singapore. https://doi.org/10.3115
/1699510.1699530

Pontiki, Maria, Dimitris Galanis, John
Pavlopoulos, Harris Papageorgiou, Ion
Androutsopoulos, and Suresh Manandhar.
2014. Semeval-2014 task 4: Aspect based
sentiment analysis. In SemEval,
pages 27–35. Dublin. https://doi.org/10
.3115/v1/S14-2004

Poon, Hoifung and Lucy Vanderwende.
2010. Joint inference for knowledge
extraction from biomedical literature. In
NAACL, pages 813–821. Los Angeles, CA.

Qiu, Guang, Bing Liu, Jiajun Bu, and Chun
Chen. 2011. Opinion word expansion and
target extraction through double
propagation. Computational Linguistics,
37(1):9–27. https://doi.org/10.1162
/coli a 00034

Qu, Meng, Yoshua Bengio, and Jian Tang.
2019. GMNN: Graph Markov neural
networks. In ICML, volume 97,
pages 5241–5250. Long Beach, CA.

Qu, Meng and Jian Tang. 2019. Probabilistic
logic neural networks for reasoning. In
NeurIPS, pages 7710–7720. Vancouver.

Richardson, Matthew and Pedro M.
Domingos. 2006. Markov logic networks.
Machine Learning, 62(1-2):107–136.
https://doi.org/10.1007/s10994-006
-5833-1

Riedel, Sebastian, Hong-Woo Chun,
Toshihisa Takagi, and Jun’ichi Tsujii. 2009.
A Markov Logic approach to
bio-molecular event extraction. In
Proceedings of the BioNLP 2009 Workshop
Companion Volume for Shared Task,
pages 41–49. Boulder, CO. https://doi
.org/10.3115/1572340.1572347

Rocktäschel, Tim and Sebastian Riedel. 2017.
End-to-end differentiable proving. In
Advances in Neural Information Processing
Systems 30, pages 3788–3800. Long Beach,
CA.

Rocktäschel, Tim, Sameer Singh, and
Sebastian Riedel. 2015. Injecting logical
background knowledge into embeddings
for relation extraction. In NAACL,
pages 1119–1129. Denver, CO. https://
doi.org/10.3115/v1/N15-1118

Roth, Dan and Wen-tau Yih. 2004. A linear
programming formulation for global
inference in natural language tasks. In
HLT-NAACL 2004 Workshop: CoNLL-2004,
pages 1–8. Boston, MA.

Roth, Dan, Wen-tau Yih, and Scott Wen-tau
Yih. 2007. Global inference for entity and
relation identification via a linear
programming formulation. Introduction to
Statistical Relational Learning.

Serafini, Luciano and Artur S. d’Avila
Garcez. 2016. Logic tensor networks: Deep
learning and logical reasoning from data
and knowledge. CoRR, abs/1606.04422.

Sha, Lei, Feng Qian, Baobao Chang, and
Zhifang Sui. 2018. Jointly extracting
event triggers and arguments by
dependency-bridge RNN and
tensor-based argument interaction. In
AAAI. New Orleans, LA.

Shanahan, Murray, Kyriacos Nikiforou,
Antonia Creswell, Christos Kaplanis,
David Barrett, and Marta Garnelo. 2019.
An explicitly relational neural network
architecture. CoRR, abs/1905.10307.

Sun, Changzhi, Yuanbin Wu, Man Lan,
Shiliang Sun, Wenting Wang, Kuang-Chih
Lee, and Kewen Wu. 2018. Extracting
entities and relations with joint minimum
risk training. In EMNLP, pages 2256–2265.
Brussels. https://doi.org/10.18653
/v1/D18-1249

Takanobu, Ryuichi, Tianyang Zhang, Jiexi
Liu, and Minlie Huang. 2019. A
hierarchical framework for relation

810

https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.1609/aaai.v33i01.33016851
https://doi.org/10.1609/aaai.v33i01.33016851
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.3115/1699510.1699530
https://doi.org/10.3115/1699510.1699530
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.3115/1572340.1572347
https://doi.org/10.3115/1572340.1572347
https://doi.org/10.3115/v1/N15-1118
https://doi.org/10.3115/v1/N15-1118
https://doi.org/10.18653/v1/D18-1249
https://doi.org/10.18653/v1/D18-1249

Wang and Pan Variational Deep Logic Network for Joint Inference of Entities and Relations

extraction with reinforcement learning. In
AAAI, pages 7072–7079. Honolulu, HI.

Tran, Son N. and Artur S. d’Avila Garcez.
2018. Deep logic networks: Inserting and
extracting knowledge from deep belief
networks. IEEE Transactions on Neural
Networks and Learning Systems,
29(2):246–258. https://doi.org/10
.1109/TNNLS.2016.2603784, PubMed:
27845678

Venugopal, Deepak, Chen Chen, Vibhav
Gogate, and Vincent Ng. 2014. Relieving
the computational bottleneck: Joint
inference for event extraction with
high-dimensional features. In EMNLP,
pages 831–843. Doha. https://doi.org
/10.3115/v1/D14-1090

Wadden, David, Ulme Wennberg, Yi Luan,
and Hannaneh Hajishirzi. 2019. Entity,
relation, and event extraction with
contextualized span representations. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5784–5789.
Hong Kong. https://doi.org/10.18653
/v1/D19-1585

Wang, Hai and Hoifung Poon. 2018. Deep
probabilistic logic: A unifying framework
for indirect supervision. In EMNLP,
pages 1891–1902. Brussels. https://doi
.org/10.18653/v1/D18-1215

Wang, Jue and Wei Lu. 2020. Two are better
than one: Joint entity and relation
extraction with table-sequence encoders.
In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 1706–1721.
Online. https://doi.org/10.18653/v1
/2020.emnlp-main.133

Wang, Po-Wei, Priya L. Donti, Bryan Wilder,
and J. Zico Kolter. 2019. SATNet: Bridging
deep learning and logical reasoning using
a differentiable satisfiability solver. In
ICML, pages 6545–6554. Long Beach, CA.

