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Taxonomies of writing systems since Gelb (1952) have classified systems based on what the
written symbols represent: if they represent words or morphemes, they are logographic; if
syllables, syllabic; if segments, alphabetic; and so forth. Sproat (2000) and Rogers (2005) broke
with tradition by splitting the logographic and phonographic aspects into two dimensions,
with logography being graded rather than a categorical distinction. A system could be syllabic,
and highly logographic; or alphabetic, and mostly non-logographic. This accords better with how
writing systems actually work, but neither author proposed a method for measuring logography.

In this article we propose a novel measure of the degree of logography that uses an attention-
based sequence-to-sequence model trained to predict the spelling of a token from its pronun-
ciation in context. In an ideal phonographic system, the model should need to attend to only
the current token in order to compute how to spell it, and this would show in the attention
matrix activations. In contrast, with a logographic system, where a given pronunciation might
correspond to several different spellings, the model would need to attend to a broader context. The
ratio of the activation outside the token and the total activation forms the basis of our measure.
We compare this with a simple lexical measure, and an entropic measure, as well as several
other neural models, and argue that on balance our attention-based measure accords best with
intuition about how logographic various systems are.

Our work provides the first quantifiable measure of the notion of logography that accords
with linguistic intuition and, we argue, provides better insight into what this notion means.

1. Introduction

Some time during the third millennium BCE, in Mesopotamia, people discovered, over
the course of a few hundred years (Woods, Teeter, and Emberling 2010), that spoken
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words and phrases could be represented by marks on a more or less permanent sur-
face. While these marks started out as logographic representations of words whose
denotations could be easily depicted with drawings, the scribes who developed the
first writing soon discovered the rebus principle, and started to use symbols not for
what they depicted, but rather for how the symbol was pronounced. This in turn
allowed for a much more flexible system, since while it was not always easy to come
up with a drawing that evoked the word in question, once the phonographic principle
was discovered it was much easier to come up with a representation that reflected its
pronunciation. Writing systems that (as far as we know) were independently developed
in other places and at other times—in Egypt, China, and Meso-America—all followed
the same course, and all ended up as a mix of logographic and phonographic components.

In the oldest writing systems the phonological units represented were usually
syllables, though in the case of Egyptian they represented sequences of consonants,
ignoring intervening vowels. But over the course of history various phonological units
have been represented in different writing systems: syllables; moraic units; consonants;
consonants with an inherent vowel but with marks to represent other vowels; or all
segments. The typology of phonographic units in writing systems, based on what the
systems represent, is thus reasonably clear:

• Syllabic systems. Examples: Modern Yi (Shi 1996), Chinese—as far as the
phonological unit represented by the individual characters is concerned
(Mair 1996).

• Moraic systems. Examples: Japanese Kana (Smith 1996).

• Consonantal systems (abjads). Examples: Semitic scripts, in particular
early Semitic scripts (Naveh 1982), such as the early Sinaitic scripts
(O’Connor 1996).

• Consonants with inherent vowels, with diacritics to indicate other vowels
(abugidas/alphasyllabaries). Examples: Brahmic scripts (Salomon 1996),
Ethiopic (Haile 1996).

• All segments (alphabets). Examples: Greek (Threatte 1996), Hangeul (King
1996).

Insofar as these divisions are reasonably straightforward, it is no surprise then
that taxonomies of writing systems have typically been based to a large extent on
phonographic principles. Gelb (1952), for example, viewed the evolution of writing
teleologically, with the earliest systems being logographic, but with syllabaries, conso-
nantal systems (which Gelb viewed as degenerate syllabaries), and finally the alphabet
ensuing. Gelb’s taxonomy (see his Figure 95, page 191), therefore, is effectively linear.
Other authors, such as Sampson (1985, 2012) (e.g., Sampson [1985], Figure 3, page 32)
or DeFrancis (1989) have taken less teleological views, preferring instead to present an
arboreal taxonomy where, say, segmental systems and syllabic systems are merely on
different branches of the tree. Figure 1, for example, is DeFrancis’s taxonomy, which
again is primarily based on the type of phonological information encoded.

But as we see in Figure 1, DeFrancis’s taxonomy also makes another distinction:
under the main preterminal node (syllabic, consonantal, alphabetic) we see a further
division into whether or not the system is purely phonological, or includes some mor-
phological, or in other words logographic, component. But this replication of the notion
of logography on each branch of the tree suggests that phonographic and logographic
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Figure 1
DeFrancis’ (1989) taxonomy of writing systems; simplified from his Figure 10, page 58, to focus
on what he considers to be true writing systems.

aspects of writing systems are really separate, largely independent dimensions. In prin-
ciple, a writing system could represent one or another sort of phonological information,
and at the same time be more or less logographic. And this in turn suggests that a
more apt taxonomy would be planar, with the two dimensions of logography and
phonography being on different axes.

Sproat (2000) proposed just such a planar representation, and this system was fur-
ther developed by Rogers (2005). We present Rogers’ revised system in Figure 2, where
note that Rogers, like DeFrancis, prefers the term “morphography” to “logography.”

Again, the phonographic divisions are reasonably well differentiated on the basis
of the kinds of phonological units represented by the writing system, but logography
(morphography) seems in principle to be a matter of degree. Chinese, for example, has a
fairly heavily logographic system, whereas a highly phonologically simple system like
that of Finnish has little or no logography. It thus appears that one could order systems
on the basis of how much logographic information they contain.

However, while it seems that this should indeed be possible, neither Sproat nor
Rogers provided a way of quantifying how much logography a system contained. The
first proposal for a way of quantifying this was made by Penn and Choma (2006), who
propose a method that uses sample correlation coefficients to examine the cooccurrence
of characters of a writing system in a corpus. We turn in Section 3 to a description of
their system. Unfortunately, as we shall also see, their proposal does not work. We
then discuss, in Sections 4 and 5.1, an alternative approach based on an attention-based
neural model. Section 5.2 presents a simple alternative based on counting the number
of cases where there is an ambiguity in how to spell two homophonous words in a
dictionary, and Section 5.3 presents information-theoretic measures based on n-gram
entropy. In Section 6 we present experiments using our three types of measures on a
variety of languages. We also make our code available for others to experiment with.1

Note that we focus here almost exclusively on modern languages for which it is
possible to obtain a reasonable amount of training data. This means that unfortunately
many of the interesting ancient writing systems such as Egyptian, Sumerian, Akkadian,
Hittite, or Mayan are outside the scope of the present investigation.

1 https://github.com/google-research/google-research/tree/master/homophonous logography.
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Figure 2
Rogers’ (2005) planar taxonomy (his Figure 14.5, page 275), developed based on an earlier
proposal in Sproat (2000) (= Sproat’s Figure 4.5, page 142).

