Syntax Role for Neural Semantic
Role Labeling

Zuchao Li

Shanghai Jiao Tong University
Department of Computer Science and
Engineering

charlee@sjtu.edu.cn

Hai Zhaox

Shanghai Jiao Tong University
Department of Computer Science and
Engineering
zhaohai@cs.sjtu.edu.cn

Shexia He

Shanghai Jiao Tong University
Department of Computer Science and
Engineering

heshexia@sjtu.edu.cn

Jiaxun Cai

Shanghai Jiao Tong University
Department of Computer Science and
Engineering

caijiaxun@sjtu.edu.cn

Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument struc-
ture of a sentence. Previous studies in terms of traditional models have shown syntactic informa-
tion can make remarkable contributions to SRL performance; however, the necessity of syntactic
information was challenged by a few recent neural SRL studies that demonstrate impressive
performance without syntactic backbones and suggest that syntax information becomes much
less important for neural semantic role labeling, especially when paired with recent deep neural
network and large-scale pre-trained language models. Despite this notion, the neural SRL field
still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for

* Corresponding author. This work was supported by the National Key Research and Development
Program of China (No. 2017YFB0304100) and the Key Projects of National Natural Science Foundation of
China (U1836222 and 61733011).

Submission received: 11 September 2020; revised version received: 11 February 2021; accepted for
publication: 5 June 2021.

https:/ /doi.org/10.1162/COLI_a_00408
© 2021 Association for Computational Linguistics

Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:charlee@sjtu.edu.cn
mailto:zhaohai@cs.sjtu.edu.cn
mailto:heshexia@sjtu.edu.cn
mailto:caijiaxun@sjtu.edu.cn
https://doi.org/10.1162/COLI_a_00408

Computational Linguistics Volume 47, Number 3

both dependency and both monolingual and multilingual settings. This paper intends to quantify
the importance of syntactic information for neural SRL in the deep learning framework. We
introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based,
which are accompanied by two categories of exploiting syntactic information: syntax pruning-
based and syntax feature-based. Experiments are conducted on the CoNLL-2005, -2009, and
-2012 benchmarks for all languages available, and results show that neural SRL models can
still benefit from syntactic information under certain conditions. Furthermore, we show the
quantitative significance of syntax to neural SRL models together with a thorough empirical
survey using existing models.

1. Introduction

Semantic role labeling (SRL), namely, semantic parsing, is a shallow semantic parsing
task that aims to recognize the predicate-argument structure of each predicate in a
sentence, such as who did what to whom, where and when, and so forth. Specifically, SRL
seeks to identify arguments and label their semantic roles given a predicate. SRL is
an important method for obtaining semantic information that is beneficial to a wide
range of natural language processing (NLP) tasks, including machine translation (Shi
et al. 2016), question answering (Berant et al. 2013; Yih et al. 2016), discourse relation
sense classification (Mihaylov and Frank 2016), and relation extraction (Lin, Liu, and
Sun 2017).

SRL can be split into four subtasks: predicate detection, predicate disambiguation,
argument identification, and argument classification. For argument annotation, there
are two formulations (styles). One is based on constituents (i.e., phrase or span), and
the other is based on dependencies. The latter, proposed by the CoNLL-2008 shared
task (Surdeanu et al. 2008), is also called semantic dependency parsing and annotates
the heads of arguments rather than phrasal arguments. Figure 1 shows example anno-
tations.

In prior SRL work, considerable attention has been paid to feature engineering,
which struggles to capture sufficient discriminative information compared to neural
network models, which are capable of extracting features automatically. In particular,
syntactic information, including syntactic tree features, has been known to be extremely
beneficial to SRL since the large scale of empirical verification of Punyakanok, Roth, and
Yih (2008). Despite their success, their work suffered from erroneous syntactic input,
leading to an unsatisfactory performance.

To alleviate these issues, Marcheggiani, Frolov, and Titov (2017) and He et al. (2017)
proposed a simple but effective neural model for SRL without syntactic input. Their
work suggested that neural SRL does not have to rely on syntactic features, contradict-
ing the belief that syntax is a necessary prerequisite for SRL, which was believed as
early as Gildea and Palmer (2002). This dramatic contradiction motivated us to make a
thorough exploration on syntactic contribution to SRL.

A0 v Al A2 AM-TMP

Marry borrowed a book from John last week

A0 borrow.01 Al A2 AM-TMP
Figure 1

Examples of annotations in span (above) and dependency (below) SRL.

530

Lietal Syntax Role for Neural Semantic Role Labeling

Table 1
A chronicle of related work for span and dependency SRL. SA represents a syntax-aware system
(no + indicates a syntax-agnostic system). F; is the result of a single model on the official test set.

Span (CoNLL-2005) Dependency (CoNLL-2009)
Time System SA Method F; | Time System SA Method F;
2008 Punyakanoketal. + ILP 76.3 | 2009 Zhao et al. + ME 86.2
2008 Toutanova et al. + DP 79.7 | 2010 Bjorkelund et al. + global 86.9
2015 FitzGerald etal. + structured 79.4 + structured 87.3
2015 Zhou and Xu deep BiLSTM 82.8
2016 Roth and Lapata + PathLSTM 87.7
2017 Heetal. highway BiLSTM 83.1 | 2017 Marcheggiani et al. BiLSTM 87.7
2017 Marcheggiani and Titov. + GCNs 88.0
2018 Tanetal self-attention 84.8 | 2018 Heetal. (b) + ELMo 89.5
2018 Strubell et al. + self-attention 83.9 | 2018 Caietal. biaffine 89.6
2018a Heetal. (a) ELMo 87.4 2018 Lietal (a) + ELMo 89.8
2019b Lietal. (b) AAAL ELMo+biaffine 87.7 ELMo-+biaffine 90.4

As shown in Table 1, span and dependency are effective formal representations
for semantics, though it has been unknown for a long time which form, span, or
dependency would be better for the convenience and effectiveness of semantic machine
learning and later applications. This topic has been roughly discussed in Johansson and
Nugues (2008a) and Li et al. (2019a), who both concluded that the (best) dependency
SRL system at that time clearly outperformed the span-based (best) system through
gold syntactic structure transformation; however, due to the different requirements of
downstream task applications, span and dependency both remain focuses of research.
Additionally, the two forms of SRL may benefit from each other’s joint (rather than
separated) development. We, therefore, revisit the role of syntax in SRL on a more solid
empirical basis and investigate the role of syntax! for the two SRL styles by supplying
syntax knowledge of varying quality.

Recent work on syntax contributions has been limited to individual models and
the ways in which syntax has been utilized. The conclusions drawn for syntax roles
therefore have some limitations. In order to reduce these limitations, we explored three
typical and strong baseline models and two categories of syntactic utilization methods.
In addition, pre-trained language models, such as ELMo (Peters et al. 2018) and BERT
(Devlin et al. 2019), that build contextualized representations, continue to provide gains
on NLP benchmarks, and Hewitt and Manning (2019) showed that structure of syntax
information emerges in the deep models” word representation spaces. Whether neural
SRL models can further benefit from explicit syntax information in addition to this
implicit syntax information, however, is another issue we consider.

Besides, most of the SRL literature is dedicated to impressive performance gains on
English, while other multiple languages receive relatively little attention. Although hu-
man languages have some basic commonalities in syntactic structure and even different
levels of grammar, their differences are also very obvious. The study of syntactic roles
needs to be examined in the context of multiple languages for verifying its effectiveness
and applicability.

1 Itis worth noting that the syntax studied in this paper is limited to syntactic knowledge in the narrow
sense by using syntactic relationships (via dependency and constituency trees) but does not include
lemma, part-of-speech, etc.

531

Computational Linguistics Volume 47, Number 3

In order to quantitatively evaluate the contribution of syntax to SRL, we adopt the
ratios between labeled F; score for semantic dependencies (Sem-F;), the labeled attach-
ment score (LAS) for syntactic dependencies, and the F; score for syntactic constituents.
This ratio was first introduced by CoNLL-2008 (Surdeanu et al. 2008) shared task as
an evaluation metric. Because different syntactic parsers contribute different syntactic
inputs with varying levels of quality, different syntactically driven SRL systems are
based on different syntactic foundations. Therefore, our proposed ratio offers a fairer
comparison between different syntactically driven SRL systems, which our empirical
study surveys.

2. Background

SRL was first pioneered by Gildea and Jurafsky (2000) based on the FrameNet seman-
tic labeling project (Baker, Fillmore, and Lowe 1998). PropBank (Palmer, Gildea, and
Kingsbury 2005) is one of the most commonly used labeling schemes for this task. This
involves two variants: span-based labeling (span SRL), where arguments are character-
ized as word spans (Carreras and Marquez 2005; Pradhan et al. 2012), and head-based
labeling (dependency SRL), which only labels head words and relies on syntactic parse
trees (Haji¢ et al. 2009).

Conventionally, when identifying predicates, span SRL decomposes to two sub-
tasks: argument identification and argument classification. The former identifies the
arguments of a predicate, and the latter assigns them semantic role labels, determining
the relations between arguments and predicates. PropBank defines a set of semantic
roles for labeling arguments. These roles fall into two categories: core and non-core roles.
The core roles (A0-A5 and AA) indicate different semantics in predicate-argument struc-
ture, while the non-core roles are modifiers (AM-adj), where adj specifies the adjunct
type, such as in temporal (AM-TMP) and locative (AM-LOC) adjuncts. For the example
shown in Figure 1, AQ is a proto-agent, representing the borrower.

Slightly different from span SRL in argument annotation, dependency SRL labels
the head words? of arguments rather than of entire phrases, a practice popularized
by the CoNLL-2008 and CoNLL-2009 shared tasks® (Surdeanu et al. 2008; Hajic et al.
2009). Furthermore, when no predicate is given, two other indispensable subtasks of de-
pendency SRL are required: predicate identification and predicate disambiguation. The
former identifies all predicates in a sentence; and the latter determines the word senses,
the specific contextual meanings, of predicates. In the example shown in Figure 1, 01
indicates the first sense from the PropBank sense repository for predicate borrowed in
the sentence.

Johansson and Nugues (2008c) demonstrated that in conventional SRL models,
syntactic trees provide a good form of representation for the assigning of semantic role
labels. The successful application of neural networks to SRL (Zhou and Xu 2015; He
et al. 2017; Marcheggiani, Frolov, and Titov 2017; Cai et al. 2018) mitigated conventional
SRL models’ need for comprehensive feature engineering based on syntax trees (Zhao
et al. 2009a) and resulted in syntax-agnostic neural SRL models that achieved compet-

2 The head word for a span serves as a dependency relation’s modifier for words outside the span and a
dependency head for words inside the span. This is different from syntactic heads in head-dependent
relationships.

3 CoNLL-2008 is an English-only task, while CoNLL-2009 extends to a multilingual one. Their main
difference is that predicates have been indicated beforehand for the latter. Or rather, CONLL-2009 does
not need predicate identification, but it is an indispensable subtask for CONLL-2008.

532

Lietal Syntax Role for Neural Semantic Role Labeling

itive performance. Recent work has built on this and explored the inclusion of syntax
in neural SRL. Including syntax in SRL has three main benefits that have been common
motivations for recent work:

* Arguments are often dispersed around the predicates in syntax trees (Xue
and Palmer 2004; Zhao and Kit 2008; He et al. 2018b; He, Li, and Zhao
2019).

* Some predicate-argument arcs in semantic dependency graphs are
mirrored by head-dependent arcs in their corresponding dependency
parse trees, and there is a deterministic mapping between these syntactic
relationships and semantic role labels (Surdeanu et al. 2008; Lang and
Lapata 2010; Marcheggiani and Titov 2017; Li et al. 2018; Cai and Lapata
2019b; Marcheggiani and Titov 2020).

i Syntax parse trees can strengthen language representations (Johansson
and Nugues 2008c; Strubell et al. 2018; Kasai et al. 2019).

In this paper, since the third benefit is a general improvement for downstream tasks
and not limited to SRL, we explore the exploitation of the first two benefits for use in
neural SRL.

3. Methodology

To fully disclose the predicate-argument structure, typical SRL systems have to perform
four subtasks step-by-step or jointly learn and predict the four targets. In order to
research the role of syntax, we evaluate our systems in two separate settings: being
given the predicate and not being given the predicate. For the first setting, our backbone
models all only focus on the identification and labeling of arguments. We use the pre-
identified predicate information when the predicate is provided in the corpus and
adopt a sequence tagging model to perform predicate disambiguation. In the second
condition, we do the work of predicate identification and disambiguation in one se-
quence tagging model. In summary, we focus on three backbone models for argument
identification and disambiguation and feed the predicates into the models as features.

3.1 Factorization and Modeling

We summarize and present three typical baseline models, which are based on the
strategies of factoring and modeling of semantic graphs in the SRL: sequence-based,
tree-based, and graph-based.

Formalization. Given a sequence of tokens X = (wy,w,,...,w;), a span SRL graph can
be defined as a collection of labeled predicate-argument pairs over these tokens: S =
{(p,i,),°),1<p<nl1<i<j<nr’eR°}, whereS represents a labeled predicate-
argument pair for predicate p and the argument span located between sentence fence-
post positions 7 and j and with label r°. A dependency SRL semantic graph for the
sentence can be defined as D = {(p, a,r%),1< p<nl<d<n, e Rd}, where (p,a,rd)
consists of a predicate (x,), an argument (x,), and the type of the semantic role r?, which
is in label set R 7.

533

Computational Linguistics Volume 47, Number 3

Argument A0

Label:

Predicate

Feature:
+ +

+ + +
Word: ‘ ‘ ‘ ‘ ‘

Wo W W W3 Wy

]
(2]
]
]
]
B

08

(1) dependency-style (2) span-style

Figure 2
An example of sequence-based factorization.

Sequence-based. As shown in Figure 2, the semantic dependency graph of SRL is de-
composed by predicates. The arguments for each predicate consist of a sequence of
either dependency-style or span-style. Notably, an extra Begin-Inside-Outside (BIO)
conversion step is required for span-style argument labels. This decomposition is very
simple and efficient. In the baseline model of this factorization, the predicate needs to
be input as a source feature, which allows the model to produce different inputs for
different target argument sequences. Predicate-specific embeddings are usually used
for this reason. In our previous work (He et al. 2018b; Li et al. 2018; Munir, Zhao, and Li
2021), we presented models that recognized and classified arguments as in a sequence
labeling task. The predicate-argument pairs were then constructed by performing mul-
tiple rounds of sequence labeling according to the number of predicates to obtain a final
semantic graph.

In these models, the identification and classification of predicates and the recog-
nition and classification of arguments in the sequence-based modeling are separated
into two processes. Formally, the model first identifies the predicate (if not given) and
obtains predicate set P = {p1,p2,...,Pm}- Then, for each p; € P in the predicate set, a
sequence labeling model is adopted to predict the argument label of each token:

T, 2, e, Ty = argrrrg(l’(rlwl,wz,...,wn;pi;e)),

where 0 represents the model parameters, 7 and R represent 7° and R ® in span SRL or ¢
and R? in dependency SRL, and empty label ¢ (¢ = null in dependency SRL, ¢ = O in
span SRL) is used to indicate non-arguments. In dependency SRL, a and r“ are obtained
after removing the empty labels, while in span SRL, after removing the empty labels,
the BIO-converted label should be decoded to get the start and end positions i and j and
the span’s role label 7.

Tree-based. Embedding differentiation by relying on the predicate-indicating inputs is
only a soft constraint and prompt. This feature may be lost due to forgetting mecha-
nisms such as dropout in the encoder, which potentially limit SRL model performance.
For further help in predicate clue integrating, the tree-based method also decomposes
the semantic dependency graph to trees with a depth of 2, according to the predicate
which is the child node of ROOT; all other nodes are child nodes of the predicate, as

534

Lietal. Syntax Role for Neural Semantic Role Labeling

Predicate: w3
Argument ‘ JAEEA
Label- null A0/ null/ \null \NA1_null

Word: ‘ ‘ ‘
Wy woy W3

w1

(1) dependency-style (2) span-style

Figure 3
An example of tree-based factorization.

shown in Figure 3. An empty relation ¢ = null is set between the non-arguments and the
predicate in order to fill the tree. The tree-based factorization can be thought of as an en-
hanced version of the sequence-based factorization, as the predicate is more prominent
and obvious to specify. Also to emphasize a given predicate being handled, predicate-
specific embeddings are applied. In our previous work (Cai et al. 2018), the predicate
identification and classification and the recognition and classification of arguments are
still viewed as two separate processes. Predicate-argument pairs for each identified
predicate were scored using the following equation, which follows dependency parsers’
head-dependent scoring model rather than scoring the likelihood of a position being an
argument:

1,12, 0 e,y = argrrrgg((P(erl,wz, e, Wy} R pi;0))

In tree-based modeling, progressive decoding is performed to output all possible argu-
ments for each predicate.