Wang, Shaolei, Yue Zhang, Wanxiang Che,
and Ting Liu. 2018. Joint extraction of
entities and relations based on a novel
graph scheme. In IJCAI, pages 4461–4467.
Yokohama. https://doi.org/10.24963
/ijcai.2018/620

Wang, Wenya and Sinno Jialin Pan. 2020.
Integrating deep learning with logic fusion
for information extraction. In AAAI,
pages 9225–9232. New York, NY. https://
doi.org/10.1609/aaai.v34i05.6460

Wang, Wenya, Sinno Jialin Pan, Daniel
Dahlmeier, and Xiaokui Xiao. 2016.

Recursive neural conditional random
fields for aspect-based sentiment analysis.
In EMNLP, pages 616–626. Austin, TX.
https://doi.org/10.18653/v1/D16
-1059

Wang, Wenya, Sinno Jialin Pan, Daniel
Dahlmeier, and Xiaokui Xiao. 2017.
Coupled multi-layer tensor network for
co-extraction of aspect and opinion terms.
In AAAI, pages 3316–3322. San Francisco,
CA.

Xu, Hu, Bing Liu, Lei Shu, and Philip S. Yu.
2018a. Double embeddings and
CNN-based sequence labeling for aspect
extraction. In ACL, pages 592–598.
Melbourne. https://doi.org/10.18653
/v1/P18-2094

Xu, Jingyi, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Van den Broeck. 2018b. A
semantic loss function for deep learning
with symbolic knowledge. In ICML,
pages 5502–5511. Stockholm.

Yang, Bishan and Claire Cardie. 2013. Joint
inference for fine-grained opinion
extraction. In ACL, pages 1640–1649.
Sofia.

Yang, Bishan and Tom M. Mitchell. 2016.
Joint extraction of events and entities
within a document context. In NAACL,
pages 289–299. San Diego, CA.

Yang, Yuan and Le Song. 2020. Learn to
explain efficiently via neural logic
inductive learning. In ICLR. Online.

Yin, Yichun, Furu Wei, Li Dong, Kaimeng
Xu, Ming Zhang, and Ming Zhou. 2016.
Unsupervised word and dependency
path embeddings for aspect term
extraction. In IJCAI, pages 2979–2985.
New York, NY.

Yu, Jianfei, Jing Jiang, and Rui Xia. 2019.
Global inference for aspect and opinion
terms co-extraction based on multi-task
neural networks. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
27(1):168–177. https://doi.org/10.1109
/TASLP.2018.2875170

Yu, Xiaofeng and Wai Lam. 2010. Jointly
identifying entities and extracting relations
in encyclopedia text via a graphical model
approach. In COLING, pages 1399–1407.
Beijing.

Zeng, Xiangrong, Daojian Zeng, Shizhu He,
Kang Liu, and Jun Zhao. 2018. Extracting
relational facts by an end-to-end neural
model with copy mechanism. In ACL,
pages 506–514. Melbourne. https://
doi.org/10.18653/v1/P18-1047

Zhang, Meishan, Yue Zhang, and Guohong
Fu. 2017. End-to-end neural relation

811

https://doi.org/10.1109/TNNLS.2016.2603784
https://doi.org/10.1109/TNNLS.2016.2603784
https://pubmed.ncbi.nlm.nih.gov/27845678
https://doi.org/10.3115/v1/D14-1090
https://doi.org/10.3115/v1/D14-1090
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D18-1215
https://doi.org/10.18653/v1/D18-1215
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.24963/ijcai.2018/620
https://doi.org/10.24963/ijcai.2018/620
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.1609/aaai.v34i05.6460
https://doi.org/10.18653/v1/D16-1059
https://doi.org/10.18653/v1/D16-1059
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.1109/TASLP.2018.2875170
https://doi.org/10.1109/TASLP.2018.2875170
https://doi.org/10.18653/v1/P18-1047
https://doi.org/10.18653/v1/P18-1047

Computational Linguistics Volume 47, Number 4

extraction with global optimization. In
EMNLP, pages 1730–1740. Copenhagen.
https://doi.org/10.18653/v1/D17
-1182

Zhang, Tongtao, Heng Ji, and Avirup Sil.
2019. Joint entity and event extraction with
generative adversarial imitation learning.

Data Intelligence, 1(2):99–120. https://
doi.org/10.1162/dint a 00014

Zheng, Suncong, Feng Wang, Hongyun Bao,
Yuexing Hao, Peng Zhou, and Bo Xu. 2017.
Joint extraction of entities and relations
based on a novel tagging scheme. In ACL,
pages 1227–1236. Vancouver.

812

https://doi.org/10.18653/v1/D17-1182
https://doi.org/10.18653/v1/D17-1182
https://doi.org/10.1162/dint_a_00014
https://doi.org/10.1162/dint_a_00014

	Introduction
	Related Work
	Information Extraction
	Deep Learning with Logic Reasoning

	Problem Definition and Preliminary
	Problem Definition
	Variational EM
	First-Order Logic

	Motivation
	Methodology
	Deep Learning with Self-Attention
	Logic Network

	Learning with Expectation-Maximization
	Inference
	Learning
	Optimization

	Experiment
	Tasks and Data
	Experimental Setting
	Result
	Analysis
	Error Analysis and Future Work

	Conclusion