Before we turn to Penn and Choma’s work, however, it is best to be clear about
terminology. In Section 2.1, we will review notions of logography as they have appeared
in the literature on writing systems, and in Section 2.2 we will provide some operational
definitions of what the term means; note that in the immediate discussion here, in giving
concrete examples, we will anticipate our distinct homophones notion of logography
(Section 2.2.1). We will use the term logographic throughout this article, but we have
noted that DeFrancis and Rogers both prefer a term that evokes the morpheme rather
than the word—morphographic in Rogers’ case—as does Joyce (2011).

As we will see, what we take as the target unit has a large effect on how logographic
a system will appear to be. For Chinese, if we view the target as the morpheme, and
let us take for example the (Mandarin) syllable mǎ, then there are quite a few possible
individual characters that could be intended: 馬 (‘horse’) or 螞 (prefix used with some
names of invertebrates) are just two possibilities. If on the other hand we view the target
as the word—for example, mǎyı̌—then there are far fewer possibilities, and indeed only
one is salient: 螞蟻 ‘ant’. In the former case, where we pick the morpheme as the target,
one certainly needs to look outside the morpheme in order to decide how to spell the
word. In the case where we pick the word, in the case of 螞蟻 one can decide largely
independently of context how to spell it. At least in view of the measure of logography
we develop below, it makes a difference what unit we intend. In the ensuing discussion
we will use the terms morpheme and word as appropriate, but consistently use the terms
logography and logographic in either case. Also, in order to avoid awkward locutions
like word or morpheme, we will use the term word when nothing important hinges on
the difference. Finally, while the planar taxonomy just discussed clearly suggests that
logography is a matter of degree, we will for ease of locution use phrases like purely
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phonographic to denote writing systems that have a very low degree of logography, and
are therefore situated near the top of the plane in Figure 2.

2. What Defines “Logography”?

Given how prominently logography figures in the study of writing systems, one might
expect that the notion has been clearly defined. Unfortunately this is rarely the case. In
this section we start out by reviewing the definitions, such as they are, that have been
given by various scholars over the past seventy years. We then attempt to tease apart the
various notions that have been hinted at in the literature, and discuss what one would
need to do to operationalize these notions. As we shall see, we will concentrate in this
article on one notion that we will term the distinct homophones notion of logography.

2.1 Prior Definitions in the Literature

How do writers on writing systems define the notion “logographic”? The quotations
in Table 1, derived from a reasonably comprehensive set of works starting with Gelb
(1952), illustrate the kinds of definitions that have been offered. Few of the passages
quoted in Table 1 really count as definitions. The most one generally finds is that authors
point to an example or two that fits their notion, and hope that the reader’s common
sense will allow them to know an instance when they see it. Even the more extensive
description by Pope (1975) begs the question of how one determines that something is
a logogram representing the word itself, as opposed to just a way to write a particular
sequence of phonemes that happens to be the pronunciation of a particular word. While
he cites the specific case of Chinese, the majority of Chinese characters do not really
constitute “a sign for a complete word” since Chinese characters themselves are usually
decomposable into a part that indicates something about the meaning, and a part that
indicates something about the pronunciation. So since most Chinese characters are not
single signs, it is not clear how one would distinguish this case from the case of a word
spelled in a purely phonographic script where the “word sign” in this case is just the
sequence of phonograms used to spell the word.2

The best description and the closest to a formal definition is the last one given,
that of Handel (2019). This is not surprising given that the entire theme of his book
is logography and how logographic writing systems have been adapted. Even then
Handel’s definition begs the question what he means by “basic graphic elements” since
the logographic Chinese characters that his work focuses on are certainly not “basic
graphic elements” in and of themselves, being as they are mostly constructed from
more basic elements, where those elements are nearly always, if anything, either phono-
graphic or semasiographic, not logographic. Interestingly, Handel’s functional definition
of logography closely accords with the distinct homophones notion that we develop
most thoroughly in this article. But as we argue below, this is only one possible way
of viewing logography that is consistent with the way the term has been used in the
literature.

2 Note that this is precisely the reason that DeFrancis (1989) argues that Chinese writing is not really
logographic. Of course not all Chinese characters are thus decomposable: 人 rén ‘person’ is not. And in
Japanese kunyomi, where a Chinese character is pronounced as a native word such as 神 kami ‘god’, any
such semantic-phonetic decomposition in the Chinese character is useless for determining the
pronunciation of the Japanese word. Perhaps Pope could have defined his notion precisely by focusing
on such cases, but he did not do that.
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Table 1
Prior “definitions” of logography given in the literature.

Gelb (1952, p. 65): “The signs used in the earliest Uruk writing are clearly word signs limited to the
expression of numerals, objects, and personal names. This is the stage of writing that we call logogra-
phy or word writing and that should be sharply distinguished from the so-called ‘ideography.”’ Further
(p. 99): “Logograms, that is signs for words of the language.”

Moorehouse (1953, p. 26, fn. 9): “A sign so used may be called a logogram: it is a sign attached to a
particular word, though without reference to its meaning (which would make it an ideogram) or its sound
(a phonogram).” This is in his discussion of the Hittite use of Akkadian 〈ABU〉 ‘father’ for Hittite attash
‘father’.

Diringer (1958) does not use the term “logograph,” but rather the now disfavored term “ideograph,” but
he hints (p. 43) that this is not really an appropriate usage: “At a second stage, the symbols represented
also ideas; signs were borrowed from those denoting words related in meaning, for example the solar disk
came to represent also the ideas of ‘day’ and ‘time.’ Characters used in this way are called, though not quite
correctly, ideographs; they were, to be more exact, word-signs. . . ”

Pope (1975) gives something closer to an operational definition of logography when he writes (p. 203):
“logogram a sign for a complete word, differing from a determinative in that it furnishes additional informa-
tion instead of classifying information already given. Chinese characters are logograms, and Chinese can
be called a logographic script. But most, perhaps all, other scripts contain a class of logograms. English
examples include £, $, =, + as well as all the numeral signs. Abbreviations, though composed of phonograms,
are logographic in function.”

Sampson (1985, p. 33): “logographic systems are those based on meaningful units”
Coulmas (1989) does not really define the term, but implies that a logogram is a sign used to represent

the word or meaning (see e.g., his discussion on page 78).
DeFrancis (1989) defines the term much as others do, but rejects it as inappropriate, particularly for

Chinese, since for him scripts always have strong phonetic components. He characterizes Chinese as
morphosyllabic, meaning that each character denotes a syllable as well as some aspect of the meaning of
the morpheme.

Drucker (1995, p. 14): “Writing systems . . . may also be logographic, in which case the written sign
represents a single word.”

Harris (1995) reviews a number of typologies, but never provides a definition of what the term “logo-
graphic” denotes.

Daniels (1996b, p. 9): “Istrin’sa ‘ideograms’ do not in fact record ‘ideas’ (Gelb rightly banished the term
from our science, preferring logogram) but rather individual words or their significant parts.”

Sproat (2000) largely followed in DeFrancis’s footsteps in rejecting the categorical distinction between
logographic and phonographic scripts.