Wo w1 W W3 Wy Ws ‘

Predicate: ‘

Argument
Label:
Argument:
Wo W1 Wa w3 Wy Ws ‘
(1) dependency-style (2) span-style
Figure 4

An example of graph-based factorization. We omit the dashed line between non-predicates and
non-arguments, i.e., the empty relation null, here.

535

Computational Linguistics Volume 47, Number 3

Graph-based. Sequence-based and tree-based models score the (argument,label) tuple
structure for a determined predicate. The graph-based method further extends this
mode; specifically it accommodates undetermined predicates and models the semantic
dependency graph directly to output a (predicate, argument, label) triple structure, allow-
ing the model handle to label multiple predicates and arguments at the same time (as
shown in Figure 4). This mode not only handles instances without given predicates
but also allows instances with given predicates to be enhanced by predicate-specific
embeddings. Using dependency-style, the graph-based method is a trivial extension of
the tree-based method. Span-style is not so simple because of its argument structure.
To account for this, graph-based models enumerate and sort all possible spans, take
them as candidate arguments, and score them with the candidate sets of predicates. In
our previous work (Li et al. 2019a, 2020), we considered the predicates and arguments
jointly and explicitly scored the predicate-argument pairs before classifying their rela-
tionships. This modeling objective can be represented as:

{(plul 7’)} = arg max (P((Pra/ r)‘wl/w2/ cee, Wy, e))
pEPACATER

where P = {wy,w,,...,w,} is the set of all predicate candidates, which is used in
graph-based modeling instead of relying on the predictions of an additional predicate
identification model. In dependency SRL, the argument candidates set A consists of all
words in the sentence, A = {w;, wy, ..., w,}, and in span SRL, A consists of all possible
spans, A = {(w;, wj),1 <i<j<n}.

The above methods cover most mainstream neural SRL models based on semantic
dependency graph modeling to the best of our knowledge. There are some modeling
approaches, such as transition-based SRL (Choi and Palmer 2011; Fei et al. 2021), that
are not based on semantic dependency graphs and hence not the focus of this paper.
In the sequence-based and tree-based methods, the BIO conversion is adopted when
using span-style, and some works use Conditional Random Fields (CRFs) to model this
constraint.

3.2 Baseline Implementation

This subsection presents basic neural SRL models under the three previous aforemen-
tioned methods. In order to make fair comparisons with our experiments, we make the
architectures of these models as similar as possible.

Word Representation. We produce a predicate-specific word representation e; for each
word w; in the sequence w = {w,--- ,w,}, where i stands for the word position in
an input sequence, and 7 is the length of this sequence, following Marcheggiani,
Frolov, and Titov (2017). In this work, word representation e; is the concatenation
of four types of features: a predicate-specific feature and character-level, word-level,
and linguistic features. Since previous works demonstrated that the predicate-specific
feature is helpful in promoting the role labeling process, we leverage a predicate-specific
indicator embedding e to indicate whether a word is a predicate when predicting
and labeling the arguments for each given predicate. At the character level, we exploit
a convolutional neural network (CNN) with a bidirectional LSTM (BiLSTM) to learn
character embedding e/¢. As shown in Figure 5, the representation calculated by the
CNN is fed as input to the BILSTM. At the word level, we use a randomly initialized
word embedding e/® and a pre-trained word embedding e/*. For linguistic features,

536

Lietal Syntax Role for Neural Semantic Role Labeling

Softmax

!

I Stacked | Hidden Layer

— — — «— «— BiLSTM Encoder
—_— —_— — — —

Word
Representation
ie re pe ce le pos Im
e e e e T e e ep
BiLSTM

ON | Tt

Figure 5

The sequence-based argument labeling baseline model. Notably, the Word Representation and
Softmax parts are specific to a single input word/output prediction, and the BILSTM Encoder
and Hidden Layer parts are used across all time steps.

we employ a randomly initialized lemma embedding e/ and a randomly initialized
POS tag embedding ef *. To further enhance the word representation, we leverage an

optimal external representation eiplm from pre-trained language models. The resulting

. . i e 0S Im
word representation is concatenated as e; = [e/*, e;*, el-’e,eip , el-le, eip , eip].

Sequence Encoder. As Long Short-Term Memory (LSTM) networks (Hochreiter and
Schmidhuber 1997), specifically BILSTMs, have shown significant representational ef-
fectiveness for NLP tasks (Sutskever, Vinyals, and Le 2014; Vinyals et al. 2015), we

thus use a BILSTM as the sentence encoder. Given a sequence of word representations
x = {ej, ey, - - ,e,} as input, the i-th hidden state g; is encoded as follows:

gl = LSTM” (ei, g{._l) , gb = LSTMP (ei, gﬁH) , gi=g og!

where LSTM” denotes the forward LSTM transformation and LSTMP? denotes the
backward LSTM transformation. gif and g’ are the hidden state vectors of the forward
LSTM and backward LSTM, respectively. Specifically, we initialize hidden states gy and
gn+1 as zero tensors.

537

Computational Linguistics Volume 47, Number 3

Scorer in the Sequence-based Model. In the sequence-based model, namely, the sequence
tagging model, to get the final predicted semantic roles, stacked multilayer perceptron
(MLP) layers on the top of BILSTM networks are usually exploited, which take as input
the hidden representation #; of all time steps and employ ReLU activations between
the hidden layers. Finally, a softmax layer is used over the outputs to maximize the
likelihood of labels.

Scorer in the Tree-based Model. As in the sequence-based model, to predict and label argu-
ments for a given predicate, a role classifier is employed on top of the BILSTM encoder.
Some work like Marcheggiani, Frolov, and Titov (2017) shows that incorporating the
predicate’s hidden state in their role classifier enhances the model performance, while
we argue that a more natural way to incorporate the syntactic information carried by the
predicate is to use the attentional mechanism. We adopt the recently introduced biaffine
attention (Dozat and Manning 2017) to enhance our role scorer. Biaffine attention is
a natural extension of bilinear attention (Luong, Pham, and Manning 2015), which is
widely used in neural machine translation (NMT).

Nonlinear Affine Transformation. Usually, a BILSTM decoder takes the concatenation g; of
the hidden state vectors as output for each hidden state; however, in the SRL context, the
encoder is supposed to distinguish the currently considered predicate from its candidate
arguments. As noted in Dozat and Manning (2017), applying an MLP to the recurrent
output states before the classifier has the advantage of stripping away irrelevant in-
formation for the current decision. Therefore, to distinguish the currently considered
predicate from its candidate arguments in an SRL context, we perform two distinct
affine transformations with a nonlinear activation on the hidden state g;, mapping it
to vectors with smaller dimensionality:

hl(pred) — RelLU (W(pred)gi + b(pred)) , hl(arg) — ReLU (W(urg)gi + b(m’g))

where ReLU is the rectilinear activation function (Nair and Hinton 2010), hgp ") is the

hidden representation for the predicate, and hgurg) is the hidden representation for the
candidate arguments.

By performing such transformations over the encoder output to feed the scorer,
the scorer may benefit from deeper feature extraction. This leads to two benefits. First,
instead of keeping both features learned by the two distinct LSTMs, the scorer ideally
is now able to learn features composed from both recurrent states with reduced di-
mensionality. Second, it provides the ability to map the predicates and the arguments
into two distinct vector spaces, which is essential for our tasks, since some words can be
labeled as predicates and arguments simultaneously. Mapping a word into two different
vectors can help the model disambiguate its role in different contexts.

Biaffine Scoring In the standard NMT context, given a target recurrent output vector
hgt) and a source recurrent output vector h](s), a bilinear transformation calculates a score
sjj for the alignment:

— 1 T OWRG
Sij = hi Wh]

538

Lietal Syntax Role for Neural Semantic Role Labeling

However, in a traditional classification task, the distribution of classes is often
uneven, and the output layer of the model normally includes a bias term designed to
capture the prior probability P(y; = c) of each class, with the rest of the model focusing
on learning the likelihood of each class given the data P(y; = c|x;). Dozat and Manning
(2017) incorporated the bias terms into the bilinear attention to address this uneven
problem, resulting in a biaffine transformation, a natural extension of the bilinear trans-
formation and the affine transformation. In the SRL task, the distribution of the role
labels is similarly uneven, and the problem worsens after introducing the additional
ROQT node and null label; directly applying the primitive form of bilinear attention
would fail to capture the prior probability P(y; = c) for each class. Thus, introducing the
biaffine attention in our model would be extremely helpful for semantic role prediction.

It is worth noting that in our model, the scorer aims to assign a score for each specific
semantic role. Besides learning the prior distribution for each label, we wish to further
capture the preferences for the label that a specific predicate-argument pair can take.
Thus, our biaffine attention contains two distinct bias terms:

s;; = Biaffine(h!"*", n{")) = 1| O WD (1)
1e), @19) ., 7 (pred)

+UOR @ by @)

+ b(role) (3)

where W) (1(l9) and b"") are parameters that will be updated by gradient descent
methods in the learning process. There are several points that should be noted in the
above biaffine transformation. First, because our goal is to predict the label for each
pair of hfﬂrg) and h;p ") the output of our biaffine transformation should be a vector of
dimensionality N, instead of a real value, where N, is the number of all the candidate
semantic labels. Thus, the bilinear transformation in Equation (1) maps two input vec-
tors into another vector. This can be accomplished by setting W as a (d;, x N, x d})
matrix, where dj, is the dimensionality of the hidden state vector. Similarly, the output of
the linear transformation in Equation (2) is also a vector by setting U as an (N, x 2d},)
matrix. Second, Equation (2) captures the preference of each role (or sense) label and is
conditioned on taking the j-th word as a predicate and the i-th word as an argument.
Third, the last term b"") captures the prior probability of each class P(y; = c). Notice
that Equations (2) and (3) capture different kinds of bias for the latent distribution of
the label set.

Given a sentence of length 1, for one of its predicates wj, the scorer outputs a score
vector {sll]-, S2jst sn,]-}. Then, our model picks as its output the label with the highest
score from each score vector: y;; = arg max; k<N, (sij[k]), where s; j[k] denotes the score
of the k-th candidate in the semantic label vocabulary with size N,.

Scorer in the Graph-based Model. As in the scorer of the tree-based model (from the
full model shown in Figure 6), the graph-based model (shown in Figure 7) also uses
the biaffine scorer to score the predicate-argument structure. Similarly, we also use a
nonlinear affine transformation on the top of the BiLSTM encoder. In the sequence-
based and tree-based models, dependency- and span-style arguments are converted
into a consistent label sequence, while the graph-based model treats arguments as
independent graph nodes. In order to unify the two styles of models, we introduce a
unified argument representation that can handle both styles of SRL tasks.

539

Computational Linguistics Volume 47, Number 3

Biaffine Scorer

Predicate & Argument,
Representation

{ LST™ Je-—+{{ LSTM Je--+{ LSTM }e-—+{ LSTM }¢--4{ LSTM Je--+{ LSTM |

BiLSTM Encoder ©
[LSTM | "’l LSTM } "’l LSTM }W»[LSTM |-t---»[LSTM |-1---[LSTM |-

Word Token (?oo) (Too) (Too) (Tooj (Too) (?oo)

Keep your heart and mind open

Figure 6
The tree-based argument labeling baseline model.

Biaffine Scorer

A

Predicate & Argument
Representation

€0 @000 00090000 ©90©@0©90@0 @9
©) ® @ @ @ @
-~ - b o o - - -]
- ~[mnH- -t~ H- o - - -

i i i i i i
Token R i (000 (@00 @00 (@00 (@e0 (000

Keep your heart and mind open

BiLSTM Encoder

Figure 7
The graph-based argument labeling baseline model.

In the sentence wy,w,,...,w,, the model aims to predict a set of predicate-
argument-relation tuples) € P x A x R, where P = {wy,w,,...,w,} is the set of all
possible predicate tokens, A = {(w;,. ..,wi)|1 <i<j<mn} includes all the candidate
argument spans or dependencies,* and R is the set of the semantic roles. For de-
pendency SRL, we assume single word argument spans and thus limit the length of
candidate arguments to be 1, so our model uses 1€ to construct the final argument
representation b8) directly. For span SRL, we utilize the span representation from Lee

et al. (2017). Each candidate span representation h@®)" is built by

Rr@g) — [héajggﬂ’ hg’;j«% hy,, size(N)]

4 When i = j, span reduces to dependency.

540

Lietal Syntax Role for Neural Semantic Role Labeling

where 3, and hyxp, are boundary representations, A indicates a span, size()) is a
feature vector encoding the size of span, and h, is the specific notion of headedness
learned by the attention mechanism (Bahdanau, Cho, and Bengio 2015) over words in
each span (where t is the position inside span) as follows:

a
HE = W -MLPatm(hﬁmg)), vy = ENSXP(W) p
> K=START exp(u])

END

= > v

t=START

Candidate Pruning The number of candidate arguments for a sentence of length I is
O(?) for span SRL and O(l) for dependency. As the model deals with O(l) possible
predicates, the computational complexity is O(P - |R|) for span and O(- |R|) for de-
pendency, both of which are too computationally expensive.

To address this issue, we attempt to prune candidates using two beams for storing
the candidate arguments and predicates with size 3,7 and (3,7 where 3, and {3, are
two manually set thresholds, a method inspired by He et al. (2018a). First, the predicate
and argument candidates are ranked according to their predicted scores (¢, and ¢,,
respectively), and then we reduce the predicate and argument candidates with defined
beams. Finally, we take the candidates from the beams for use in label prediction. Such
pruning will reduce the overall number of candidate tuples to O(n? - |R|) for both types
of tasks. Furthermore, for span SRL, we set the maximum length of candidate arguments
to £, which may decrease the number of candidate arguments to O(n). Specifically, for
predicates and arguments, we introduce two unary scores based on their candidates for
ranking:

b, = prLP;(g”), b, = quLPZ(g?)
After pruning, we also adopt the biaffine scorer as in the tree-based models:
®,(p,a) = Biaffine(h?"® , h@9)") 4)

4. Syntax Utilization

In this section, we present two types of syntax utilization: syntax-based argument
pruning and syntax feature integration.

541

Computational Linguistics Volume 47, Number 3

Algorithm 1 The k-order argument pruning algorithm.

Input: A predicate p, the root node r given a syntactic dependency tree T, the order k
Output: The set of argument candidates S
1: initialization set p as current nodec,c =p
2: for each descendant #; of cin T do
3 if D(c,n;) <kand n; ¢ S then
4 S=5+n;
5: end if
6: end for
7. find the syntactic head cj, of ¢, and let c = ¢,
8: if c = r then
9: S=S+r
10: else
11: goto step 2
12: end if
13: return argument candidates set S

4.1 Syntax-based Argument Pruning

Hard Pruning.® The argument structure for each known predicate will be discovered by
our argument labeler using the possible arguments (candidates) set. Most SRL works
(Xue and Palmer 2004; Zhao and Kit 2008) in the pre-NN era selected words surround-
ing the predicate word in a syntactic parse tree and pruned these words. We refer to
this strategy as hard pruning. In the NN model, we can also borrow this hard pruning
strategy to enhance the SRL baseline, and it is one way of using syntax information.
Specifically, before inputting to the model, we use the argument pruning algorithm
to get a filtered sequence wy = {wy, ..., wr} for each predicate. Then, we replace the
original sequence with this one and input it to the SRL model.

As noted by Punyakanok, Roth, and Yih (2008), syntactic information is most rel-
evant in identifying the arguments, and the most crucial contribution of full parsing
is in the pruning stage. In this paper, we propose a k-order argument hard pruning
algorithm inspired by Zhao, Chen, and Kit (2009). First, for node n and its descendant n4
in a syntactic dependency tree, we define the order to be the distance between the two
nodes, denoted as D(n,n,). Then, we define k-order descendants of n as descendants
that satisty D(n, n;) = k, and we define a k-order traversal as one that visits each node
from the given node to its descendant nodes within k-th order. Note that the definition of
k-order traversal is somewhat different from a traditional tree traversal in terminology.

A brief description of the proposed k-order pruning algorithm is given as follows.
Initially, we set a given predicate as the current node in a syntactic dependency tree.
Then, we collect all its argument candidates using a k-order traversal. Afterward, we
reset the current node to its syntactic head and repeat the previous step until we reach
the root of the tree. Finally, we collect the root and stop. The k-order argument algorithm

5 Notably, “hard pruning” involves the removal of words from a sentence. This does not reflect how
pruning techniques have been applied in previous work. Traditionally, pruning in SRL simply meant that
an argument span was not considered as a candidate for a given predicate. Sentence structure is typically
not affected by this and pruned argument spans are, in fact, still used in the computation of features for
other (unpruned) candidates.

542

Lietal Syntax Role for Neural Semantic Role Labeling

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
: N the for 7o
|

|

|

|

-~ Ist-order --2nd-order --3rd-order

Figure 8
An example of first-order, second-order, and third-order argument pruning. The shaded part
indicates the given predicate.

is presented in Algorithm 1 in detail. An example of a syntactic dependency tree for the
sentence She began to trade the art for money is shown in Figure 8.

The main reasons for applying the extended k-order argument pruning algorithm
are two-fold. First, previous standard pruning algorithms may impede the argument
coverage too much, even though arguments do usually tend to surround their pre-
dicates at a close distance. As a sequence tagging model that has been applied, the
algorithm can effectively handle the imbalanced distribution between arguments and
non-arguments, which would be poorly handled by early argument classification mod-
els that commonly adopt the standard pruning algorithm. Second, the extended pruning
algorithm provides a better trade-off between computational cost and performance by
carefully tuning k.

Soft Pruning. For word pair classification modeling, one major performance bottleneck is
caused by unbalanced data. This is especially pertinent for SRL, where more than 90% of
argument candidates are non-arguments. The syntax-based hard pruning methods are
thus proposed to alleviate the imbalanced distribution; however, these do not extend
well to other baselines and languages and even hinder syntax-agnostic SRL models,
as Cai et al. (2018) demonstrated using different k values on English. This hindrance
might result because this pruning method breaks up the whole sentence, leading the
BiLSTM encoder to take the incomplete sentence as input and fail to learn sentence
representation sufficiently.

To alleviate such a drawback from the previous syntax-based pruning methods,
we propose a novel pruning rule extraction method based on syntactic parse trees
that generally suits diverse baselines at the same time. In detail, we add an argument
pruning layer guided by syntactic rules following BiLSTM layers, which can absorb the
syntactic clues simply and effectively.

543

Computational Linguistics Volume 47, Number 3

Syntactic Rule. All arguments are specific to a particular predicate. Researchers have
found that in syntax trees, the distance between predicates and their arguments gen-
erally falls within a certain range for each language; in other words, the arguments of
a predicate are typically close to their predicate in their syntactic parse tree (Xue and
Palmer 2004; Zhao and Kit 2008; He et al. 2018b; He, Li, and Zhao 2019). Therefore, we
introduce a language-specific rule based on syntactic dependency parses to prune some
unlikely arguments. We call this rule the syntactic rule. Specifically, given a predicate p
and its argument 4, we define d,, and d, to be the distance from p and a to their nearest
common ancestor node (namely, the root of the minimal subtree that includes p and a),
respectively. For example, 0 denotes that a predicate or argument itself is their nearest
common ancestor, while 1 represents that their nearest common ancestor is the parent
of the predicate or argument. Then, we use the distance tuple (d,, d,) as their relative
position representation inside the parse tree. Finally, we make a list of all tuples ordered
according to how many times each distance tuple occurs in the training data, which is
counted for each language independently.

It is worth noting that our syntactic rule is determined by the top-k frequent distance
tuples. During training and inference, the syntactic rule takes effect by excluding all
candidate arguments whose predicate-argument relative positions in the parse tree are
not in the list of top-k frequent tuples.

Figure 9 shows simplified examples of a syntactic dependency tree. Given an En-
glish sentence in Figure 9(a), the current predicate is likes, whose arguments are cat
and fish. For likes and cat, the predicate (likes) is their common ancestor (denoted as
Root?8) according to the syntax tree. Therefore, the relative position representation of
the predicate and argument is (0, 1), and it is the same for likes and fish. As for the right
side in Figure 9, suppose the marked predicate has two arguments—argl and arg2.
The common ancestors of the predicate and arguments are, respectively, Root"s! and
Root*82 In this case, the relative position representations are (0, 1) and (1,2).

Argument Pruning Method. To maintain the sequential inputs through the whole sen-
tence, we propose a novel syntax-based method to softly prune arguments, which is
unlike most existing works (Xue and Palmer 2004; Zhao et al. 2009a; He et al. 2018b) with
hard pruning strategies that prune argument candidates in the pre-processing stage.
Our soft pruning strategy is very straightforward. In the argument pruning layer, our
model drops these candidate arguments (more exactly, their BILSTM representations)
that do not comply with the syntactic rule. In other words, only the predicates and

Root™® Root"®

likes? 0 | A0~ 2

cat fish .D O O
l f/red\o ¢

The black @ a2 @
(a) (0,1) (b) (0, 1) and (1, 2)
Figure 9

Syntactic parse tree examples (dependency relations are omitted). Red represents the current
predicate, and blue indicates its arguments.

544

Lietal Syntax Role for Neural Semantic Role Labeling

arguments that satisfy the syntactic rule will be output to the next layer. Notably,
whereas hard pruning removes some of the words from each sentence and tasks the
model with processing an incomplete sentence, with soft pruning, the model is given
the full original sentence, and by applying a mask instead of discarding part of the
inputs. While we do use a “hard” 0/1 binary mask for our “soft” pruning, this step can
also be softened to other preset probabilities such as 0.1/0.9 so that the pruned parts
can still pass some information. We leave this as an exploration for future work.

Constituent Pruning. In dependency SRL, argument candidates are pruned by a heuristic
search over the dependency syntax tree. Constituent syntax trees, which represent the
phrasal compositions of sentences, and span SRL have a different relationship than do
dependency syntax trees and dependency SRL, which have similarities in their depen-
dency arcs and dependency semantic relations. Since the argument span boundary in
span SRL is consistent with that of the phrase in a constituent syntactic tree, we adopt a
new constituent-based argument pruning method.

Constituency syntax breaks a sentence into constituents (i.e., phrases or spans),
which naturally form a constituency tree in a top—down fashion. In contrast with the
dependency syntax tree, words can only be the terminals in a constituency tree, while
the non-terminals are phrases with types. In span SRL, each argument corresponds to
a constituent in a constituency tree, which can thus be used to generate span argument
candidates, given the predicates (Xue and Palmer 2004; Carreras and Marquez 2005).
Punyakanok, Roth, and Yih (2005) showed that constituency trees offer high-quality
argument boundaries.

Considering that span SRL models only occasionally violate the syntactic con-
straints (some candidate arguments may not be constituents), we attempt to prune un-
likely arguments based on these constraints, essentially ruling out the likely impossible
candidates, albeit at the cost of missing some of the rare violating arguments.

In order to utilize such constituent boundaries in the constituency tree and help
decide argument candidates, we extract all boundaries for a constituent ¢ to form a
set boundaryset = {(Strr(c), Exo(c))}. We also define an argument pruning layer that
drops candidate arguments whose boundaries are not in this set. It is worth noting that
because span arguments are converted to BIO labels under the sequence-based and tree-
based modeling approaches of span SRL, there is no explicit correspondence between
the existing arguments and the constituents, so constituent-based argument pruning
is not applicable to the sequence-based and tree-based modeling approaches. We only
consider this syntax enhancement when using graph-based modeling.

4.2 Syntax Feature Integration

In addition to guiding argument pruning, another major use of syntax information
is serving as a syntax-aware feature in addition to the contextualized representation,
thereby enhancing the argument labeler. To integrate the syntactic information into
sequential neural networks, we use a syntactic encoder on top of the BILSTM encoder.
Specifically, given a syntactic dependency tree T, for each node n; in T, let C(k)
denote the syntactic children set of 1, H(k) denote the syntactic head of #y, and L(k, -)
denote the dependency relation between node #; and those that have a direct arc from
or to ;. Then, we formulate the syntactic encoder as a transformation f* over the node
ng, which may take some of C(k), H(k), or L(k,-) as input and compute a syntactic
representation vy for node n; namely, v, = f*(C(k), H(k), L(k, -), xx). When not otherwise
specified, x; denotes the input feature representation of 1, which may be either the

545

Computational Linguistics Volume 47, Number 3

word representation e, or the output of BILSTM k. o denotes the logistic sigmoid
function, and ® denotes the element-wise multiplication.

In practice, the transformation f* can be any syntax encoding method. In this
paper, we will consider three types of syntactic encoders: syntactic graph convolutional
network (Syntactic GCN), syntax aware LSTM (SA-LSTM), and tree-structured LSTM
(Tree-LSTM).

Syntactic GCN. The GCN (Kipf and Welling 2017) was proposed to induce the repre-
sentations of nodes in a graph based on the properties of their neighbors. Given its
effectiveness, Marcheggiani and Titov (2017) introduced a generalized version for the
SRL task, namely, syntactic GCN, and showed that the syntactic GCN is effective in
incorporating syntactic information into neural models.

The syntactic GCN captures syntactic information flowing in two directions: one
from heads to dependents (along), and the other from dependents to heads (opposite).
Additionally, it also models the information flows from a node to itself; that is, it as-
sumes that a syntactic graph contains a self-loop for each node. Thus, the syntactic GCN
transformation of a node #y, is defined on its neighborhood N(k) = C(k) U H(k) U {n}.
For each edge that connects 7 and its neighbor 7;, we can compute a vector representa-
tion,

where dir(k,j) denotes the direction type (along, opposite, or self-loop) of the edge
from ny to n, Wiirki) is the direction-specific parameter, and b'*/) is the label-specific
parameter. Considering that syntactic information from all the neighboring nodes may
make different contributions to semantic role labeling, the syntactic GCN introduces an
additional edge-wise gate for each node pair (1, 1;) as

dir(k; L(kj
Skj = O'(ngr(])xk + bg(])).

The syntactic representation vy for a node 1y can be then computed as:

U = RELU(Z gk,]‘ O) uk,j).
JEN(K)

SA-LSTM. The SA-LSTM (Qian et al. 2017) is an extension of the standard BiLSTM archi-
tecture, which aims to simultaneously encode the syntactic and contextual information
for a given word. On the one hand, the SA-LSTM calculates the hidden state in timestep
order as does the standard LSTM,

i = o(Wx + UDh_q +b9)

fo = oW + UPny_y + 59

0g = o(WOx + Uy + b))
u=fWWx + UMy _; + ™)

Cx = ig@uﬂLfg@Ck,l

546

Lietal Syntax Role for Neural Semantic Role Labeling

On the other hand, it further incorporates the syntactic information into the repre-
sentation of each word by introducing an additional gate,

Sg = o‘(W(S)xk + U(S)hk_l + b(s))
he =04 © f(ck) + ¢ © iy

where f(-) and o(-) represent the tanh and sigmoid activation functions, Iy =
f (Zt/_ <1, & X Iy) is the weighted sum of all hidden state vectors h; in position #; (that
correspond to previous node [word] 7;) to current timestep t;, and the weight factor «;
is actually a trainable weight related to the dependency relation L(k, -) when there exists
a directed edge from n; to ;.

Note that /i is always the hidden state vector of the syntactic head of n; according
to the definition of «;. Because a word will be assigned a single syntactic head, such a
strict constraint prevents the SA-LSTM from incorporating complex syntactic structures.
Inspired by the GCN, we relax the directed constraint of &; whenever there is an edge
between 7; and n.

After the SA-LSTM transformation, the outputs of the SA-LSTM layer from both
directions are concatenated and taken as the syntactic representation of each word n,

_>
thatis, v = [Iy, ;1—;{]. Different from the syntactic GCN, SA-LSTM encodes both syntactic
and contextual information in a single vector vy.

Tree-LSTM. The Tree-LSTM (Tai, Socher, and Manning 2015) can be considered an ex-
tension of the standard LSTM and aims to model tree-structured topologies. At each
timestep, it composes an input vector and the hidden states from arbitrarily many child
units. Specifically, the main difference between the Tree-LSTM unit and the standard one
is that the memory cell updating and the calculation of gating vectors are dependent on
multiple child units. A Tree-LSTM unit can be connected to an arbitrary number of child
units, and it assigns a single forget gate for each child unit. This provides Tree-LSTM the
flexibility to incorporate or drop the information from each child unit.

Given a syntactic tree, the Tree-LSTM transformation is defined on node #; and its
children set C(k) and is formulated as follows (Tai, Socher, and Manning 2015):

iy = Z Iy 5)

jeCk)
iy = o(Wx + Uy +)
£l = o(Whxi + UDR; + b)) (6)
0g = o(Wx; + U Ry + b))
u = tanh(W®™x; + U@Fy + ™)

k=i, Ou+ Z f;’jG)cj
jeCk)

hy = 0y © tanh(cy)

547

Computational Linguistics Volume 47, Number 3

where j € C(k), h; is the hidden state of the j-th child node, ¢, is the memory cell of the
head node k, and #; is the hidden state of node k. Note that in Equation (6), a single

forget gate fgk'] is computed for each hidden state h;.

Note that the primitive form of Tree-LSTM does not take the dependency relations
into consideration. Given the importance of dependency relations in the SRL task,
we further extend the Tree-LSTM by adding an additional gate r, and reformulate
Equation (5),

r¥ = GWOx, + UK, + bLED)

= o
jecih)

where b4%7) is a relation label-specific bias term. After the Tree-LSTM transformation,
the hidden state of each node in the dependency tree is taken as its syntactic represen-
tation, that is, v, = .

4.3 Constituent Composition and Decomposition

Due to the difference in structure between constituent and dependency syntax trees, tree
encoders (GCN, SA-LSTM, Tree-LSTM, etc.) cannot be used to encode the constituent
tree directly. In order for the constituent syntax to be encoded into the SRL model as the
dependency syntax tree was, inspired by Marcheggiani and Titov (2020), we introduce
two processes: constituent tree conversion and feature decomposition.

A constituency tree is composed of terminal nodes and non-terminal nodes, as
shown in Figure 10(a). Since the words in a constituent tree all are terminal nodes, if the
constituent tree is directly encoded by the tree encoder, the syntax tree structural infor-
mation cannot be encoded into the words fully. Therefore, we convert the constituent
tree to a dependency-like tree, in which the original terminal nodes are removed and
the remaining non-terminal nodes are replaced by units consisting of the start and end
tokens (words) of the spans they represented. The constituent labels are modified to
mimic dependency arcs as in dependency trees, as shown in Figure 10(b).

In a dependency tree, the nodes in the tree are the words in the sentence, so the
syntax features output from the tree encoder can be mapped directly to the linear order
of the sentences. In our converted constituent tree, the nodes in the tree correspond
to the start and end words in the sentence, so we need an additional decomposition
process to map this feature back to the word level. As shown in the dashed line in
Figure 10(b), every node passes the feature to the first and the last words in their spans,
and an extra indicator embedding e is appended to distinguish features as starts
or ends. Then, these features are input to BiILSTM encoders to obtain the final syntax
features for each word.

Specifically, before the tree encoding process, we concatenate the BILSTM contex-
tualized representations for the start and end positions of the span as the initial node
representation; the start and end positions of leaf nodes are both positions themselves.
For span (i, j), the initial node representation is:

;= FEN([h;; Iy))

548

Lietal Syntax Role for Neural Semantic Role Labeling

Span Start Feature

<ROOT> Span
End
N v P Feature
| e (keep, open)
i PN
J’J/f: keep < ! VB/// oS keep
LS e N A
VB S your < (keep, keep) - (your, open) . your <
— T 4 NP_— T 4DJP
NP ADJP heart < . — > i heart <
B /\ [(your, mind) - (open, open)
— ™~ and < . /,/"7\\ W | and <
PRP$ NN CC NN JJ . PRPS ~ / \ _NN |
| | | .‘ | mind < / Nl\i/ cc \ (open, open) } mind < !
keep your heart and mind open “ / i ’ ;
(your, your) / (and, and) i |
open s i ; > open
A (heart, heart) (mind, mind) |
(a) Constituent tree (b) Dependency-like Constituent Tree and Feature Decomposition

Figure 10

The structure of an original constituent tree and its dependency-like constituent tree after
conversion. The dashed lines map the converted tree encoded features back to the original
positions of words in the sentence, i.e., feature decomposition.

where [; -] represents the concatenation operation, and FFN is a feed-forward layer that
is used to keep the model dimension. The syntactic tree is then encoded by the adopted
tree encoder® to obtain the final tree node representations h"*. We separate the represen-
tations of the nodes by splicing different position representations to distinguish whether
they come from span starts or ends, and then accumulate all of these representations
from span starting or ending, respectively:

W=FENQ DS (05elnl D0 (eI

i=n.start i=n.end
where ! represents the syntactic tree features for word w; and 7 is a tree node.
5. Experimental Analysis and Syntax Role Study

In this section, we investigate the proposed methods empirically in comparison to
the latest SRL models. Moreover, we further explore the syntax role for neural SRL
in various architectures. The SRL models are evaluated on the popular CoNLL-2005,
CoNLL-2009, and CoNLL-2012 shared tasks following the standard training, develop-
ment, and test splits. For the SRL task, because the predicate identification subtask is
easier than other subtasks, some works only focus on the semantic role prediction with
pre-identified predicates, which we name w/ pred. There are also many studies that
tend to examine settings closer to real-world scenarios, where the predicates are not
given and the proposed systems are required to output both the predicates and their
corresponding argument. We call this setting w/o pred.

6 In the SA-LSTM tree encoder, a linear sequence of tree nodes is required, so we linearize the nodes of the
constituent trees with a depth-first algorithm.