Coulmas (2003, p. 47): “Being logograms, the signs refer to these words in their entirety, that is, the
graphic complexity of the signs is not related to the internal structure of the words.”

Rogers (2005, p. 14): “When we get to Chinese in chapter 3, we will meet a writing system where the
primary relationship of graphemes is to morphemes. Such a system can be called morphographic, and
those graphemes can be termed morphograms” (boldface original).

Robinson (2007, p. 13): “Europeans and Americans of ordinary literacy must recognize and write about
52 alphabetic signs, and sundry other symbols, such as numerals, punctuation marks and whole-word
semantic symbols, for example +, &, £, $, 2, which are sometimes called logograms.”

Dehaene (2009), citing Frith (1985), takes a neurological/psychological view of the term and uses it to
denote the phase of learning to read (really a stage prior to learning to read) where children recognize
words in terms of their overall shapes. The classic instance of this is children who can “read” the brand
name Coca Cola as written in its traditional cursive form. In common with the grammatological definitions
of the term is the notion that the written form represents a whole word.

Daniels (2018, p. 155): The closest thing to a definition is here: “logogram: a symbol (often a pictogram)
denoting the meaning but not the pronunciation of a word or morpheme”

Handel (2019, pp. 7–8): “In a logographic system, the basic graphic elements represent meaningful
elements of the spoken language, so that identically pronounced but semantically contrastive elements
have distinct graphic representations.”

In the next section we explore some phenomena that would seem to fall under the
various notions of logography that have been hinted at in the literature, and thereby try
to put the notion on a more rigorous and operationalizable footing.

aViktor Aleksandrovich Istrin (1906–1967), Soviet philologist. See e.g., Istrin (1965).
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2.2 Specific Notions of Logography

As we have just seen in the previous section, nobody really defines what the term logog-
raphy (or morphography) means. Having said this, it is clear that a variety of phenomena
are intended. This section tries to develop a taxonomy of such phenomena.

2.2.1 Different Words Should Be Spelled Differently. The most obvious idea lurking behind
the notion of logography is the idea that words that are different even if they sound the
same should be spelled differently.3 It is, for example, the basis for Sampson’s (1985)
idea that English orthography is at least partly logographic. The basis for the spelling
differences can be various. They may be due to historical sound change rendering two
words with originally distinct pronunciations homophonous. Or they may have been
artificially introduced, sometimes due to (pseudo)etymological considerations. Let us
term this the distinct homophones notion of logography. As noted previously, this is
also the notion that the recent work of Handel (2019) promotes.

Japanese provides many instances of this notion of logography.4 Thus Japanese has
many words that are homophonous, but are written using different kanji. To take a
simple example, 結婚 ‘marriage’ and 血痕 ‘bloodstain’ are both pronounced kekkon,
identical even in pitch accent in Tokyo Japanese (both are unaccented). More subtle are
cases where what seems to be the same word, in that it has the same pronunciation, and
the same general meaning, nonetheless has more than one kanji representation, where
the different spellings seem to relate to different senses of the word. For example, the
normal word for ‘town’ in Japanese is machi, typically written 町. This was derived
from a Chinese character meaning a ridge between fields (田) and came to be used
in Japan for an administrative area. However another spelling is also used, 街, which
in Chinese means ‘street’. The former is associated with the meaning of ‘town’ as an
(administrative) area. Thus if you are talking about where someone lives, you would
use 町. The other spelling is more associated with the sense of a town as a collection
of buildings along a street: when talking about shopping in town, one could use 街. As
another example, compare 匂い nioi and 臭い nioi. Both mean ‘smell’, but the former
is more associated with ‘fragrance’, whereas the latter has the connotation of a bad
smell, deriving as it does from the Chinese character 臭 chòu ‘stink’. Many further such
cases can be found in Halpern (2013). In principle one might simply consider these to
be different but homophonous words, and it is hard to distinguish them from 結婚/

3 Some readers may object to our use of the term spelling here since for them it may have the connotation of
spelling in an alphabetic writing system. A more “proper” term might be graphematic representation.
However, this is a somewhat awkward locution so we will use the term spelling throughout as a proxy for
this with the meaning of ‘how one writes a given word or morpheme in the orthography of the language’.

4 We focus here on cases involving kanji (Chinese character) spellings, though Japanese also presents a
number of cases that could be termed logographic that involve kanji, hiragana, and/or katakana
spellings.

See the introductory chapter of Sansom (1928), and also Handel (2019), for a lucid discussion of how
Chinese writing was adapted to Japanese. Sansom discusses how a given kanji can represent multiple
different Japanese words as well as the original Chinese word, and how the same Japanese word may be
represented by more than one kanji. He also notes, as we do below, that Japanese writing in some ways
approaches “ideography.”
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血痕 other than the vague sense that these are still the same word, where the spelling
difference focuses on different nuances of that word. One finds somewhat similar cases
in English: For example, though they would probably count as different words now,
brake is etymologically derived from break—that is, a device for breaking the movement
of a vehicle.

What is crucial here is the notion that different words (or senses of the same word)
should have different spellings, even if they are pronounced the same. This is more
precise than the vague notion presented in the literature that a given word is written, at
least in part, with a symbol that somehow represents that whole word. For unless one
has another word with the same sound, but a different written form, how would one
know that the written form of the word is not simply an idiosyncratic way to write the
pronunciation of the word? If I have a written form 〈 〉 used to represent the word pig,
how does one know this is not just a way of writing the phoneme sequence or syllable
/pig/? Presumably one could only be sure of this by showing that in general distinct
words that sound the same, nonetheless end up having different spellings, by virtue of
the fact that the words are, after all, different. Thus in the case at hand, the word pig that
is synonymous with ingot (as in pig iron), should in that case be written with a different
symbol, say 〈 〉.5,6

The distinct homophones notion of logography is reasonably straightforward to
operationalize: One merely needs to compute to what extent a writing system spells
words that are pronounced the same in distinct ways, since this is a clear indication that
spelling is being used to distinguish among words. It is this notion of logography that
the measures proposed in this article most clearly address.

2.2.2 The Same Morpheme Should Be Spelled the Same. The flip side of cases just described
in Section 2.2.1 involves the idea that the same morpheme should be spelled the same
in all contexts, no matter the actual pronunciation in any given instance. Note that
here the notion of morpheme is more accurate since what we are talking about here are
cases where a morphological component should be spelled the same even when mor-
phophonological changes obscure the phonological form. Let us term this the uniform
spelling notion of logography.

5 While this example may seem arcane, this is in fact a real issue in Egyptian, where it is often hard to tell
whether one should consider a triliteral root as a logograph or as merely phonographic for that sequence
of three consonants. Thus the scarab beetle 〈 〉 is presumably logographic when it writes the word for
scarab, but phonographic when it is used for h̆pr ‘become’.