549

Computational Linguistics Volume 47, Number 3

The hyperparameters in our model were selected based on the development set. In
our experiments, all real vectors are randomly initialized, including 100-dimensional
word, lemma, POS tag embeddings, and 16-dimensional predicate-specific indicator
embeddings (He et al. 2018b). The pre-trained word embeddings are 100-dimensional
GloVe vectors (Pennington, Socher, and Manning 2014) for English and 300-dimensional
fastText vectors (Grave et al. 2018) trained on Common Crawl and Wikipedia for other
languages. The dimensions of ELMo and BERT word embeddings are of size 1024.
Additionally, we use a 3-layer BILSTM with 400-dimensional hidden states and apply
dropout with an 80% keep probability between timesteps and layers. For the biaffine
scorer, we use two 300-dimensional affine transformations with the ReLU non-linear
activation and also set the dropout probability to 0.2. During training, we use the
categorical cross-entropy as the objective and use the Adam optimizer (Kingma and
Ba 2015) with an initial learning rate 2¢=>. All models are trained for up to 50 epochs
with batch size 64.

In our syntax-based pruning experiments with dependency SRL, we used the pre-
dicted syntactic trees given by the CoNLL-2009 data sets (including the multilingual
settings) due to the relative insignificance of the syntactic quality in the pruning algo-
rithm. For our syntax feature integration experiments in dependency SRL, because the
tree encoder has a minimum syntax tree quality requirement before it can provide any
performance improvement, we obtained the predicted dependency syntax tree with the
Biaffine Parser (Dozat and Manning 2017) we trained on the golden syntax annotations
provided by CoNLL20-09 data sets. In span SRL, following the practice of He et al.
(2017), a leading constituency parser (Choe and Charniak 2016) is used to parse the
constituent trees. In our experiments, the data sets for the shared task of CoNLL-2009
include predicted POS tags or lemmas, while the data sets for CoONLL-2005 and CoNLL-
2012 do not provide them. We remedy this using NLTK to obtain the predicted POS tags
and lemmas to keep the input form consistent.

5.1 Data sets

Span-based Data. The CoNLL-2005 shared task focused on verbal predicates for only
English. The CoNLL-2005 data set takes sections 2-21 of Wall Street Journal (WS]J) data
as the training set; and section 24 as the development set. The test set consists of section
23 of W] for in-domain evaluation together with 3 sections from the Brown corpus for
out-of-domain evaluation. The larger CoONLL-2012 data set is extracted from OntoNotes
v5.0 corpus, which contains both verbal and nominal predicates.

Dependency-based Data. The CoNLL-2009 shared task is focused on dependency-based
SRL in multiple languages and merges two treebanks, PropBank and NomBank. Nom-
Bank is a complement to PropBank and uses a similar semantic convention for nominal
predicate-argument structure annotation. The training, development, and test splits of
the English data are identical to those of CoNLL-2005.

5.2 Preprocessing

Hard Pruning. During the pruning of argument candidates, we use the officially
predicted syntactic parses provided by CoNLL-2009 shared-task organizers on both
English and Chinese. Figure 11 shows changing curves of coverage and reduction
following k on the English training set. According to our statistics, the number of non-
arguments is ten times more than that of arguments, meaning the data distribution is

550

Lietal Syntax Role for Neural Semantic Role Labeling

1001 _o—e—s-
80 1 —e— Coverage
. Reduction
S
< 60 1
&
5
E 40 1
-9
20
0 -
T T T T
0 5 10 15 20
Figure 11

Changing curves of coverage and reduction with different k values on the English training set.
The coverage rate is the proportion of true arguments in the pruning output, while the reduction
is the proportion of pruned argument candidates in total tokens.

fairly unbalanced; however, a proper pruning strategy could alleviate this problem.
Accordingly, the first-order pruning reduces more than 50% of candidates at the cost
of missing 5.5% true ones on average, and the second-order prunes about 40% of
candidates with nearly 2.0% loss. The coverage of third-order achieves 99%, and it
reduces the size of the corpus by approximately one third.

It is worth noting that when k is larger than 19, full coverage is achieved on all
argument candidates for the English training set, which allows our high-order pruning
algorithm to reduce to a syntax-agnostic setting. In this work, we use tenth-order
pruning for best performance.

Soft Pruning. For the syntactic rule used in soft argument pruning, to ensure more than
99% coverage of true arguments in pruning output, we use the top-120 distance tuples
on Japanese and top-20 on other languages for a better trade-off between computation
and coverage.

Candidate Pruning. In graph-based modeling, the pruning of all predicate-argument pair
candidates does not rely on hard pruning or soft pruning based on syntactic trees.
Rather, it limits the maximum length of the argument span while also ranking the pred-
icate and argument candidates separately using scores from the neural network scorer
and then taking the top-k candidates to reduce the number of candidates. Specifically,
we follow the settings of He et al. (2018a), modeling spans up to length £ = 30 for span
SRL and £ = 1 for dependency SRL, using 3, = 0.4 for pruning predicates and 3, = 0.8
for pruning arguments.

5.3 Dependency SRL Results
Undoubtedly, dependency SRL offers a number of advantages from a practical perspec-

tive, and the efficient dependency parsing algorithms enable SRL models to achieve
state-of-the-art results. Therefore, we begin our exploration of syntax roles for neural

551

Computational Linguistics Volume 47, Number 3

SRL with it. In Table 2, we outlined the performance of the current leading dependency
SRL models and compared the performance of our three baselines and syntax-enhanced
models with different integration approaches on the CoNLL-2009 English in-domain
(WS]J) and out-of-domain (Brown) test sets.

In the sequence-based approaches, we utilized another sequence labeling model
to tackle the predicate identification and disambiguation subtasks required for the
different settings (w/ pred and w/o pred). The predicate disambiguation model achieves
accuracies of 95.01% and 95.58% on the development and test (WSJ) sets for the w/
pred setting, respectively, giving a slightly better accuracy than Roth and Lapata (2016),

Table 2

Dependency SRL Results with pre-identified predicates (w/ pred) and without pre-identified
predicates (w/o pred) on the CoONLL-2009 English in-domain (WSJ) and out-of-domain (Brown)
test sets. The “PLM” column indicates whether and which pre-trained language model is used,
the “SYN” column indicates whether syntax information is employed, and “+E” in the “PLM”
column shows that the model leverages ELMo for pre-trained language model features. [Ens.] is
used to specify the ensemble system, [Semi.] indicates semi-supervised training is adopted, and
[Joint] means joint learning with other tasks.

w/ pred w/o pred
WSJ Brown WSJ Brown

System PLM SYN

(Zhao et al. 2009b)

(Zhao et al. 2009a)

(Lei et al. 2015)

(FitzGerald et al. 2015)

[Ens.] (FitzGerald et al. 2015)

(Roth and Lapata 2016)

[Ens.] (Roth and Lapata 2016)
(Swayamdipta et al. 2016)
(Marcheggiani and Titov 2017)

[Ens.] (Marcheggiani and Titov 2017)
(Marcheggiani, Frolov, and Titov 2017)
(Mulcaire, Swayamdipta, and Smith 2018)

ZZ T
\O
(=}
W
jos]
a1
N
o}
3
el
3
N
~
W
[o)}
N
[=}
(&)}
[
[

. Y 89.0 882 886 780 772 776 — — — — — —
(Kasai et al. 2019) +E_ Y_ 903 90.0 902 810 805 80.8 — — — — — —
(Cai and Lapata 2019a) N 911 904 90.7 8.1 813 816 — — — — — —
[Semi.] (Cai and Lapata 2019a) N 917 908 91.2 832 819 85 — — — — — —
(Zhang, Wang, and Si 2019) Y 896 8.0 877 — — - - = — - - =
(Lyu, Cohen, and Titov 2019) +E N — — 910 -— — 822 — — — — — —
(Chen, Lyu, and Titov 2019) +E N 907 914 91.1 827 828 827 — — — — — —

. . N 887 89.8 89.3 825 83.2 828 842 87.6 859 765 785 775
Doint] (Zhou, Li, and Zhao 2020) +E N 89.7 909 903 839 850 845 852 882 86.7 78.6 80.8 79.7
Sequence-based (2018b; 2018) +E N 895 879 887 817 76.1 78.8 835 824 829 715 709 712

+K-order Hard Pruning (2018b) +E Y 897 893 895 819 769 79.3 839 827 833 715 713 714
+SynRule Soft Pruning +E Y 899 89.1 89.5 78.8 81.2 80.0 829 843 836 709 721 715
+GCN Syntax Encoder (2018) +E Y 90.3 89.3 89.8 80.6 79.0 79.8 85.3 825 839 719 715 717
+SA-LSTM Syntax Encoder (2018) +E Y 90.8 88.6 89.7 81.0 782 79.6 85.3 82.6 84.0 71.8 71.6 717
+Tree-LSTM Syntax Encoder (2018) +E Y 90.0 888 894 804 787 79.5 83.1 83.7 834 709 721 715
Tree-based (2018) +E N 892 904 89.8 80.0 78.6 79.3 84.8 854 851 724 740 732
+K-order Hard Pruning +E Y 90.3 89.5 899 80.0 79.0 79.5 839 86.5 852 73.6 72.8 73.2
+SynRule Soft Pruning (2019) +E Y 90.0 90.7 90.3 79.6 80.4 80.0 849 859 854 727 743 735
+GCN Syntax Encoder +E Y 909 90.1 90.5 81.4 78.8 80.1 86.1 849 855 735 73.7 73.6
+SA-LSTM Syntax Encoder +E Y 91.1 899 90.5 809 79.5 80.2 85.3 85.0 852 729 735 732
+Tree-LSTM Syntax Encoder +E Y 898 90.6 90.2 80.0 79.8 79.9 853 853 853 739 73.1 735
Graph-based (2019a) +E N 896 912 904 81.7 814 815 85.6 850 853 73.0 740 735
+K-order Hard Pruning +E Y 903 89.7 90.0 80.7 819 813 84.6 858 852 73.7 733 735
+SynRule Soft Pruning +E Y 89.8 90.6 90.2 80.8 82.4 81.6 85.0 86.0 855 72.8 744 73.6
+GCN Syntax Encoder +E Y 905 91.7 91.1 833 809 821 862 86.0 86.1 73.8 74.6 74.2
+SA-LSTM Syntax Encoder +E Y 91.0 904 90.7 824 81.6 82.0 86.3 855 859 754 728 74.1
+Tree-LSTM Syntax Encoder +E Y 907 903 90.5 80.2 834 81.8 869 843 856 74.1 73.7 739

552

Lietal Syntax Role for Neural Semantic Role Labeling

which had 94.77% and 95.47% accuracy on development and test sets, respectively. As
for the w/o pred setting, the F; score of our predicate labeling model is 90.11% and
90.53% on development and test (WS]J) sets, respectively. With the help of the ELMo pre-
trained language model, our sequence-based baseline model has achieved competitive
results when compared to the other leading SRL models. Compared to the closest
work (Marcheggiani, Frolov, and Titov 2017), ELMo brought a 1.0% improvement for
our baseline model, which verifies it is a strong baseline. In this case, the syntax en-
hancement gave us a performance improvement of 0.8%-1.1% (w/ pred, in-domain test
set), demonstrating that both hard /soft pruning and syntax encoders effectively exploit
syntax for sequence-based neural SRL models.

In the tree-based approaches, the predicate disambiguation subtask is unifiedly
tackled with argument labeling by making predictions on the ROOT node of the fac-
torized tree. The disambiguation precision is 95.0% in the w/ pred setting, whereas in
the w/o pred setting, we first attach all the words in the sentence to the ROOT node
and label the word that is not a predicate with the null role label. It should be noted
that in the w/o pred setting, we just attach the predicates to the ROOT node, since
we do not need to distinguish the predicate from other words. The training scheme
remains the same as in the w/o pred setting, whereas in the inference phase, an additional
procedure is performed to find out all the predicates of a given sentence. The F; score
on predicate identification and labeling of this process is 89.43%. Based on the tree-
based baseline, the hard pruning syntax enhancement fails to improve on the baseline
despite the hard pruning method’s ability to alleviate the imbalanced label distribution
caused by the null role labels. We suspect the possible reason is the use of a biaffine
attention structure, which already alleviates imbalanced label distribution issue. This
is problematic because both the biaffine attention and hard pruning work to balance
the label distribution, and after the biaffine attention balances it to some degree, hard
pruning is much more likely to incorrectly prune true labels, which potentially even
leads to a decrease in performance. Compared with hard pruning, soft pruning can
greatly reduce the incorrect pruning of true arguments, which serve as clues in the
model. Because of this, the soft pruning algorithm applied to the tree-based model can
obtain performance improvement similar to that of the tree-based baseline. In addition,
the performance improvements of syntax encoders in the tree-based model are similar
to those of the sequence-based model.

In the graph-based approaches, because of the introduction of candidate pruning,
argument pruning is directly controlled by the neural network scorer, and both syntax-
based hard and soft pruning methods lose the effects they provided in the sequence-
based and tree-based models. The syntax encoder, however, can provide quite stable
performance improvement as it does in sequence-based and tree-based models.

Though most SRL literature is dedicated to impressive performance gains on the
English benchmark, exploring syntax’s enhancing effects on diverse languages is also
important for examining the role of syntax in SRL. Table 3 presents all in-domain test
results on seven languages of CONLL-2009 data sets. Compared with previous methods,
our baseline yields strong performance on all data sets. Nevertheless, applying the
syntax information to the strong syntax-agnostic baseline can still boost the model
performance in general, which demonstrates the effectiveness of syntax information.
On the other hand, the similar performance impact of hard/soft argument pruning on
the baseline models indicates that syntax is generally beneficial to multiple languages
and can enhance multilingual SRL performance with effective syntactic integration.

Based on the above results and analysis, we conclude that the syntax-based pruning
algorithms proposed before the era of neural network can still play a role under certain

553

Computational Linguistics Volume 47, Number 3

Table 3

Dependency SRL results on the CoNLL-2009 multilingual in-domain test sets with pre-identified
predicates (w/ pred) setting. The first row is the best result of the CoNLL-2009 shared task (Haji¢
et al. 2009). The “PLM” column indicates whether and which pre-trained language model is
used, the “SYN” column indicates whether syntax information is employed, “+E” in the “PLM”
column indicates the model leverages pre-trained ELMo features for all languages, and “+ET in
the “PLM” column indicates ELMo is only used for English.

System PLM SYN CA CS DE EN ES JA ZH Avg

CoNLL-2009 best Y 803 865 79.7 862 805 783 786 814
(Zhao et al. 2009a) Y 803 82 760 854 805 782 777 805
(Roth and Lapata 2016) Y — - 801 877 802 - 794 —
(Marcheggiani and Titov 2017) Y — - - 880 — - 825 -
(Marcheggiani, Frolov, and Titov 2017) N - 80 — 877 803 - 812 —
(Mulcaire, Swayamdipta, and Smith 2018) N 795 851 700 872 773 760 819 79.6
(Kasai et al. 2019) +E Y — — — 902 83.0 — —
(Cai and Lapata 2019a) N — — 833 90.7 821 — 846 -
[Semi.] (Cai and Lapata 2019a) N - — 838 912 829 — 850 -
(Zhang, Wang, and Si 2019) Y — — - 877 - — 842 —
(Lyu, Cohen, and Titov 2019) +Ef N 809 876 759 91.0 805 825 833 83.1
(Chen, Lyu, and Titov 2019) +Ef N 817 881 764 911 813 813 817 83.1
Sequence-based (2018b; 2018) +E N 840 878 768 887 829 828 831 837
+K-order Hard Pruning (2018b) +E Y 845 883 773 895 833 829 828 841
+SynRule Soft Pruning +E Y 844 882 775 895 832 830 833 842
+GCN Syntax Encoder (2018) +E Y 846 885 772 89.8 83.6 83.2 83.8 844
+SA-LSTM Syntax Encoder (2018) +E Y 843 885 770 89.7 835 831 835 842
+Tree-LSTM Syntax Encoder (2018) +E Y 841 883 769 894 832 829 834 84.0
Tree-based (2018) +E N 841 884 784 899 835 83.0 84.0 845
+K-order Hard Pruning +E Y 842 885 784 899 834 828 842 845
+SynRule Soft Pruning (2019) +E Y 844 888 785 90.0 837 83.1 84.6 847
+GCN Syntax Encoder +E Y 848 893 781 90.2 84.0 833 850 85.0
+SA-LSTM Syntax Encoder +E Y 846 890 788 90.0 837 831 848 849
+Tree-LSTM Syntax Encoder +E Y 844 889 78.6 899 83.6 83.0 845 847
Graph-based (2019a) +E N 850 902 76.0 90.0 838 827 857 848
+K-order Hard Pruning +E Y 849 902 757 89.8 835 828 858 847
+SynRule Soft Pruning +E Y 852 903 762 90.1 84.0 829 858 849
+GCN Syntax Encoder +E Y 855 90.5 76.6 90.4 843 832 86.1 852
+SA-LSTM Syntax Encoder +E Y 852 905 764 903 84.1 832 86.0 851
+Tree-LSTM Syntax Encoder +E Y 850 903 762 903 84.0 830 858 849

conditions in the neural network era; however, when there are neural structures whose
motivation is consistent with the original intention of these syntax-based pruning
algorithms, the effects of these algorithms are quite limited, and they can even have
negative effects. Despite this limitation, the neural syntax encoder is beneficial in that
it delegates the decisions of how to include syntax and what kind of syntax to use
in neural networks, which reduces the number of manually defined features. This is
an important result of the transition from the pre-neural network era to the neural
network era. Handcrafted features may be advantageous when compared to poorly
designed neural networks, but well-designed neural networks can easily outperform
models relying on handcrafted features. In addition, neural models can also benefit from
handcrafted features, so the two do not necessarily have to be directly compared, even
though neural networks reduce the need for handcrafted features.

5.4 Span SRL Results

Apart from the dependency SRL experiments, we also conducted experiments to com-
pare different syntax utilization on span SRL models. Table 4 shows results on the

554

Lietal Syntax Role for Neural Semantic Role Labeling

Table 4

Span SRL results with pre-identified predicates on the CONLL-2005 and CoNLL-2012 test sets.
The “PLM” column indicates whether and which pre-trained language model is used, the
“SYN” column indicates whether syntax information is employed, and “+E” in the “PLM”
column shows that the model leverages the ELMo for pre-trained language model features.
[Ens.] is used to specify the ensemble system and [Joint] means joint learning with other tasks.

CoNLL05WS] CoNLLO05 Brown CoNLL12
P R Fy P R Fy P R Fq

System PLM SYN

[Ens.] (Punyakanok, Roth, and Yih 2008) Y 823 768 794 734 629 678 — — —
(Toutanova, Haghighi, and Manning 2008) Y — - 797 - - 678 — — —
[Ens.] (Toutanova, Haghighi, and Manning 2008) Y 819 788 803 — - 688 — — —
(Pradhan et al. 2013)* Y - - - - - — 785 766 775
(Téckstrom, Ganchev, and Das 2015) Y 823 776 799 743 686 713 80.6 782 794
(Zhou and Xu 2015) N 829 88 828 707 682 694 — — 813
(FitzGerald et al. 2015) Y 818 773 794 738 688 712 809 784 796
[Ens.] (FitzGerald et al. 2015) Y 825 782 803 745 700 722 812 79.0 80.1
(He et al. 2017) Y 831 830 8.1 729 714 721 817 8l6 817
[Ens.] (He et al. 2017) Y 850 843 846 749 724 736 835 833 834
(Yang and Mitchell 2017) N — - 819 — - 720 - — —
(Tan et al. 2018) N 845 852 848 735 746 741 819 836 827
[EnsJ(Tanetal 2018) _ _ _ _ _ _ _ _ _ _ _ _ _ N_ 859 863 861 746 750_748 833 845 839
N - - - - - - — — sgl4
(Petersetal.2018) ~ _ _ __ ___#E _N__ - _ - = - = _ - _— _-—_ 86
N — — 89 — — 737 — — 81
(Heetal 2018~ _#E N__— - &4 - _— 804 — —_ 85
N 847 842 845 739 724 731 — — —
Otrubelletal 2018 - Y_ 846 86 846 748 743 746 - - _—
— N 847 823 835 760 704 731 844 817 830
(Quehi, Shindo, and Matsumoto2018) 4B _ N_ 882 870 876_799 775_787 87.1_853 862
+E N — — 87 — — 781 — — 858
(Wangetal 2019~ _#E _Y_ _— - 82 - - 793 — _—_ 84
(Marcheggianiand Titov2020) _ _ _ _ _ _ _ _ _ _ _ Y_ 858 851 854 762 747 755 845 843 844
.) N 89 8.8 88 769 746 757 — — —
Joint] (Zhou, Li, and Zhao 2020) +E N 878 883 880 796 786 791 — — —
Sequence-based +E N 874 856 865 800 781 790 842 856 849
+GCN Syntax Encoder +E Y 872 868 870 786 802 794 853 857 855
+SA-LSTM Syntax Encoder +E Y 871 865 868 793 789 791 859 843 851
+Tree-LSTM Syntax Encoder +E Y 87.1 859 865 788 792 79.0 852 842 847
Tree-based +E N 888 860 874 799 795 797 866 848 85.7
+GCN Syntax Encoder +E Y 877 883 880 811 799 805 869 855 86.2
+SA-LSTM Syntax Encoder +E Y 875 876 876 804 798 801 863 853 858
+Tree-LSTM Syntax Encoder +E Y 870 876 873 810 791 80.0 860 856 858
Graph-based (2019a) +E N 879 875 877 806 804 805 857 863 860
+Constituent Soft Pruning +E Y 84 874 879 809 803 806 855 869 862
+GCN Syntax Encoder +E Y 890 882 886 808 812 810 872 862 86.7
+SA-LSTM Syntax Encoder +E Y 886 878 882 810 812 811 87.0 858 864
+Tree-LSTM Syntax Encoder +E Y 89 891 880 815 803 809 866 860 863

CoNLL-2005 in-domain (WSJ) and out-of-domain (Brown) test sets, as well as the
CoNLL-2012 test set (OntoNotes). The first block of the table presents results from
previous work. These results demonstrate that with the development of neural net-
works, in particular the emergence of pre-trained language models, SRL achieved a
large performance increase of more than 8.0%, and syntax further enhanced the effect
of these strong baselines, enabling syntax+pre-trained language models to achieve the
state-of-the-art results (Wang et al. 2019). This indicates that the effect of SRL can still be
improved as long as the syntax is used properly under current circumstances.
Additionally, comparing the results of Strubell et al. (2018) and He et al. (2018a), it
can be found that the feature extraction ability of self-attention is stronger than that
of RNN, and the self-attention baseline obviously outperforms the RNN-based one,
but when syntactic information or a pre-trained language model is used to enhance
performance, the performance margin becomes smaller. Therefore, we can speculate

555

Computational Linguistics Volume 47, Number 3

that self-attention implicitly and partially functions as the syntax information, as do
pre-trained language models.

By comparing our full model to state-of-the-art SRL systems, we show that our
model genuinely benefits from incorporating syntactic information and other modeling
factorization. Although our use of constituent syntax requires the composition and de-
composition processes, which contrasts the simple and intuitive dependency syntax, we
achieved consistent improvements compared to dependency SRL on all three baselines:
sequence-based, tree-based, and graph-based. This shows that these syntax encoders
are general for syntax choice and can encode syntax effectively.

Constituent syntax information is usually used in span SRL, while the dependency
tree is adopted for the argument pruning algorithm. Additionally, in the sequence-based
and tree-based factorizations of span SRL, argument spans are linearized with multiple
B-, I, and O- tags, which alleviates some label imbalance problems and hence lessens
the need for argument pruning. Constituent syntax mainly provides the boundary
information of span for the model to guide the model to predict the correct argument
span when it is used for pruning. In graph-based models, because the argument span
exists alone, the boundary set obtained by the constituent tree can be used to prune
candidate arguments. As shown in the results, constituent-based soft pruning can still
improve performance on the graph-based baseline, but the improvement is smaller than
that of syntax encoders, indicating that the syntax encoder can extract more information
than just span boundaries.

We report the experimental results on the CoNLL-2005 and -2012 data sets without
pre-identified predicates in Table 5. Overall, our syntax-enhanced model using ELMo

Table 5

Span SRL results without pre-identified predicates on the CoNLL-2005 and CoNLL-2012 data
sets. The “PLM” column indicates whether and which pre-trained language model is used, the
“SYN” column indicates whether syntax information is employed, and “+E” in the “PLM”
column shows that the model leverages the ELMo for pre-trained language model features.
[Ens.] is used to specify the ensemble system and [Joint] means joint learning with other tasks.

CoNLL05WS] CoNLLO05 Brown CoNLL12

P R Fb P R FK P R F

802 823 812 676 696 685 786 751 768
82.0 834 827 69.7 705 701 802 76.6 784

System PLM SYN

(He et al. 2017)
[Ens.] (He et al. 2017)
(He et al. 2018a) +E

zzZ

+SA-LSTM Syntax Encoder +E
+Tree-LSTM Syntax Encoder +E

. . N 837 85 846 720 731 726 — - -
[Joint] (Zhou, Li,and Zhao 2020) g N 853 877 865 761 783 772 — — —
Sequence-based E N 844 836 840 765 739 752 817 829 823

+GCN Syntax Encoder +E Y 855 843 849 788 734 760 831 825 82.8

+SA-LSTM Syntax Encoder ~ +E Y 850 842 846 749 767 758 83.1 819 825

+Tree-LSTM Syntax Encoder +E Y 847 841 844 762 752 757 827 819 823
Tree-based E N 854 836 845 761 751 756 833 819 826

+GCN Syntax Encoder +E Y 845 859 852 767 759 763 829 833 831

+SA-LSTM Syntax Encoder ~ +E Y 850 850 850 772 750 761 835 827 83.1

+Tree-LSTM Syntax Encoder +E Y 857 841 849 755 759 757 830 824 827
Graph-based (2019a) E N 852 875 863 747 781 764 849 814 83.1

+Constituent Soft Pruning +E Y 871 87 864 770 762 766 834 832 833

+GCN Syntax Encoder +E Y 869 865 867 775 763 769 844 83.0 837

Y)
Y .

556

Lietal Syntax Role for Neural Semantic Role Labeling

achieved the best F; scores on the CoNLL-2005 in-domain and CoNLL-2012 test sets.
In comparison with the three baselines, our syntax utilization approaches consistently
yielded better F; scores regardless of the factorization. Although the performance dif-
ference is small when using the constituent soft pruning on the graph-based model,
the improvement seems natural because the constituent syntax for SRL has more to be
explored than just boundary information.

5.5 Dependency vs. Span

Itis very hard to say which style of semantic formal representation, dependency or span,
would be more convenient for machine learning as they adopt incomparable evaluation
metrics. Recent research (Peng et al. 2018) has proposed to learn semantic parsers from
multiple data sets in FrameNet style semantics, while our goal is to compare the quality
of different models in span and dependency SRL for Propbank style semantics. Follow-
ing Johansson and Nugues (2008a), we choose to directly compare their performance
in terms of dependency-style metric through transformation. Using the head-finding
algorithm in Johansson and Nugues (2008a) which used gold-standard syntax, we may
determine a set of head nodes for each span. This process will output an upper bound
performance measure about the span conversion due to the use of gold syntax.

Based on our syntax-agnostic graph-based baseline, we do not train new models for
the conversion and the resultant comparison. Instead, we use the span-style CoNLL-
2005 test set and the dependency-style CoNLL-2009 test set (WS] and Brown), con-
sidering these two test sets share the same text content. As the former only contains
verbal predicate-argument structures, for the latter, we discard all nominal predicate-
argument related results and predicate disambiguation results during performance
statistics. CoNLL-2005 and CoNLL-2009 have inconsistent tokenization standards, but
there exists a straightforward conversion that does not skew results. Because CoNLL-
2009 tokenizes words into more fine-grained segments, in order to avoid the need
to modify the dependency tree annotations, we re-tokenize the data of CoNLL-2005
according to the tokenization standard adopted in CoNLL-2009. For the constituent tree
and span SRL annotations, this further tokenization will not affect the boundary of the
spans, so the constituent tree and span SRL annotations are not affected. The detailed
conversion process can be found in our paper (Li et al. 2019b).

Table 6 shows the comparison. On a more strict setting basis, the results from our
same model for span and dependency SRL verify the same conclusion of Johansson

Table 6

Comparing our performance Dependency SRL with Span-converted Dependency SRL and on
Span SRL with Dependency-converted Span SRL using the CoNLL-2005 and CoNLL-2009 test
sets, respectively.

Dep F; Span-converted F; A F;

WS J&N 85.93 84.32 1.61
Our system 90.41 89.20 1.21

WSJ+ J &N 84.29 83.45 0.84
Brown Our system 88.91 88.23 0.68
SpanF; Dep-converted F; A F;

WSJ o ¢ 87.70 87.23 0.47
WSJ+Brown =~ SYSEM g6 03 85.62 0.41

557

Computational Linguistics Volume 47, Number 3

and Nugues (2008a), namely, dependency form is more favorable in machine learning
for SRL, even compared to the conversion upper bound of the span form. While we
used golden dependency trees for the conversion from span SRL to dependency SRL,
some argument spans and constituent spans differ, meaning an argument span can
have multiple head words. This means the conversion is not fully accurate and thus
produces errors. To prevent these errors from impacting our evaluation, we also added
the conversion from dependency SRL to span SRL. From the comparison, we found
that although there are errors in both directions of conversion, the difference between
the result of dependency-converted SRL and the original span SRL system is less than
that of span-converted and the original dependency SRL system. With this observation,
we can roughly conclude that dependency is a more computationally friendly form
(Johansson and Nugues 2008b). This suggests that if we can only perform one type of
SRL training but need two types of SRL outputs, we can prioritize selecting the training
dependency SRL and then getting the span SRL based on the conversion to achieve the
best overall performance.

5.6 Syntax Role under Different Pre-trained Language Models

Language modeling, as an unsupervised natural language training technique, can pro-
duce a pre-trained language model by training generally on a large amount of text
before further training on a more specific one out of a variety of natural language
processing tasks. The downstream tasks then use the obtained pre-trained models
for further enhancement. After the introduction of pre-trained language models, they
quickly and greatly dominated the performance of downstream tasks. Typical language
models are ELMo (Peters et al. 2018), BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019),
XLNet (Yang et al. 2019), and ALBERT (Lan et al. 2020), and so on. Therefore, in order
to further explore the role of syntax in SRL on the strong basis of pre-trained language
models, we evaluated the performance of these typical pre-trained language models on
the best-performing combination of the graph-based baseline and GCN syntax encoder.
The experimental results are shown in Table 7.

From the results in the table, all systems using the pre-trained language model have
been greatly improved compared with the baseline models, especially in the out-of-
domain test set. This indicates that since the pre-trained language model is trained on a
very large scale corpus, the performance decrease caused by the domain inconsistency
between the training and the test data is reduced, and the generalization ability for the
SRL model is enhanced.

For the role of syntax, we found that the improvement from syntax enhancement in
the baseline is greater than the improvement that systems gained from using the pre-
trained language models. When the ability of pre-trained language models is strength-
ened, the performance growth brought by syntax gradually declines, and in some very
strong language models, syntax even brings no further improvements for SRL. We
suspect the reason is that the pre-trained language model can learn some syntactic
information implicitly through unsupervised language modeling training (Hewitt and
Manning 2019; Clark et al. 2019), thus superimposing explicit syntactic information will
not bring as much improvement as it will on the baseline model. We also found that
the implicit features for pre-trained language models do not fully maximize syntactic
information, as providing explicit syntactic information can still lead to improvements,
though this depends on the quality of syntactic information and the ability to extract
explicit syntactic information. When explicit syntax is accurate enough and the syntax
feature encoder is strong enough, the syntax information can further enhance the ac-

558

Lietal Syntax Role for Neural Semantic Role Labeling

Table 7

SRL results with different pre-trained language models on CoNLL-2005, CoNLL-2009, and
CoNLL-2012 test sets. The results listed in the table are evaluated while given pre-identified
predicates. The baseline is our proposed graph-based model because of its good performance.
The “SYN” column indicates whether syntax information is employed, and the GCN syntax
encoder is adopted for all models that are enhanced with syntax information. In this table, “A”
in brackets represents relative improvements using syntax information compared to the
syntax-agnostic model, while the “1” indicates an absolute improvement using a pre-trained
language model compared to the pure baseline model without any syntax information or
pre-trained language model enhancement.

System SYN CoNLL09 WS] CoNLL09 Brown CoNLL05WS] CoNLL05 Brown CoNLL12

Baseline N 87.8 79.2 845 74.8 835
aseliN€ y 892(A+14) 80.1(A+09) 85.6(A+1L1) 762(A +1.4) 847 (A+12)
ELM. N 904 (1 +26) 815(1 +23) 877(1 +32) 805(1 +57) 86.0(1 +2.5)
SO Y 911(A+07) 821(A+06) 886(A+09) 8LO(A +05) 867 (A +07)
BERT N~ 914(f1 +36) 828(1 +3.6) 89.0(1 +45) 823(1 +75) 87.4(f +3.9)
,,,,,, Y _ 918(A+04) _832(A+04) 896(A+0.6) 828 (L _+05) 879 (A +05)
RoBERTa N 9L4(1 43.6) ~ 831(7 +39) 893(1 +48) 827(1 +7.9) 87.9(1 +44)
COUEREY 917(A+03) 832(A+01) 897(A+04) 834(A +07) 88.0(A+01)
XLNet N 915(f +37) 841(1 +49) 89.8(1 +53) 852(1 +10.4) 882(f +4.7)
TETE Y 916(A+01) 842(A+01) 898(A+0.0) 854(A +02) 883(A+01)
ALBERT N 9L6(1 +38) 840(7 +48) 90.0(1 +55) 849(1 +10.1) 885(1 +5.0)
Y 916(A+0.0) 843(A+03) 90.1(A+0.1) 851(A +02) 88.7(A+02)

curacy of SRL; however, if these conditions are not satisfied, then syntax is no longer
the first option for promoting SRL performance in the neural network era. Besides, due
to the uncontrollability of the implicit features of the pre-trained models, syntax as an
auxiliary tool for SRL will exist for a long time, and neural SRL models can see even
higher accuracy gains by leveraging syntactic information rather than ignoring it until
neural networks’ black box is fully revealed.