6 Also, while this may seem all rather obvious, it is far from trivial, since even with writing systems that
clearly involve logography according to the above procedure, there is evidence that fluent readers treat
logograms as if they were phonographic. A hint along these lines is that in proofreading it is often very
difficult to catch errors involving obviously distinct words, such as there and their, that happen to be
pronounced the same. So consider our Japanese examples from above, 結婚 ‘marriage’ and 血痕 ‘blood
stain’, both pronounced kekkon. Sproat (2000) in Section 5.2.2 discussed work by Horodeck (1987) and
Matsunaga (1994) that showed that Japanese readers were significantly less likely to catch errors in text
that involved homophonous words with different spellings such as the 結婚/血痕 example just given,
than in cases where the incorrect word had a different pronunciation from the correct word. What this
suggests is that fluent readers develop strategies whereby written symbols, even ostensibly logographic
ones, map directly to their pronunciations, effectively bypassing the mapping between the written form
and the word it denotes. Thus readers will miss cases where the word is misspelled, but the resulting
pronunciation is the same as that of the correctly spelled target word. Thus, though it is clearly the case
that 結婚 and 血痕 are not simply spellings of the phonemic form kekkon, nonetheless fluent Japanese
readers effectively treat them that way. In a similar vein, readers of English will be familiar with the fact
that it is often hard to catch spelling errors that involve homophones: confusions of to and too, or there
and their, are often hard to catch.
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It is this notion of logography that Chomsky and Halle (1968) were implicitly
appealing to when they claimed that English orthography is a “near perfect” represen-
tation for English, focusing on cases like telegraph /"tEl@gôæf/, telegraphy /t@"lEgô@f-/,7

and telegraphic /tEl@"gôæf-/, where the spelling remains constant in the various derived
forms even though the phonetic form of the stem changes.

This is also the sense in which (the phonographic elements of) Egyptian and Semitic
scripts can be considered logographic: In their purest form, the underlying (root) mor-
pheme is spelled with the same set of consonants no matter what vowels are used,
so that 〈KTB〉 representing the root meaning ‘write’ would be used, thus spelled in
a variety of derived words with different phonetic forms. Egyptian phonetic spelling
and the earliest Semitic scripts were fairly pure in their keeping of this convention. The
purity was lost to some extent by the introduction of matres lectionis, the use of consonant
symbols to represent (long) vowels: These necessarily had the effect of breaking up
the consonants of the root, thus somewhat obscuring the same root in phonologically
distinct forms. For example, Hebrew כתב 〈ktb〉 /katav/ ‘he wrote’, contrasts with יכתוב
〈yktwb〉 /yaxtov/ ‘he will write’, where besides the prefix 〈y〉, a vav 〈w〉 intercedes
between the 〈t〉 and 〈b〉 of the root. The later development of systems of pointing, such as
the Masoretic nikud for Hebrew (Ravid 2005), on the other hand, did not have this effect,
since the points were always written as additional diacritics around the consonants,
with the explicit intent of not breaking up the consonant sequence.

Similarly, it is the sense in which Middle Persian languages used heterograms (also
called aramaeograms)—Persian words written using Aramaic root spellings, so that
the word for ‘king’, Persian /Sax/ would be written using the Semitic word 〈MLKP〉
(Skjaervo 1996), since /Sax/ and 〈MLKP〉 both mean the same thing, and the Semitic
spelling provided a constant spelling for the Persian morpheme. The general phe-
nomenon of writing a word in one language but with the intention that it be read in
a different language is termed alloglottography (Rubio 2006; Kudrinski and Yakubovich
2016). According to Gershevitch (1979), the gradual switch to the phonographic Im-
perial Aramaic-derived spelling system from logographic Elamite cuneiform occurred
at some point during the fifth century BCE. Some aramaeograms even occur with
Aramaic possessive suffixes despite representing a Persian noun without a possessive,
for example, Aramaic 〈PMY〉 for my mother standing for /māt/, or 〈BRH〉 for his son
representing Persian /pus/ for son (Rubio 2006).

Japanese also provides some interesting examples that seem to be related to the
uniform spelling notion of logography. Most similar to Middle Persian heterograms
are the numerous instances in which the same kanji is used to represent either a native
Japanese word, or a Chinese borrowing. Since a majority of kanji have one or more
Chinese-derived pronunciations, and one or more native pronunciations, this case is
very common indeed. For example, the spelling we have encountered already, 町 machi
‘town’, can also be used to write the Chinese-derived morpheme chō, also meaning
‘town’. Given that the character 町 is, not surprisingly, common in place names, one
of the difficulties in Japan is knowing whether in a particular place name this character
should be pronounced as machi or chō. The other character for ‘town’ that we encoun-
tered, 街 machi, can also be used to represent the Chinese-derived word gai, ‘town,
street’.

These cases clearly involve the same spelling being used for two morphemes—one
native, one Chinese-derived—which are nonetheless related in meaning. This carries the

7 In the first author’s pronunciation.
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notion of uniform spelling to a new level in that we are now dealing with a case where
the same meaning is spelled in the same way: aspects of Japanese writing thus border
on semasiographic rather than merely logographic. But Japanese carries this even further
to cases where the same spelling is used to represent two distinct words that merely
have a vague semantic connection. For example the verb meaning to ‘get off, disembark,
alight’, written 降ります orimasu is spelled the same way as the verb for precipitation
(rain, snow) 降ります furimasu. These are clearly different words, but share the sense of
something descending from something else.

While uniform spelling seems to be a valid characterization of what is intended
by some discussions of logography, it is also much harder to operationalize than the
distinct homophones notion. In the latter case, one merely has to have a way of
computing the pronunciation of the differently spelled words, taking at face value the
assumption that words that are spelled differently are indeed intended to be distinct.
For uniform spelling one needs to have access to an underlying notion that two tokens
that are spelled the same are nonetheless both different phonologically, yet at the same
time ultimately the same morpheme. This can be difficult to compute depending on
the language and resources. Thus while Japanese 町 machi/chō ‘town’ clearly represent
different morphemes, nonetheless they represent the same meaning, so at some level
they represent a consistent spelling of the same entity, which happens to be pronounced
in different ways in different contexts. The difficulty is that it is hard to predict the
context in which one would get one pronunciation or the other. For example in town
names ending in 町 one often just has to know how the name is pronounced in any
given instance. Databases of such toponyms exist, but nothing that is open source. To
be sure, information relevant for the distinct homophones notion is easier to derive
for some languages than others. Thus for Semitic languages, if we know the consonan-
tal root from the spelling, we can (usually) be reasonably sure that it is intended to
represent the same morpheme, and at the same time if we have the diacriticized text,
we can know whether or not the pronunciation differs in two different cases. Thus,
we could compute values for the degree of uniform spelling homography for Hebrew
(see below). However developing materials is sufficiently complicated for a range of
languages that we have decided in this article to forgo this definition and concentrate
on the distinct homophones definition. We therefore leave uniform spelling for future
work.

We now turn in the next section to a discussion of the only work to date that has
attempted to quantify the degree of logography in writing systems, namely, that of
Penn and Choma (2006). We will show that their results are not replicable and seem
to depend on an artifact relating to different corpus sizes used for the two languages
they compared.