5.7 Syntactic Contribution

Syntactic information plays an informative role in semantic role labeling; however, few
studies have been done to quantitatively evaluate the contribution of syntax to SRL.
In dependency SRL, we observe that most of the neural SRL systems compared above
used the syntactic parser of Bjorkelund et al. (2010) for syntactic inputs instead of the
one from the CoNLL-2009 shared task, which adopted a much weaker syntactic parser.
In particular, Marcheggiani and Titov (2017) adopted an external syntactic parser with
even higher parsing accuracy. Contrarily, our SRL model is based on the automatically
predicted parse with moderate performance provided by the CoNLL-2009 shared task,
but we still manage to outperform their models. In span SRL, He et al. (2017) injected
syntax as a decoding constraint without having to retrain the model and compared
the auto and gold syntax information for SRL. Strubell et al. (2018) presented a neural
network model in which syntax is incorporated by training one attention head to attend
to syntactic parents for each token and demonstrated that the SRL models benefit from
injecting state-of-the-art predicted parses. Because different types of syntax and syntac-
tic parsers are used in different works, the results are not directly comparable. Thus,
this motivates us to explore how much syntax contributes to dependency-based SRL in
the deep learning framework and how to effectively evaluate the relative performance
of syntax-based SRL. To this end, we conduct experiments for empirical analysis with
different syntactic inputs.

559

Computational Linguistics Volume 47, Number 3

Syntactic Input. In dependency SRL, four types of syntactic input are used to explore the
role of syntax:

1. The automatically predicted parse provided by CoNLL-2009 shared task.

2. The parsing results of the CONLL-2009 data by state-of-the-art syntactic
parser, the Biaffine Parser (Dozat and Manning 2017).

3. Corresponding results from another parser, the BIST Parser (Kiperwasser
and Goldberg 2016), which is also adopted by Marcheggiani and Titov
(2017).

4. The gold syntax available from the official data set.

Besides, to obtain flexible syntactic inputs for research, we design a faulty syntactic
tree generator (referred to as STG hereafter) that is able to produce random errors
in the output dependency tree like a real parser does. To simplify implementation,
we construct a new syntactic tree based on the gold standard parse tree. Given an
input error probability distribution estimated from a true parser output, our algorithm
presented in Algorithm 2 stochastically modifies the syntactic heads of nodes on the
premise of a valid tree. Notably, the “random error” in the STG parse tree is just a
simulation of the actual error of a real parser. It does not fully reflect the actual error
of the parsers but is used to roughly explore the effect of the relative accuracy of the
syntax on the SRL model. In span SRL, because the data set only provides a golden
constituent syntax, we compared the auto syntax from the Choe&Charniak Parser (Choe
and Charniak 2016), Kitaev&Klein Parser (Kitaev and Klein 2018), and the gold syntax
from the data set for SRL models.

Evaluation Measure. For the SRL task, the primary evaluation measure is the semantic
labeled F; score; however, this score is influenced by the quality of syntactic input to

Algorithm 2 Faulty syntactic tree generator.

Input: A gold standard syntactic tree GT, the specific error probability p
Output: The new generative syntactic tree NT

1: N denotes the number of nodes in GT

2: for eachnode n € GT do

3: r =random(0, 1), a random number
4 ifr <pthen
5: h = random(0, N), a random integer
6: find the syntactic head nj, of n in GT
7 modify nj, = h, and get a new tree NT
8 if NT is a valid tree then
9: break

10: else

11: goto step 5

12: end if

13: end if

14: end for

15: return the new generative tree NT

560

Lietal Syntax Role for Neural Semantic Role Labeling

Table 8

Dependency SRL results on the CoNLL 2009 English WSJ test set, in terms of labeled attachment
score for syntactic dependencies (LAS), semantic precision (P), semantic recall (R), semantic
labeled F; score (Sem-F;), and the ratio Sem-F; /LAS. A superscript “*” indicates LAS results
from our personal communication with the authors.

System PLM LAS P R Sem-F; Sem-F;/LAS
(Zhao et al. 2009b) 86.0 - - 85.4 99.30
(Zhao et al. 2009a) 89.2 — - 86.2 96.64
(Bjorkelund et al. 2010) 89.8 871 845 858 95.55
(Lei et al. 2015) 90.4 - - 86.6 95.80
(FitzGerald et al. 2015) 90.4 - - 86.7 95.90
(Roth and Lapata 2016) 89.8 88.1 853 867 96.5
(Marcheggiani and Titov 2017) 90.34* 89.1 86.8 88.0 97.41
Sequence-based + K-order CoNLLO09 predicted | +E 86.0 89.7 893 895 104.07
hard pruning STG Auto syntax +E 90.0 90.5 893 899 99.89
Gold syntax +E 100.0 91.0 897 90.3 90.30
CoNLL09 predicted | +E 86.0 90.5 885 895 104.07
Sequence-based + Syntax Biaffine Parser +E 90.22 903 893 89.8 99.53
GCN encoder BIST Parser +E 90.05 903 89.1 89.7 99.61
Gold syntax +E 100.0 91.0 900 905 90.50

some extent, leading to an unfaithful reflection of the competence of a syntax-based
SRL system. Namely, this is not the outcome of a true and fair quantitative comparison
for these types of SRL models. To normalize the semantic score relative to syntactic
parse, we take into account an additional evaluation measure to estimate the actual
overall performance of SRL. Here, we use the ratio between labeled F; score for semantic
dependencies (Sem-F;) and the LAS for syntactic dependencies proposed by Surdeanu
et al. (2008) as the evaluation metric in dependency SRL.” The benefits of this measure
are two-fold: It quantitatively evaluates syntactic contribution to SRL and impartially
estimates the true performance of SRL, independent of the performance of the input
syntactic parser. In addition, we further extended this evaluation metric for span SRL
and used the ratio of Sem-F; and constituent syntax F; score (Syn-F;) to measure
the pure contribution of the proposed SRL model to clearly show the source of SRL
performance improvement from the model’s contribution rather than the improvement
due to syntax accuracy. It is worth noting that the ratio of Sem-F1/LAS or Sem-F1/Syn-
F1 can only be used as a rough estimate under regular circumstances; that is, it can be
used in SRL systems that use sufficiently accurate syntax parses, but if the system uses
low-quality syntactic trees with extremely low LAS or Syn-F1, there will be a numerical
explosion that renders the value meaningless.

Table 8 reports the dependency SRL performance of existing models® in terms of
Sem-F; /LAS ratio on the CoNLL-2009 English test set. Interestingly, even though our
system has significantly lower scores than others by 3.8% LAS in syntactic components,
we obtain the highest results on both Sem-F; and Sem-F;/LAS ratio. These results
show that our SRL component is relatively much stronger. Moreover, the ratio com-
parison in Table 8 also shows that since the CoNLL-2009 shared task, most SRL works
actually benefit from the enhanced syntactic component rather than the improved SRL

7 The idea of the ratio score in Surdeanu et al. (2008) actually was from an author of this paper, Hai Zhao;
this was indicated in the acknowledgment part of Surdeanu et al. (2008).
8 Note that several SRL systems that do not provide syntactic information are not listed in the table.

561

Computational Linguistics Volume 47, Number 3

component itself. No post-CoNLL SRL systems, neither traditional nor neural types,
exceeded the top systems of the CoNLL-2009 shared task (Zhao et al. 2009b [SRL-only
track using the provided predicted syntax] and Zhao et al. 2009a [Joint track using self-
developed parser]). We believe that this work, for the first time, reports both a higher
Sem-F; and a higher Sem-F;/LAS ratio since the CoNLL-2009 shared task. We also
presented the comprehensive results of our sequence-based SRL model with a syntax
encoder instead of pruning on the aforementioned syntactic inputs of different quality
and compare these with previous SRL models. A number of observations can be made
from these results. First, the model with the GCN syntax encoder gives quite stable SRL
performance no matter the syntactic input quality, which varies in a broad range, and
it obtains overall higher scores compared to the previous states-of-the-art. Second, it is
interesting to note that the Sem-F; /LAS score of our model becomes relatively smaller
as the syntactic input becomes better. Not surprisingly though, these results show that
our SRL component is relatively even stronger. Third, when we adopt a syntactic parser
with higher parsing accuracy, our SRL system achieves a better performance. Notably,
our model yields a Sem-F; of 90.53% taking gold syntax as input. This suggests that
high-quality syntactic parse may indeed enhance SRL, which is consistent with the
conclusion in He et al. (2017).

We further evaluated the syntactic contribution in span SRL, as shown in Table 9.
For Wang et al. (2019) and our results, when syntax and pre-trained language model
were kept the same, our model obtained better Sem-F;, which is also reflected in the
Sem-F; /Syn-Fj ratio, indicating that our model has stronger syntactic utilization ability.
In addition, by comparing the results of whether a pre-trained language model is used,
it can be found that those using the pre-trained language model have a higher ratio
of Sem-F; /Syn-F;, which shows that the features offered by the pre-trained language
model potentially increase the syntactic information, resulting in a higher ratio of syntax
contribution.

Additionally, to show how SRL performance varies with syntax accuracy, we also
test our sequence-based dependency SRL model with k-order hard pruning in first
and tenth orders using different erroneous syntactic inputs generated from STG and
evaluate their performance using the Sem-F; /LAS ratio. Figure 12 shows Sem-F; scores
at different qualities of syntactic parse inputs on the English test set, whose LAS varies
from 85% to 100%, compared to previous states-of-the-art (Marcheggiani and Titov
2017). Our tenth-order pruning model gives quite stable SRL performance no matter

Table 9

Span SRL results on the CoNLL 2005 English WS] test set, in terms of constituent syntax F; score
(Syn-F;), semantic precision (P), semantic recall (R), semantic labeled F; score (Sem-F;), and the
ratio Sem-F; /Syn-F.

System PLM Syn-F; P R Sem-F; Sem-F;/Syn-F;

Choe&Charniak Parser 93.8 - - 84.8 90.41

Weetal 2019 | __ Goldsyntax | 000~ - 870 8700
Kitaev&Klein Parser +E 95.4 - - 88.2 92.45

Wangetal 209 |~ Goldsyntax _ | +E 1000 - - 922 __ 9220
(Marcheggiani and Titov 2020) | Kitaev&Klein Parser 954 858 851 854 89.52
Choe&Charniak Parser 93.8 864 848 85.6 91.26
Sequence-based + Syntax Choe&Charniak Parser | +E 93.8 87.2 86.8 87.0 92.75
GCN encoder Kitaev&Klein Parser +E 954 883 89.1 885 92.77
Gold syntax +E 100.0 932 924 926 92.60

562

Lietal Syntax Role for Neural Semantic Role Labeling

92
—e— Ist-order SRL

10th-order SRL
GCNs
901

Sem-F1 (%)
oo
oo

867

84— ; ; :
85 0 pasey 9 100

Figure 12
The Sem-F; scores of our models with different quality of syntactic inputs vs. original GCNs
(Marcheggiani and Titov 2017) on CoNLL-2009 WS] test set.

the syntactic input quality, which varies in a broad range, while our first-order pruning
model yields overall lower results (1-5% F; drop), owing to missing too many true
arguments. These results show that high-quality syntactic parses may indeed enhance
dependency SRL. Furthermore, they indicate that our model with syntactic input as ac-
curate as Marcheggiani and Titov (2017), namely, 90% LAS, will give a Sem-F; exceeding
90%.

5.8 Improvement Source for Syntactic Pruning

In this paper, we explore two benefits of using syntax information in SRL. The first is the
proximal distribution of arguments in relation to predicates in dependency trees, which
allows us to prune unlikely argument candidates. We hypothesize that the pruning pro-
cess is so effective because of the imbalanced distribution of semantic role labels, which
is compounded by the fact that non-arguments are usually used as special arguments in
modeling. Pruning primarily eliminates obvious non-arguments and hence reduces this
label imbalance to a certain degree. To verify this hypothesis, we compare the F; scores
for argument labeling using our tree-based models with and without the SynRule Soft

Table 10

The frequency and P / R / F; scores for typical argument role labels on the CoNLL-2009 English
test set. Baseline refers to the tree-based model, and +Pruning refers to the SynRule Soft Pruning
method. Due to the width constraint, we omit the Precision (P) and Recall (R) scores of the
nominal pred.

verbal pred nominal pred
Role FREQ Baseline +Pruning FREQ Baseline +Pruning
A0 15% 93.1/91.9/925 932/923/927 10% 83.3 83.6
Al 21% 93.9/931/935 936/934/935 16% 87.2 87.4
A2 5% 84.3/81.8/83.0 85.1/831/84.1 7% 81.0 82.8
AM-* 16% 822 /802 /812 824/80.6/815 5% 75.4 76.3

563

Computational Linguistics Volume 47, Number 3

Table 11
The accuracy on mirror arcs in the dependency trees and semantic dependency graphs predicted
using the CoNLL-2009 English test set.

Sequence-based Tree-based Graph-based

Baseline 88.4% 88.7% 89.0%
+Syntax GCN encoder 89.7% 89.9% 89.5%

Pruning. We chose the typical argument labels: A0, A1, A2, and AM-* (such as AM-TMP,
AM-LOC) to count their respective frequencies and F; according to nominal and verbal
predicates.

The quantitative results are shown in Table 10. From the label frequency, we found
that the distribution of role labels was uneven. Due to the introduction of the pruning
approach, the gain on the low-frequency label is higher than that on high-frequency
ones, which suggests that the pruning method reduced the imbalance in the distribution
of role labels, which is consistent with our hypothesis.

5.9 Improvement Source of Syntactic Feature

For the second motivation in improving SRL in this paper, we assume that because
there are mirrored arcs’ in the dependency tree and the semantic dependency graph,
the use of syntax would increase the accuracy of role labeling compared to that of the
baseline model. In order to verify this hypothesis, on the CoONLL-2009 English test set,
we computed additional statistics on the predictions of three baselines and these models
with the GCN Syntax encoder. In these statistics, we compute the ratio of the number
of correctly predicted mirrored arcs to the total number of mirror arcs and exclude arc
direction to focus solely on how syntax aids in the predictions on mirror arcs.

The statistical results are presented in Table 11. Comparing the correct ratio of the
mirror arcs in the prediction between the baseline and the baseline with an added
syntactic encoder, we found that the syntactic information consistently improved these
mirrored semantic dependency arcs on the three baselines, which fits our hypothesis.
Because these mirrored structures are greatly enhanced in a number of syntactic en-
hancement models, we can conclude that the GCN encoder effectively encodes syntactic
information, and that this encoded syntactic feature is useful for improving the mirrored
semantic structures. It is also worth noting that our exploration of the source of the
improvement of syntax for SRL does not mean that the syntax has only this effect.
Actually, there may be many other factors, which deserve more exploration in the
future.

5.10 Effects of Better Syntax on SRL when using Pre-trained Language Models

The results shown in the previous experiments show that with the addition of strong
pre-trained language models, the use of syntax information loses its dominance; how-
ever, there are two factors that affect the final performance enhancement of syntax on
SRL: one is the quality of the syntax parse, and the other is the method of integration.
The previous experiments mainly discussed effective integration and corresponding

9 When a dependency edge i—j exists in both the syntactic tree and the semantic graph, the semantic
dependency arc i—j is referred to as a mirror arc.

564

Lietal Syntax Role for Neural Semantic Role Labeling

Table 12

The effect of different quality syntactic parse trees on the graph-based SRL model with the
enhancement of pre-trained language models. The results are evaluated on the CoNLL-2009
English test set. Notably, the Biaffine Parser was trained by us. Due to the difference in
implementation, the parsing performance listed is lower than that of Dozat and Manning (2017).

w/ ELMo w/ BERT
Parser
LAS P R Sem-F; P R Sem-F;
N/A — 89.6 91.2 90.4 92.2 90.7 91.4
CoNLLO09 predicted 86.00 91.0 89.5 90.2 91.8 91.0 91.5
Biaffine Parser 90.22 90.5 91.7 91.1 92.1 91.6 91.8
HPSG Parser 94.34 91.7 914 91.5 92.1 91.9 92.0

effects but did not pay enough attention to the quality of the syntax. Therefore, in this
section, we study how varying the quality of syntactic inputs impacts SRL systems with
pre-trained language models. In addition, we use the HPSG Parser, which was trained
on the golden syntactic annotations of CONLL-2009, to provide better quality real parse
trees in this experiment. The HPSG parser is a state-of-the-art parser proposed by Zhou
and Zhao (2019) and was based on a head-driven phrase structure grammar (HPSG)
and the XLNet pre-trained language model. For this experiment, the base model is the
graph-based model with the syntax GCN encoder, and the evaluation results are listed
in Table 12.