3. Penn and Choma’s Correlation Coefficient-based Measure

The proposal by Penn and Choma (2006) is based on the intuition that logographic sym-
bols, insofar as they are associated with particular words, are also therefore associated
with the word’s meaning. This in turn leads to the expectation that their distribution in
text should be “clumpy,” since semantically connected words tend to co-occur. Thus for
the Chinese character 牛 (niú ‘cow’) one would not be surprised to find 草 (cǎo ‘grass’)
nearby, whereas 市 (shı̀ ‘city’) would be less expected. On the other hand, in a purely
phonographic system, the symbols are not intrinsically associated with meaning, and
thus one has no expectation of such an association: The distribution should be less
“clumpy” and symbols should be broadly correlated with one another.
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Before proceeding, it is worth asking which of our notions of logography—distinct
homophones or uniform spelling—Penn and Choma’s measure was intended to ad-
dress. Penn and Choma do not present any formal definition of what they mean
by logography, but they clearly intend that in a highly logographic system the sym-
bols should convey semantic information, and thus be expected to show clumpiness;
whereas in a system with very little logography, the symbols have no inherent seman-
tics. While clearly not identical to it, this is at least consistent with the distinct homo-
phones notion, the main target of our study. In a purely phonographic system, words
that sound the same will be spelled the same no matter their semantic relationship,
since the symbols do not relate to meaning. Thus the meaning differences would be
neutralized in the spelled form, leading to the expectation that the spelling would not
be associated strongly with any particular topic. In contrast, in a logographic system
the words in question should be spelled differently, due to the meaning differences, and
one would expect a stronger association to particular topic-related semantic clumps.

The clumpiness noted above, Penn and Choma propose to capture using sample
correlation coefficients between two random variables X and Y

corr(X, Y) =
cov(X, Y)
σ(X)σ(Y) (1)

defined as the sample covariance cov(X, Y) of two random variables divided by the
product of their standard deviations σ, where

cov(X, Y) = 1
n− 1

∑
0≤i,j≤n

(xi − µi(X))
(
yj − µj(Y)

)
(2)

and

σ(X) =

√
1

n− 1

∑
0≤i≤n

(xi − µi(X))2 (3)

where µ is the mean of the variable. Per their description (page 119), “each grapheme
type is treated as a variable, and each document represents an observation.”

A reasonable comparison of two writing systems would involve a system with a
large degree of logography, and one that has little or no logography, but the phono-
graphic symbols constitute a set of the same order of magnitude as the logographic
system. So for example, one could pick Chinese, with a morphosyllabic system (DeFrancis
1989), where each character represents a syllable, but also gives some indication of
which particular morpheme is involved; and Modern Yi, a pure syllabary consisting
of a few hundred syllabic symbols that is used to write the Yi language (Tibeto-Burman,
Southwestern China) (Shi 1996). While Chinese corpora are easy to come by, unfortu-
nately Yi corpora are not, and so rather than use Yi, Penn and Choma approximated a
purely phonographic system by what they term trigram English. Take an English text,
and for each word, divide it into sequences of three letters, leaving any trailing letters
in their own group. Thus grapheme would be divided into gra, phe, and me.

For text corpora, they used an unspecified Chinese news corpus, and for (trigram)
English the Brown corpus (Kučera and Francis 1967). The correlation coefficients can
be depicted as heatmaps where each axis represents characters, and each position i, j
in the map has a brightness proportional to the coefficient of the ith and jth characters:
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(a) Trigram English (b) Chinese

Figure 3
Penn and Choma’s results for trigram English and Chinese (Mandarin), their figures 3 and 4,
respectively.

Brighter dots are associated with more strongly correlated characters. Obviously in such
a diagram, the diagonal is always bright since all characters correlate with themselves.
Penn and Choma’s results for trigram English and Chinese are shown in Figure 3, where
they note that the trigram English plot is considerably “brighter” than the correspond-
ing Mandarin plot. This suggests that the phonographic system with a low degree of
logography (or in their case, a simulation of such a system) has more promiscuous
correlations between symbols than is the case for Chinese, which has a much less bright
plot, and where the points of brightness seem to be clumped more locally. This is in
accord with the intuition sketched at the beginning of this section. More promiscuous
correlations imply higher numbers, and as Penn and Choma state (page 120):

By adding the absolute values of the correlations over these matrices (normalized for
number of graphemes), we obtain a measure of the extent of the correlation. Pervasive
semantic clumping, which would be indicative of a high degree of logography,
corresponds to a small extent of correlation—in other words the correlation is
pinpointed at semantically related logograms, rather than smeared over semantically
orthogonal phonograms. In our example, these sums were repeated for several
2500-type samples from among the approximately 35,000 types in the trigram English
data, and the approximately 4,500 types in the Mandarin data. The average sum for
trigram English was 302,750 whereas for Mandarin Chinese it was 98,700. Visually, this
difference is apparent in that the trigram English matrix is brighter than the Mandarin
one. From this we should conclude that Mandarin Chinese has a higher degree of
logography than trigram English.

Unfortunately, as it turns out, Penn and Choma’s results are not replicable, and one
of the problems comes down to their choice of corpora. The Brown corpus and newswire
text are rather different, not the least in the lengths of the documents. The Brown corpus
(Kučera and Francis 1967) was designed to consist of a set of documents of about 2,000
words each, and assuming a mean word length of about 5 letters, this works out to
about 4,000 three-letter sequences per document. The LDC Chinese Gigaword corpus
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(a) Trigram English (b) Chinese

Figure 4
Penn and Choma’s method applied to the Chinese and (trigram) English Bibles, showing
correlation coefficients for 500 characters.

(Graff and Chen 2005), to take a fairly typical example of a Chinese news corpus, on the
other hand, has an average document length of about 450 characters. Thus the trigram
English documents have almost 9 times as many characters on average as the Chinese
documents. A reasonable hypothesis, then, is that the reason the trigram English plot
is “brighter” is simply that there is more chance for any given pair of “characters” to
co-occur within a document than is the case in Chinese. If so, their result has nothing to
do with what the characters denote, and therefore cannot be used as a measure of the
amount of logography in a system.

To confirm this we used the Chinese and (trigram) English texts from the Bible
Corpus (Christodoulopoulos and Steedman 2015). We took a chapter as a document,
and trigrammed the English portion of the corpus as Penn and Choma did in their
experiments. On average there are then 1,100 “letters” per document for English and 780
characters per document for Chinese. Figure 4 shows the plots for trigrammed English
and Chinese. It will be seen that there is very little difference in “brightness” between
the plots.

If we then take the English Bible and group six consecutive chapters into a “doc-
ument,” this yields about 6,600 “letters” per document, or about 8.5 times the number
that is in a Chinese document. In this case the correlation coefficient for trigram English
is considerably “brighter”—there are more bright dots in this plot than in the previous
two plots—replicating Penn and Choma’s result. See Figure 5.