The results show that on one hand, the pre-trained language model greatly im-
proves the performance of SRL, but on the other hand, even with the pre-trained
language model, a stronger syntactic parser can still bring performance gains. Using
poor quality syntax, however, is unlikely to improve performance and can even have a
negative impact on a strong enough SRL baseline.

5.11 Role of Other Syntactic Information

In addition to the syntax tree, part-of-speech tags and lemmas are also viewed as a kind
of syntactic knowledge, and they can affect SRL. Since these are typically only used as
additional features to enhance representation (which is not the main focus of this work),
we conduct a simple experimental exploration on the role of POS tags and lemmas
in this section. We picked the sequence-based model'® with a syntax GCN encoder,
conducted experiments on the CoNLL-2009 English data set, and used two pre-trained
language models, ELMo and BERT, to investigate their roles under different conditions.

The experimental results are shown in Table 13. From the comparison of the ex-
perimental results, we found that with the help of ELMo, both POS tags and lemmas
show enhancement effects. POS tags had a greater improvement, which may be because
lemmatization produces a more shallow syntactic information. When switching the
pre-trained language model from ELMo to the stronger BERT, we found that lemmas
almost provide no additional improvement, and the usefulness of POS tags is also
very limited. This shows that stronger pre-trained language models may cover shallow
syntactic information, and stacking such information will therefore not have additional
enhancement effects.

10 The reason for choosing the sequence-based model instead of the graph-based model as in the previous
experiment is that POS and Lemma have less obvious influence on graph-based models.

565

Computational Linguistics Volume 47, Number 3

Table 13

Performance comparison of POS tag and lemma on the CoNLL-2009 English test set. Full Model
refers to the sequence-based model with syntax GCN encoder, which leverages POS tag, lemma,
syntax tree.

w/ ELMo w/ BERT

P R Sem-F; P R Sem-F;
Full Model 90.3 89.3 89.8 91.1 89.5 90.3

-POS 89.8 89.2 89.5 91.0 894 90.2
-Lemma 90.1 89.1 89.6 911 89.5 90.3

System

6. Related Work

The origins of semantic role labeling can date back several decades to when Fillmore
(1968) first theorized the existence of deep semantic relations between the predicate
and other sentential constituents. Over several years, various linguistic formalisms
and their related predicate-argument structure inventories have extended Fillmore’s
seminal intuition (Dowty 1991; Levin 1993). Gildea and Jurafsky (2000) pioneered the
task of semantic role labeling as a shallow semantic parsing. In dependency SRL, most
traditional SRL models rely heavily on feature templates (Pradhan et al. 2005; Zhao,
Chen, and Kit 2009; Bjorkelund, Hafdell, and Nugues 2009). Among them, Pradhan
et al. (2005) combined features derived from different syntactic parses based on SVM
classifier, while Zhao, Chen, and Kit (2009) and Zhao, Zhang, and Kit (2013) presented
an integrative approach for dependency SRL via a greedy feature selection algorithm.
Later, Collobert et al. (2011) proposed a convolutional neural network model that
induced word embeddings rather than relied on handcrafted features, which was a
breakthrough for the SRL task.

Foland and Martin (2015) presented a dependency semantic role labeler using con-
volutional and time-domain neural networks, while FitzGerald et al. (2015) exploited
neural networks to jointly embed arguments and semantic roles, akin to the work
(Lei et al. 2015) that induced a compact feature representation by applying a tensor-
based approach. Recently, researchers have considered multiple ways to effectively
integrate syntax into SRL learning. Roth and Lapata (2016) introduced dependency path
embedding to model syntactic information and exhibited notable success. Marcheggiani
and Titov (2017) leveraged the graph convolutional network to incorporate syntax into
neural models. Differently, Marcheggiani, Frolov, and Titov (2017) proposed a syntax-
agnostic for dependency SRL that used effective word representation, which for the first
time achieved performance comparable to state-of-the-art syntax-aware SRL models.

Most neural SRL works, however, often pay less attention to the impact of input syn-
tactic quality on SRL performance since they usually only use a fixed syntactic quality
input. This work is thus more than proposing a high performance SRL model through
reviewing the highlights of previous models; it also presents an effective syntax tree-
based method for argument pruning. Our work is also closely related to Punyakanok,
Roth, and Yih (2008). Under traditional methods, Punyakanok, Roth, and Yih (2008)
investigated the significance of syntax to SRL systems and showed syntactic informa-
tion was most crucial in the pruning stage. There are two important differences between
Punyakanok, Roth, and Yih (2008) and our work. First, in our paper, we summarize the
current dependency and span SRL and consider them under multiple baseline models

566

Lietal Syntax Role for Neural Semantic Role Labeling

and syntax integration approaches to reduce deviations resulting from the model struc-
ture and syntax integration approach. Second, the development of pre-trained language
models has dramatically changed the basis of SRL models, which motivated us to revisit
the role of syntax based on new situations.

As researchers have constantly explored new approaches to further improve SRL,
the exploitation of syntactic features has emerged as a natural option. Kasai et al. (2019)
extracted the supertags from dependency parses as an additional feature to enhance
the SRL model. Cai and Lapata (2019b) presented a system that jointly trained with
two syntactic auxiliary tasks: predicting the dependency label of a word and predicting
there exists an arc linking said word to the predicate. They also suggested that syntax
could help SRL because a significant portion of the predicate-argument relations in the
semantic dependency graph mirror the arcs that appear in the syntactic dependency
graph, and there is often a deterministic mapping between syntactic and semantic
roles. Compared with our research, these works only focus on using syntax with a
specific model to improve SRL, whereas instead we performed more systematic and
comprehensive research.

In the other span SRL research lines, Moschitti, Pighin, and Basili (2008) applied tree
kernels as encoders to extract constituency tree features for SRL, while Naradowsky,
Riedel, and Smith (2012) used graphical models to model the tree structures. Socher
et al. (2013) and Tai, Socher, and Manning (2015) proposed recursive neural networks
for incorporating syntax information in SRL that recursively encoded constituency trees
to constituent representations. He et al. (2017) presented an extensive error analysis
with deep learning models for span SRL and included a discussion of how constituent
syntactic parsers could be used to improve SRL performance. With the recent advent of
self-attention, syntax can be used not only for pruning or encoding to provide auxiliary
features, but also for guiding the structural learning of models. Strubell et al. (2018)
modified the dependency tree structure to train one attention head to attend to syntactic
parents for each token. In addition, compared with the application of dependency syn-
tax, the difficult step is mapping the constituent features back to the word level. Wang
et al. (2019) extended the syntax linearization approaches of Gémez-Rodriguez and
Vilares (2018) and incorporated this information as a word-level feature in a SRL model;
Marcheggiani and Titov (2020) introduced a novel neural architecture, SpanGCN, for
encoding constituency syntax at the word level.

7. Conclusion

This paper explores the role of syntax for the semantic role labeling task. We presented a
systematic survey based on our recent works on SRL and a recently popular pre-trained
language modeling. Through experiments on both the dependency and span for-
malisms, and the sequence-based, tree-based, and graph-based modeling approaches,
we conclude that although the effects of syntax on SRL seem like a never-ending topic of
research, with the help of current pre-trained language models, the syntax improvement
provided to SRL model performance seems to be gradually reaching its upper limit.
Beyond presenting approaches that lead to improved SRL performance, we performed
a detailed and fair experimental comparison between span and dependency SRL
formalisms to show which is more fit for machine learning. In addition, we have studied
a variety of methods of syntax integration and have shown that there is unacclima-
tion for the hard pruning in the deep learning model which was very popular in the
pre-NN era.

567

Computational Linguistics Volume 47, Number 3

For the exact role of syntax in serving the state-of-the-art SRL models, we have a
cautious conclusion: Syntax may still provide downstream task enhancement in the time
of deep learning (even with the time of powerful pre-trained language models); how-
ever, its returns are diminishing. As we can see from our experimental results, syntactic
clues contribute less and less when used with more and more powerful baseline SRL
models, and we saw that for our best settings, absolute performance improvement may
be just around 0.5%. This is a vast difference from pre-NN times, when the inclusion
of syntax could bring an absolute performance improvement of as high as 5% to 10%.
Syntax, however, may have alternative methods of integration that do not consist of
simply including a pre-trained syntax parser. Some works have demonstrated that the
current deep learning models in NLP naturally incorporate syntax using neural models’
powerful representation learning. Actually, our recent work (Zhou, Li, and Zhao 2020)
showed that syntactic parsers and semantic parsers can help each other, which suggests
that in general, neural NLP models, including SRL models, may comprehensively and
latently learn linguistic knowledge that covers both syntax and semantics. This may
effectively explain why neural SRL models do not rely on syntactic clues as much as
their non-NN SRL counterparts. When using even more powerful pre-trained language
models for enhancement, we indeed saw even less SRL performance improvement,
which is also explainable considering that pre-trained language models have been
known to contain syntax in specific hidden layers, as shown in Hewitt and Manning
(2019) and Clark et al. (2019). When pre-trained language models offered a strong syn-
tactic signal, including syntax information from a third-party, the pre-trained syntactic
parser will certainly lead to weaker improvement, as the added syntax information
is somewhat redundant.

Overall, we summarize that there is no certainty that specific syntactic information
may surely benefit specific deep SRL models, when the latter may more or less auto-
matically capture syntax from its own task-specific learning. Syntax may still be helpful
for deep models in a general way, however, the significance which makes such a help
depends on the way of integrating the syntax, but not on the type of models or syntax.

Syntax is an amazing discovery from theoretical linguistics, as it is a complete
linguistic concept, but it is not really an observable linguistic phenomena. As Chomsky
(1965) addressed, though it was believed that there exists a universal grammar in the
human brain, according to his and later inspired research, as to our best knowledge,
there is not clear enough evidence from cognitive or electrophysiological outcomes to
confirm the existence of such syntax or grammar represented by some kind of human
brain structure or cognitive mechanism. While lexical (word) linguistics can be iden-
tified using writing control (boundaries between words), and semantics can be noted
by mapping words and their corresponding entities in the real world, syntax cannot be
experienced like either of the above ways. It is well known that native speakers do not
really speak following some perceptive “syntax,” yet linguists believe syntax is always
there. We speculate that if this is the way humans use syntax when processing language,
then, in the future, this may also be how neural NLP models adopt syntax.

Acknowledgments anonymous reviewers for their valuable
We thank Kevin Parnow suggestions and comments.
(parnow@sjtu.edu.cn), from the Department

of Computer Science and Engineering, References

Shanghai Jiao Tong University, for his kind Bahdanau, Dzmitry, Kyunghyun Cho, and
help in proofreading when we were working Yoshua Bengio. 2015. Neural machine
on this paper. Many thanks to the editor and translation by jointly learning to align

568

mailto:parnow@sjtu.edu.cn

Lietal.

and translate. In 3rd International
Conference on Learning Representations,
ICLR 2015, Conference Track Proceedings,
San Diego, CA.

Baker, Collin F., Charles J. Fillmore, and
John B. Lowe. 1998. The Berkeley
FrameNet project. In 36th Annual Meeting
of the Association for Computational
Linguistics and 17th International Conference
on Computational Linguistics, Volume 1,
pages 86-90, Montreal.

Berant, Jonathan, Andrew Chou, Roy Frostig,
and Percy Liang. 2013. Semantic parsing
on Freebase from question-answer pairs.
In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language
Processing, pages 1533-1544, Seattle, WA.

Bjorkelund, Anders, Bernd Bohnet, Love
Hafdell, and Pierre Nugues. 2010. A
high-performance syntactic and semantic
dependency parser. In Coling 2010:
Demonstrations, pages 33-36, Beijing,
China.

Bjorkelund, Anders, Love Hafdell, and Pierre
Nugues. 2009. Multilingual semantic role
labeling. In Proceedings of the Thirteenth
Conference on Computational Natural
Language Learning (CoNLL 2009): Shared
Task, pages 4348, Boulder, CO.

Cai, Jiaxun, Shexia He, Zuchao Li, and Hai
Zhao. 2018. A full end-to-end semantic
role labeler, syntactic-agnostic over
syntactic-aware? In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 2753-2765,

Santa Fe, NM.

Cai, Rui and Mirella Lapata. 2019a.
Semi-supervised semantic role labeling
with cross-view training. In Proceedings of
the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP),
pages 1018-1027, Hong Kong.

Cai, Rui and Mirella Lapata. 2019b.
Syntax-aware semantic role labeling
without parsing. Transactions of the
Association for Computational Linguistics,
7:343-356.

Carreras, Xavier and Lluis Marquez. 2005.
Introduction to the CONLL-2005 shared
task: Semantic role labeling. In Proceedings
of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005),
pages 152-164, Ann Arbor, MIL.

Chen, Xinchi, Chunchuan Lyu, and Ivan
Titov. 2019. Capturing argument
interaction in semantic role labeling with
capsule networks. In Proceedings of the 2019

Syntax Role for Neural Semantic Role Labeling

Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),

pages 5415-5425, Hong Kong.

Choe, Do Kook and Eugene Charniak. 2016.
Parsing as language modeling. In
Proceedings of the 2016 Conference on
Empirical Methods in Natural Language
Processing, pages 2331-2336, Austin, TX.

Choi, Jinho D. and Martha Palmer. 2011.
Transition-based semantic role labeling
using predicate argument clustering. In
Proceedings of the ACL 2011 Workshop on
Relational Models of Semantics, pages 37-45,
Portland, OR.

Chomsky, Noam. 1965. Aspects of the Theory of
Syntax, volume 11.

Clark, Kevin, Urvashi Khandelwal, Omer
Levy, and Christopher D. Manning. 2019.
What does BERT look at? An analysis of
BERT’s attention. In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP,
pages 276-286, Florence.

Collobert, Ronan, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language
processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493-2537.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, Minneapolis, MN.

Dowty, David. 1991. Thematic proto-roles
and argument selection. Language,
67(3):547-619. https://doi.org/10.2307
/415037, https://doi.org/10.1353/1an
.1991.0021

Dozat, Timothy and Christopher D.
Manning. 2017. Deep biaffine attention for
neural dependency parsing. In 5th
International Conference on Learning
Representations, ICLR 2017, Conference Track
Proceedings, Toulon.

Fei, Hao, Meishan Zhang, Bobo Li, and
Donghong Ji. 2021. End-to-end semantic
role labeling with neural transition-based
model. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on
Educational Advances in Artificial

569

https://doi.org/10.2307/415037
https://doi.org/10.2307/415037
https://doi.org/10.1353/lan.1991.0021
https://doi.org/10.1353/lan.1991.0021

Computational Linguistics

Intelligence, EAAI 2021, Virtual Event,
pages 12803-12811, AAAI Press.

Fillmore, C.J. 1968. The case for case.
Universals in Linguistic Theory. pages 1-9.

FitzGerald, Nicholas, Oscar Tackstrom,
Kuzman Ganchev, and Dipanjan Das.
2015. Semantic role labeling with neural
network factors. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 960-970,
Lisbon.

Foland, William and James Martin. 2015.
Dependency-based semantic role labeling
using convolutional neural networks. In
Proceedings of the Fourth Joint Conference on
Lexical and Computational Semantics,
pages 279-288, Denver, CO.

Gildea, Daniel and Daniel Jurafsky. 2000.
Automatic labeling of semantic roles. In

Proceedings of the 38th Annual Meeting of the

Association for Computational Linguistics,
pages 512-520, Hong Kong.

Gildea, Daniel and Martha Palmer. 2002. The

necessity of parsing for predicate
argument recognition. In Proceedings of the
40th Annual Meeting of the Association for
Computational Linguistics, pages 239-246,
Philadelphia, PA.

Goémez-Rodriguez, Carlos and David Vilares.

2018. Constituent parsing as sequence
labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 1314-1324,
Brussels.

Grave, Edouard, Piotr Bojanowski, Prakhar
Gupta, Armand Joulin, and Tomas
Mikolov. 2018. Learning word vectors for

157 languages. In Proceedings of the Eleventh

International Conference on Language
Resources and Evaluation (LREC 2018),
Miyazaki.

Haji¢, Jan, Massimiliano Ciaramita, Richard
Johansson, Daisuke Kawahara,
Maria Antonia Marti, Lluis Marquez,
Adam Meyers, Joakim Nivre, Sebastian
Padg, Jan gtépa’mek, Pavel Stranidk, Mihai
Surdeanu, Nianwen Xue, and Yi Zhang.
2009. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in
multiple languages. In Proceedings of the
Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009):
Shared Task, pages 1-18,
Boulder, CO.

He, Luheng, Kenton Lee, Omer Levy, and

Luke Zettlemoyer. 2018a. Jointly predicting

predicates and arguments in neural
semantic role labeling. In Proceedings of the
56th Annual Meeting of the Association for

570

Volume 47, Number 3

Computational Linguistics (Volume 2: Short
Papers), pages 364-369, Melbourne.

He, Luheng, Kenton Lee, Mike Lewis, and
Luke Zettlemoyer. 2017. Deep semantic
role labeling: What works and what’s next.
In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 473-483,
Vancouver.