In terms of overall correlations, we computed total absolute correlation of 500
randomly selected characters, averaged over five runs for Chinese, trigram, English,
and, as an example of another largely phonographic script, Korean. For all languages
we compared two cases: one where a document is a single chapter, and one where it
is six consecutive chapters combined, as in the discussion above. Results are shown in
Table 2. Also shown in that table is the number of distinct characters, or in the case
of trigram English “characters.” For Korean, we used as characters the whole hangeul
syllable, rather than the individual jamo letters in order to get a character set size that is
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Figure 5
Penn and Choma’s method applied to a version of trigram English where six consecutive
chapters are combined into a “document”; plot shown for 500 characters. We recommend
magnifying the figure to see the difference between this and the previous two plots in Figure 4.

Table 2
Summed absolute correlations averaged over five runs on the Bible corpus for three “scripts”:
Chinese, trigram English, and Korean syllables. Results are given for two definitions of
“document.” Also shown are the number of distinct characters in the Bible for each “script.”

Language Doc. = 1 ch. Doc. = 6 ch. # distinct chars.

Chinese 5,828 14,859 3,177
3-gram English 6,386 15,116 3,194
Korean 8,508 18,200 1,249

roughly in the ball park of the number of distinct Chinese characters in the corpus. (This
differs from how we process Korean for our own experiments discussed later on; see
Section 6.1 for more detailed discussion.) The summed correlations for trigram English
and Chinese are remarkably similar, once document size is balanced. Korean has overall
higher values, but as we see in the final column of Table 2, it also has a smaller character
set than the other two. This means that there is more opportunity for two randomly
selected characters to co-occur in a document, so one would expect an overall higher
correlation value. Penn and Choma’s results can be completely explained by document
size and character set size.

So Penn and Choma’s result turns out to have nothing to do with the function of
the symbols in Chinese versus trigram English, but rather is an artifact of differing
text sizes. And this is in turn rather unsurprising. Penn and Choma’s method is an
extrinsic method that purports to rely merely on the distribution of symbols in a corpus.
A priori this seems unlikely to be able to discover the function of those symbols, any
more than the distribution of symbols is likely to tell you that a given symbol system
represents language (i.e., is a true writing system) versus some other kind of information
(cf. Sproat 2014).

To be sure, traditional approaches to decipherment have often relied on a very
simple extrinsic measure—the size of a symbol set—for making an initial guess as to
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what kinds of information the symbols represented. For example, Pope (1999, page 138)
describes the early work of A. H. Sayce, one of the pioneers of Luvian hieroglyphic
decipherment, who in 1876 suggested that the script must be a syllabary, with an
ideographic element present as well, based, among other evidence, on the close simi-
larity between the symbol inventory sizes between Luvian and the recently deciphered
Cypriot syllabary. Thus, more generally, a script with only twenty symbols is probably
a consonantal system or an alphabet; one with two hundred symbols is probably a
syllabary; and one with several hundred or a few thousand symbols is probably some
sort of logographic system (Daniels 1996a). But such methods are really only useful for
crude initial guesses, and in any case are easily fooled: the Modern Yi syllabary would
look like a logographic system, according to such an approach.

So it seems unlikely that statistical methods based solely on the distribution of
symbols, no matter how sophisticated, can be very informative about whether a system
is logographic or to what degree it is logographic. We need rather to consider not only
the symbol but some representation of the linguistic information it encodes. We turn in
the next section to a proposal for a measure that takes this into account.

4. Attention-based Classification

In a completely regular phonographic system, such as the Finnish writing system, there
is rarely if ever any ambiguity about how to write a word (Aro 2017). Once one knows
the pronunciation of the word to be written, the spelling can be derived directly from
it. What logography introduces is ambiguity into that process. It is no longer enough to
know what the pronunciation of a word is—one must also know which specific word
among the several that may share the same pronunciation is intended. In logographic
systems, according to the distinct homophones notion, spellings are used to distinguish
words that are pronounced the same. To take an example from English, in order to know
how to write a word pronounced /greIt/, one needs to know whether what is intended is
the word written 〈great〉 or the one written 〈grate〉. As Sampson (1985) argued, English
spelling is at least somewhat logographic precisely in making these kinds of arbitrary
distinctions.

Chinese offers another, and perhaps more consistent, method of distinguishing be-
tween homophonic words, with the use of so-called semantic radicals. In Mandarin, pı́pá
can be one of two words, 琵琶 the Chinese lute, or 枇杷 ‘loquat’, each written with two
characters since there are two syllables. Both involve the same phonetic components, 比
巴 biba, which gives a hint at the pronunciation of the whole word. The only difference
is in the semantic radical, repeated on both characters, which is 王王, used to denote
musical instruments, in the case of ‘lute’, and 木 ‘tree’ in the case of ‘loquat’.

Choosing the appropriate spelling for homophones such as great/grate or 琵琶/枇
杷 thus requires knowing which word is intended. Usually this is determinable from
the linguistic context in which the homophone occurs, so an operational definition of
logography can be simply the extent to which one needs to look at the context of a
word in order to determine how to write it. In the Finnish writing system, there should
be very little need to look beyond the word itself, whereas for English and Chinese it
will frequently be necessary to look in a broader context. This operational definition
can be turned into a computational definition by considering what a computational
model of the relation between sound and spelling would need to do in order to correctly
determine spellings.

One instance of such a model is a neural sequence-to-sequence model with an
attention mechanism (Mnih et al. 2014; Bahdanau, Cho, and Bengio 2015). Such a
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Figure 6
The Bahdanau attention model (Bahdanau, Cho, and Bengio 2015, Figure 1, p. 3): x1, x2, . . . , xT
represent the inputs, the h represent the annotations, and s the hidden states. As described in the
text, output yt is predicted from output yt−1, the previous state st−1 and the sum over the
weighted inputs from the annotations.

model is an instance of an encoder-decoder framework. A discrete input sequence—for
example, words in a text, or phonemes in a phoneme sequence—is read into the encoder
and then embedded as a sequence of vectors x = (x1, x2, . . . , xT ) in a continuous vector
space. The task of the decoder is to predict the next symbol of the output, given the
inputs and the previous outputs—that is, to find the probability p of predicting output
yi given the history y1, . . . , yi−1 and the input vectors x: p(yi|y1, . . . , yi−1, x). In the model
of Bahdanau, Cho, and Bengio (2015), this is modeled as a nonlinear function g, which
takes as input the previous output, a context vector ci, and a hidden state si:8

p(yi|y1, . . . , yi−1, x) = g(yi−1, si, ci) (4)

where the hidden state si = f (si−1, yi−1, ci) uses another nonlinear function f and ci is in
turn defined in terms of a sequence of annotations H = h1, h2, . . . , hT,

ci =
T∑

j=1

αijhj (5)

where each annotation is weighted with a probability αij defined as

αij =
exp(eij)∑T

k=1 exp(eik)
(6)

where the energy eij = α(si−1, hj) is an alignment model, which provides a score for the
match between the inputs around position j and the output at position i. The annotations
H are derived from the concatenation of the forward and backward hidden states~hj,

�

hj,
which allows the system to encode at each position information from the preceding and
following words. The model is shown in Figure 6, reproduced from Bahdanau, Cho,
and Bengio (2015, Figure 1, page 3).

8 Note that “Bahdanau attention,” as it is often called, is only one of several attention mechanisms that
have been defined (see for example Xu et al. 2015; Luong, Pham, and Manning 2015; Raffel et al. 2017;
Vaswani et al. 2017; Deng et al. 2018; Gülc, ehre et al. 2019). We have opted for it here because it is simple
and intuitive to interpret. More sophisticated attention models are considered in Section 6.7.
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Table 3
Opening sentence of the Book of Genesis with phonetic form on the input side and spelling on
the output.

Input: ih0 n dh ah0 <targ> b ih0 g ih1 n ih0 ng </targ> g aa1 d k r iy0 ey1 t ah0 d dh ah0
Output: beginning

As Bahdanau et al. put it (2015, page 4), “the probability αij , or its associated energy
eij, reflects the importance of the annotation hj with respect to the previous hidden
state si−1 in deciding the next state si and generating yi. Intuitively, this implements
a mechanism of attention in the decoder.” In practical terms, attention reflects the
importance each portion of the input has for predicting each output symbol.

In this article we use Bahdanau’s attention mechanism with the recurrent neural
network (RNN) in the encoder and decoder using gated recurrent units (Cho et al. 2014).
Unlike the original Bahdanau model shown in Figure 6, our model uses unidirectional,
rather than bidirectional (Schuster and Paliwal 1997), RNN in the encoder. The model
is trained to learn to spell a word, given its phonetic form and the phonetic form of the
sentence context. The training can also be inverted so that the model learns to pronounce
a word given its spelling and the spelled words in context. This is familiar in speech
technology as the grapheme-to-phoneme problem (Milde, Schmidt, and Köhler 2017;
Yolchuyeva, Németh, and Gyires-Tóth 2019), and indeed sequence-to-sequence models
have come to be widely adopted for various pronunciation and text-normalization
problems in speech—compare the RoadRuNNer text normalization system (Zhang
et al. 2019) we use in Section 6.5.1. This latter direction is, however, of less interest to
us for the present purposes, because our goal is to measure the amount of context that
is needed to determine how to spell a given pronunciation.

The training is set up so that the spelling of a word is presented paired with the pho-
netic form of the sentence, with special symbols <targ> and </targ> surrounding the
target word’s phonetic form in the input. For example, consider the opening sentence
of Genesis shown in Table 3 using the ARPAbet phonetic transcription from the CMU
Pronunciation Dictionary,9 with underbars linking the phonemes within a word. In
practice, the input context is a window of tokens around the target. In our experiments
we typically use a window of 7 on each side, where this includes space tokens, so that
the effective window size in terms of non-space tokens is 3 on each side. The target word
in our example is beginning and the phonemic subsequence corresponding to the target
is highlighted in blue.

Returning to the concept of attention, applied to the problem of logography, one can
consider that in order to predict the spelling of a given word, the model has to attend
to various portions of the input. If the system is a simple phonographic system with
essentially no logography, then the trained model ought to be able to find what it needs
by attending just to the pronunciation of the target word. In a more logographic system,
however, the model would need to look more broadly at the context because how one
writes the word depends on what it means, not just on how it is pronounced. If one
were to plot the attention matrix for a purely phonographic system, one would expect
most or all of the attention activity to be confined to within the context of the target
word; for a logographic system, one would expect the attention to be more spread out

9 http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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Figure 7
Attention matrix involved in spelling the Finnish word kutsui ‘called’. The input (phonetic)
sequence for the sentence is shown across the top of the plot, and the spelling of the target word
is shown on the vertical axis. Note that in the plot itself the <targ> . . . </targ> tags are reduced
to just <...>. The active portion of the matrix—red—is almost entirely within the target word.
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Figure 8
Attention matrix involved in spelling the Cangjie-encoded Chinese morpheme (Cangjie
AMYO) shı̀ ‘be’. (See Section 6 for details on encodings used for Chinese.) The input (phonetic)
sequence for the sentence is shown across the top of the plot, and the spelling of the target word
is shown on the vertical axis. The active portion of the matrix is spread out across much of the
sentence.

across the context. This is illustrated in figures 7 and 8 for Finnish words versus Chinese
morphemes (single characters).

5. Computational Measures of Logography

In this section we provide three classes of measures of the distinct homophones notion
of logography: two measures based on attention; two simple lexical-based measures
that can be viewed as the baseline measures that get at the same notion; and two
measures based on n-gram entropy.

5.1 Attention-based Measures of Logography

To recap, in an ideal phonographic system, one would know how to spell a word based
purely on its pronunciation. Conversely, in a highly logographic system, knowing how
to spell a word would depend on the context. As we have seen in the previous section,
in the former case, one would expect that an attention model would focus its attention
mostly within the target word, since it should be able to determine purely on the basis
of the phonemic representation of the word, what the spelling should be. Conversely,
in the latter, logographic, case some portion of the attention would be spread out across
the context containing the target word, since the system would need to look beyond the
word to decide how it should be written.

One way to measure the attention spread would be to sum the activation over the
attention matrix, then zero out the rectangle covering the target word’s pronunciation
and its spelling, by computing the Hadamard product (Horn and Johnson 2012) of the
attention matrix with a mask matrix M whose entries i, j are 0 if 0 ≤ i < k, where k is
the length of the target word’s pronunciation, and m ≤ j ≤ n, where m is the left edge of

494



Sproat and Gutkin Taxonomy of Writing Systems

Figure 9
Illustration of the attention-based spread measure. Top: A random attention matrix. Middle: The
zero mask for the target word. Bottom: The Hadamard product of the mask with the attention
matrix.

the target word and n the right edge; and 1 otherwise. Then sum the resulting matrix,
and divide it by the sum computed in the first step. Mathematically we define the spread
for word w, Sw as

Sw =

∑
i,j(M ◦ A)i,j∑

i,j Ai,j
(7)

where A is the attention matrix and M ◦ A is the Hadamard product of the mask with
the attention matrix. To illustrate, consider Figure 9 for a Chinese sentence nèige<huáng
guā> yı̌jı̄ng huángle, ‘that cucumber has already turned yellow’, where the target word is
huángguā ‘cucumber’, and the output spelling is 黃瓜. In this example for our attention
matrix we compute a random matrix shown at the top. The zero mask is shown in the
middle, and the result of applying that mask to the attention matrix is shown at the
bottom. S is computed from the first and last matrices as defined above.