He, Shexia, Zuchao Li, and Hai Zhao. 2019.
Syntax-aware multilingual semantic role
labeling. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 5350-5359, Hong Kong.

He, Shexia, Zuchao Li, Hai Zhao, and
Hongxiao Bai. 2018b. Syntax for semantic
role labeling, to be, or not to be. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 2061-2071,
Melbourne.

Hewitt, John and Christopher D. Manning.
2019. A structural probe for finding syntax
in word representations. In Proceedings of
the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers),
pages 41294138, Minneapolis, MN.

Hochreiter, Sepp and Jiirgen Schmidhuber.
1997. Long short-term memory. Neural
Computation, 9(8):1735-1780. https://
doi.org/10.1162/neco.1997.9.8
.1735

Johansson, Richard and Pierre Nugues.
2008a. Dependency-based semantic role
labeling of PropBank. In Proceedings of the
2008 Conference on Empirical Methods in
Natural Language Processing, pages 69-78,
Honolulu, HI.

Johansson, Richard and Pierre Nugues.
2008b. Dependency-based
syntactic-semantic analysis with
PropBank and NomBank. In CoNLL 2008:
Proceedings of the Twelfth Conference on
Computational Natural Language Learning,
pages 183-187, Manchester.

Johansson, Richard and Pierre Nugues.
2008c. The effect of syntactic
representation on semantic role labeling.
In Proceedings of the 22nd International
Conference on Computational Linguistics
(Coling 2008), pages 393—400,

Manchester, UK.

Kasai, Jungo, Dan Friedman, Robert Frank,

Dragomir Radev, and Owen Rambow.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Lietal.

2019. Syntax-aware neural semantic role
labeling with supertags. In Proceedings of
the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers),

pages 701-709, Minneapolis, MN.

Kingma, Diederik P. and Jimmy Ba. 2015.
Adam: A method for stochastic
optimization. In 3rd International
Conference on Learning Representations,
ICLR 2015, Conference Track Proceedings,
San Diego, CA.

Kiperwasser, Eliyahu and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. Transactions of the
Association for Computational Linguistics,
4:313-327. https://doi.org/10.1162
/tacl_a_ 00101

Kipf, Thomas N. and Max Welling. 2017.
Semi-supervised classification with graph
convolutional networks. In 5th
International Conference on Learning
Representations, ICLR 2017, Conference Track
Proceedings, Toulon.

Kitaev, Nikita and Dan Klein. 2018.
Constituency parsing with a self-attentive
encoder. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 2676-2686, Melbourne.

Lan, Zhenzhong, Mingda Chen, Sebastian
Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. 2020. ALBERT: A lite
BERT for self-supervised learning of
language representations. In 8th
International Conference on Learning
Representations, ICLR 2020, Addis Ababa.

Lang, Joel and Mirella Lapata. 2010.
Unsupervised induction of semantic roles.
In Human Language Technologies: The 2010
Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 939-947, Los Angeles, CA.

Lee, Kenton, Luheng He, Mike Lewis, and
Luke Zettlemoyer. 2017. End-to-end neural
coreference resolution. In Proceedings of the
2017 Conference on Empirical Methods in
Natural Language Processing,
pages 188-197, Copenhagen.

Lei, Tao, Yuan Zhang, Lluis Marquez,
Alessandro Moschitti, and Regina Barzilay.
2015. High-order low-rank tensors for
semantic role labeling. In Proceedings of the
2015 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 1150-1160, Denver, CO.

Syntax Role for Neural Semantic Role Labeling

Levin, Beth. 1993. English Verb Classes and
Alternations: A Preliminary Investigation,
University of Chicago Press.

Li, Zuchao, Shexia He, Jiaxun Cai,
Zhuosheng Zhang, Hai Zhao, Gongshen
Liu, Linlin Li, and Luo Si. 2018. A unified
syntax-aware framework for semantic role
labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 24012411,
Brussels.

Li, Zuchao, Shexia He, Hai Zhao, Yiqing
Zhang, Zhuosheng Zhang, Xi Zhou, and
Xiang Zhou. 2019a. Dependency or span,
end-to-end uniform semantic role labeling.
In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33,
pages 6730-6737.

Li, Zuchao, Shexia He, Junru Zhou, Hai
Zhao, Kevin Parnow, and Rui Wang.
2019b. Dependency and span, cross-style
semantic role labeling on PropBank and
NomBank. arXiv preprint arXiv:1911.02851.

Li, Zuchao, Hai Zhao, Rui Wang, and Kevin
Parnow. 2020. High-order semantic role
labeling. In Findings of the Association for
Computational Linguistics: EMNLP 2020,
pages 1134-1151, Online.

Lin, Yankai, Zhiyuan Liu, and Maosong Sun.
2017. Neural relation extraction with
multi-lingual attention. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 34—43, Vancouver.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. 2019. RoBERTa: A
robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Luong, Thang, Hieu Pham, and
Christopher D. Manning. 2015. Effective
approaches to attention-based neural
machine translation. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing,
pages 1412-1421, Lisbon.

Lyu, Chunchuan, Shay B. Cohen, and Ivan
Titov. 2019. Semantic role labeling with
iterative structure refinement. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1071-1082,

Hong Kong.

Marcheggiani, Diego, Anton Frolov, and Ivan
Titov. 2017. A simple and accurate
syntax-agnostic neural model for

571

https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101

Computational Linguistics

dependency-based semantic role labeling.
In Proceedings of the 21st Conference on
Computational Natural Language Learning
(CoNLL 2017), pages 411-420,

Vancouver.

Marcheggiani, Diego and Ivan Titov. 2017.
Encoding sentences with graph
convolutional networks for semantic role
labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural
Language Processing, pages 1506-1515,
Copenhagen.

Marcheggiani, Diego and Ivan Titov. 2020.
Graph convolutions over constituent trees
for syntax-aware semantic role labeling. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMINLP), pages 3915-3928,
Online.

Mihaylov, Todor and Anette Frank. 2016.
Discourse relation sense classification
using cross-argument semantic similarity
based on word embeddings. In Proceedings
of the CONLL-16 Shared Task, pages 100-107,
Berlin.

Moschitti, Alessandro, Daniele Pighin, and
Roberto Basili. 2008. Tree kernels for
semantic role labeling. Computational
Linguistics, 34(2):193-224. https://doi
.org/10.1162/c01i.2008.34.2.193

Mulcaire, Phoebe, Swabha Swayamdipta,
and Noah A. Smith. 2018. Polyglot
semantic role labeling. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2:
Short Papers), pages 667—672,

Melbourne.

Munir, Kashif, Hai Zhao, and Zuchao Li.
2021. Adaptive convolution for semantic
role labeling. IEEE ACM Transactions on
Audio, Speech, and Language Processing,
29:782-791. https://doi.org/10.1109
/TASLP.2020.3048665

Nair, Vinod and Geoffrey E. Hinton. 2010.
Rectified linear units improve restricted
Boltzmann machines. In Proceedings of the
27th International Conference on Machine
Learning (ICML-10), pages 807-814, Haifa.

Naradowsky, Jason, Sebastian Riedel, and
David Smith. 2012. Improving NLP
through marginalization of hidden
syntactic structure. In Proceedings of the
2012 Joint Conference on Empirical Methods
in Natural Language Processing and
Computational Natural Language Learning,
pages 810-820, Jeju Island.

Ouchi, Hiroki, Hiroyuki Shindo, and Yuji
Matsumoto. 2018. A span selection model
for semantic role labeling. In Proceedings

572

Volume 47, Number 3

of the 2018 Conference on Empirical Methods
in Natural Language Processing,
pages 1630-1642, Brussels.

Palmer, Martha, Daniel Gildea, and
Paul Kingsbury. 2005. The Proposition
Bank: An annotated corpus of semantic
roles. Computational Linguistics,
31(1):71-106. https://doi.org/10.1162
/0891201053630264

Peng, Hao, Sam Thomson, Swabha
Swayamdipta, and Noah A. Smith. 2018.
Learning joint semantic parsers from
disjoint data. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long Papers), pages 1492-1502, New
Orleans, LA.

Pennington, Jeffrey, Richard Socher, and
Christopher Manning. 2014. GloVe: Global
vectors for word representation. In
Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543,
Doha.

Peters, Matthew, Mark Neumann, Mohit
Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018.
Deep contextualized word representations.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers),
pages 2227-2237, New Orleans, LA.

Pradhan, Sameer, Alessandro Moschitti,
Nianwen Xue, Hwee Tou Ng, Anders
Bjorkelund, Olga Uryupina, Yuchen
Zhang, and Zhi Zhong. 2013. Towards
robust linguistic analysis using
OntoNotes. In Proceedings of the Seventeenth
Conference on Computational Natural
Language Learning, pages 143-152,

Sofia, Bulgaria.

Pradhan, Sameer, Alessandro Moschitti,
Nianwen Xue, Olga Uryupina, and Yuchen
Zhang. 2012. CoNLL-2012 shared task:
Modeling multilingual unrestricted
coreference in OntoNotes. In Joint
Conference on EMNLP and CoNLL - Shared
Task, pages 1-40, Jeju Island.

Pradhan, Sameer, Wayne Ward, Kadri
Hacioglu, James Martin, and Daniel
Jurafsky. 2005. Semantic role labeling
using different syntactic views. In
Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics
(ACL’05), pages 581-588, Ann Arbor, ML

Punyakanok, Vasin, Dan Roth, and Wen-tau
Yih. 2005. The necessity of syntactic

https://doi.org/10.1162/coli.2008.34.2.193
https://doi.org/10.1162/coli.2008.34.2.193
https://doi.org/10.1109/TASLP.2020.3048665
https://doi.org/10.1109/TASLP.2020.3048665
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264

Lietal.

parsing for semantic role labeling. In
IJCAI, volume 5, pages 1117-1123.
https://doi.org/10.1162
/co0li.2008.34.2.257

Punyakanok, Vasin, Dan Roth, and Wen-tau
Yih. 2008. The importance of syntactic
parsing and inference in semantic role
labeling. Computational Linguistics,
34(2):257-287.

Qian, Feng, Lei Sha, Baobao Chang, Lu-chen
Liu, and Ming Zhang. 2017. Syntax aware
LSTM model for semantic role labeling.

In Proceedings of the 2nd Workshop on
Structured Prediction for Natural
Language Processing, pages 27-32,
Copenhagen.

Roth, Michael and Mirella Lapata. 2016.
Neural semantic role labeling with
dependency path embeddings. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1192-1202,
Berlin.

Shi, Chen, Shujie Liu, Shuo Ren, Shi Feng,
Mu Li, Ming Zhou, Xu Sun, and Houfeng
Wang. 2016. Knowledge-based semantic
embedding for machine translation. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 2245-2254,
Berlin.

Socher, Richard, Alex Perelygin, Jean Wu,
Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013.
Recursive deep models for semantic
compositionality over a sentiment
treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 1631-1642,
Seattle, WA.

Strubell, Emma, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum.
2018. Linguistically-informed
self-attention for semantic role labeling. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 5027-5038,

Brussels.

Surdeanu, Mihai, Richard Johansson, Adam
Meyers, Lluis Marquez, and Joakim Nivre.
2008. The CoNLL 2008 shared task on joint
parsing of syntactic and semantic
dependencies. In CoNLL 2008: Proceedings
of the Twelfth Conference on Computational
Natural Language Learning, pages 159-177,
Manchester.

Sutskever, Ilya, Oriol Vinyals, and Quoc V.
Le. 2014. Sequence to sequence learning
with neural networks. In Advances in

Syntax Role for Neural Semantic Role Labeling

Neural Information Processing Systems 27:
Annual Conference on Neural Information
Processing Systems 2014, pages 3104-3112,
Montreal.

Swayamdipta, Swabha, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016.
Greedy;, joint syntactic-semantic parsing
with stack LSTMs. In Proceedings of The
20th SIGNLL Conference on Computational
Natural Language Learning, pages 187-197,
Berlin.

Tackstrom, Oscar, Kuzman Ganchev, and
Dipanjan Das. 2015. Efficient inference and
structured learning for semantic role
labeling. Transactions of the Association for
Computational Linguistics, 3:29-41.
https://doi.org/10.1162/tacl_a_ 00120

Tai, Kai Sheng, Richard Socher, and
Christopher D. Manning. 2015. Improved
semantic representations from
tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1556-1566,
Beijing.

Tan, Zhixing, Mingxuan Wang, Jun Xie,
Yidong Chen, and Xiaodong Shi. 2018.
Deep semantic role labeling with
self-attention. In Proceedings of the
Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th Innovative
Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 4929-4936, AAAI
Press.

Toutanova, Kristina, Aria Haghighi, and
Christopher D. Manning. 2008. A global
joint model for semantic role labeling.
Computational Linguistics, 34(2):161-191.
https://doi.org/10.1162/coli.2008
.34.2.161

Vinyals, Oriol, Lukasz Kaiser, Terry Koo,
Slav Petrov, Ilya Sutskever, and Geoffrey E.
Hinton. 2015. Grammar as a foreign
language. In Advances in Neural
Information Processing Systems 28: Annual
Conference on Neural Information
Processing Systems 2015, pages 2773-2781,
Montreal.

Wang, Yufei, Mark Johnson, Stephen Wan,
Yifang Sun, and Wei Wang. 2019. How to
best use syntax in semantic role labelling.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 5338-5343, Florence.

573

https://doi.org/10.1162/coli.2008.34.2.257
https://doi.org/10.1162/coli.2008.34.2.257
https://doi.org/10.1162/tacl_a_00120
https://doi.org/10.1162/coli.2008.34.2.161
https://doi.org/10.1162/coli.2008.34.2.161

Computational Linguistics

Xue, Nianwen and Martha Palmer. 2004.
Calibrating features for semantic role
labeling. In Proceedings of the 2004
Conference on Empirical Methods in Natural
Language Processing, pages 88-94,
Barcelona.

Yang, Bishan and Tom Mitchell. 2017.

A joint sequential and relational
model for frame-semantic parsing. In
Proceedings of the 2017 Conference on
Empirical Methods in Natural Language
Processing, pages 1247-1256,
Copenhagen.

Yang, Zhilin, Zihang Dai, Yiming Yang,
Jaime G. Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XInet: Generalized
autoregressive pretraining for language
understanding. In Advances in Neural
Information Processing Systems 32: Annual
Conference on Neural Information Processing
Systems 2019, NeurIPS 2019,
pages 5754-5764, Vancouver.

Yih, Wen tau, Matthew Richardson, Chris
Meek, Ming-Wei Chang, and Jina Suh.
2016. The value of semantic parse labeling

for knowledge base question answering. In
Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206,
Berlin.

Zhang, Yue, Rui Wang, and Luo Si. 2019.
Syntax-enhanced self-attention-based
semantic role labeling. In Proceedings of the
2019 Conference on Empirical Methods in
Natural Language Processing and the 9th
International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP),
pages 616-626, Hong Kong.

Zhao, Hai, Wenliang Chen, Jun’ichi Kazama,
Kiyotaka Uchimoto, and Kentaro

Torisawa. 2009a. Multilingual dependency

learning: Exploiting rich features for
tagging syntactic and semantic
dependencies. In Proceedings of the
Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009):
Shared Task, pages 61-66,

Boulder, CO.

574

Volume 47, Number 3

Zhao, Hai, Wenliang Chen, and Chunyu Kit.
2009. Semantic dependency parsing of
NomBank and PropBank: An efficient
integrated approach via a large-scale
feature selection. In Proceedings of the 2009
Conference on Empirical Methods in Natural
Language Processing, pages 30-39,
Singapore.

Zhao, Hai, Wenliang Chen, Chunyu Kit,
and Guodong Zhou. 2009b. Multilingual
dependency learning: A huge feature
engineering method to semantic
dependency parsing. In Proceedings of the
Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009):
Shared Task, pages 55-60, Boulder, CO.

Zhao, Hai and Chunyu Kit. 2008. Parsing
syntactic and semantic dependencies with
two single-stage maximum entropy
models. In CoNLL 2008: Proceedings of the
Twelfth Conference on Computational Natural
Language Learning, pages 203-207,
Manchester, UK.

Zhao, Hai, Xiaotian Zhang, and Chunyu Kit.
2013. Integrative semantic dependency
parsing via efficient large-scale feature
selection. Journal of Artificial Intelligence
Research, 46:203-233.

Zhou, Junru, Zuchao Li, and Hai Zhao.

2020. Parsing all: Syntax and semantics,
dependencies and spans. In Findings

of the Association for Computational
Linguistics: EMNLP 2020, pages 4438-4449,
Online.

Zhou, Jie and Wei Xu. 2015. End-to-end
learning of semantic role labeling using
recurrent neural networks. In Proceedings of
the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th
International Joint Conference on Natural
Language Processing (Volume 1: Long
Papers), pages 1127-1137, Beijing.

Zhou, Junru and Hai Zhao. 2019.
Head-Driven Phrase Structure Grammar
parsing on Penn Treebank. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 23962408,
Florence.