The measure of S for the system is then simply the mean value of Sw over the entire
test set. This can be further broken down into Stoken, which simply computes the mean
over Sw for the corpus, versus Stype, which computes the mean within all instances of
each w, and then computes the mean over these:

Stoken =

∑
w Sw
N and Stype =

∑
v

∑
w∈v Sw
|v|

V (8)
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where N is the size of the corpus, V is the size of the vocabulary, w is a particular word
instance, v is a particular word type, and |v| is the number of instances of type v in the
corpus. A purely phonographic system would have S values close to 0, whereas a highly
logographic system should have S values close to 1. The intuition behind the type versus
token-based measures is of course that the token-based measure will yield a value that
is higher if it happens that the language has a few very frequent pronunciations that
also happen to be very ambiguous as to what word they correspond to; whereas the
type-based measure will be more balanced in that it will not overweight frequent terms.
However, as we shall see below, Stype and Stoken yield very similar rankings for our
language samples, and so we will generally refer to these measures collectively as S
where there is no need to distinguish the two measures.

Because the attention model obviously will make mistakes in prediction, in the
experiments reported below we compute S over only the correctly predicted forms, as
opposed to all predicted forms. This accords with intuition about how people process
logographic forms: If a person who in principle knows the ways in which a spoken
form could be written, nonetheless gets a particular instance wrong, it is likely because
they are not gleaning the correct information from the context that would allow them to
derive the correct spelling. If they spell the form correctly, then it is at least reasonable to
assume that they may have made appropriate use of contextual information. Since the
appropriate use of contextual information is key to the distinct homophones notion of
logography, it seems therefore reasonable to concentrate on the cases where the system
gets the spelling right.

Finally, before we consider other, non-neural measures of logography, we note that,
as the reader is of course well aware, the attention mechanism has been the topic of
intense scrutiny in recent work, with many researchers investigating what linguistic
information is encoded in attention-based models and where and how it is encoded.
This has been a particularly important area of research with deep attention models
such as BERT (Voita et al. 2019; Clark et al. 2019; Rogers, Kovaleva, and Rumshisky
2021; Ravishankar et al. 2021), but there is also interest in exploring such questions for
simpler RNNs—see, for instance, Silfverberg et al. (2021), who ask whether the encoder
in an attentional bidirectional LSTM model encodes abstract phonological informa-
tion. In many ways our use of attention here is a lot simpler: We are merely asking
whether in a more logographic writing system, the system pays attention to material
beyond the target word and to what degree. We are therefore using attention as a proxy
for what we assume human spellers must consider when they decide how to spell a
word in context.

5.2 Simple Lexical Measures of Logography

A much simpler measure of logography would just compute the mean of the number
of spellings for a given pronunciation found in a dictionary, or corpus. This has both a
type and token interpretation:

Ltype = 1
|D|

∑
p∈D

|s(p)| and Ltoken = 1
|C|
∑
p∈C

c(p)|s(p)| (9)

In the equation for Ltype, D is a dictionary—which can be derived simply by compiling
the set of pronunciations and their spellings from one’s corpus, s(p) is the set of spellings
for pronunciation p for each p in D. For Ltoken, C is the corpus, s(p) is again the set of
spellings for each pronunciation p, and c(p) is the total count of each p. In either case a
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value close to 1 is an indication of a phonographic system, whereas a value significantly
above 1 reflects a logographic system. While these definitions of L are intuitive, we
will argue that the attention-based measure previously introduced results in a more
satisfactory metric.

5.3 Entropic Measures

Another possible measure of logography is based on the information-theoretic concept
of entropy introduced by Shannon (1948, 1951). In a writing system that is more logo-
graphic, one would expect that the amount of information carried by the written side
would be higher than that carried by the spoken side simply because the written form
of the language encodes information that is not present in the sequence of phonemes.
Conversely, the entropy for the written form should be lower than the entropy for
the spoken form. Thus, if one compared the entropy of a written token given the
written context H(wi|w1 . . .wi−1) with that of the same tokens in their phonological form
H(pi|p1 . . . pi−1), we would expect that the following relation for an entropic measure
Etoken would hold for a logographic writing system:

Etoken = H(wi|w1 . . .wi−1)−H(pi|p1 . . . pi−1) < 0 (10)

As we shall see below, this in fact seems to be true for Chinese and Japanese in the
various encodings we considered, but seems not to be terribly useful for ranking other
languages.10

In the experiments below we use the OpenGrm N-Gram toolkit (Roark et al. 2012)
to build separate written and pronunciation-based bigram token models represented
as weighted automata, denoted W and P , on the training data.11 Given the held out
parallel test data consisting of N tokens for the written (WC) and pronunciation (PC)
sides we can attempt to formalize the measure Etoken from Equation (10) via the concept
of corpus cross-entropy (Jurafsky and Martin 2009) defined between the models and the
corresponding test data:

Etoken = H(WC,W )−H(PC,P ) = 1
N

∑
p∈PC

logPP (p)−
∑

w∈WC

logPW (w)

 (11)

where the test data is treated as the true distribution.12

Given the three models for the written (W), pronunciation (P), and joint written/
pronunciation (J ) forms, it is also possible to define information-theoretic entropy-
based measures on types, rather than tokens. Since for a particular model the states
of the weighted automaton represent the probability distribution of word types condi-
tioned on their respective histories (Roark, Allauzen, and Riley 2013), the type-specific

10 As one of our readers observes, this result might be taken as evidence that Chinese and Japanese writing
is in fact in a different category from other languages rather than merely being at one end of a spectrum.
But as we shall see below in any case (see Figure 10) it is not that the entropic measures suggest a
categorical split, merely that only for Chinese and Japanese does Etoken fall below zero.

11 These are mixture models interpolated with the unigrams using Witten and Bell (1991) smoothing.
12 It is worth noting that this definition corresponds to a particular case of token-based conditional entropy

H(W|P ) defined via joint entropy H(P ,W ) as H(P ,W )−H(P ) (MacKay 2003, page 138), where the
written form completely determines the pronunciation, in other words H(P ,W ) = H(W ). In reality,
however, this assumption rarely holds exactly.
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measure can make use of state probabilities. In particular, we investigate the measure
defined via the concept of mutual information (MacKay 2003, page 139) between the
written and pronunciation distributions

Etype = I(P ,W ) = H(W )−H(W|P ) = H(P ) + H(W )−H(P ,W ) (12)

The individual entropies are computed using marginal and joint state distributions for
models P ,W , and J , where H(P ,W ) = H(J ). In general, given a modelM, its model
state-based entropy is given by H(M) = −

∑
s∈M PM(s)log(PM(s)), where individual

states s are treated as discrete outcomes (MacKay 2003, page 32). The measure Etype
can be interpreted as average reduction in uncertainty about the written formW which
results from discovering the pronunciation P . When comparing writing systems we
expect the mutual information to decrease the more logographic the systems become.

In preparing the data for the above computations, sentences containing words with
null pronunciations (see below in Section 6.1 on why this sometimes occurred) were
removed. One issue to bear in mind with the entropic measure Etoken is that because it
compares the entropy of the written and spoken forms, the measure is sensitive to how
accurately the two sides reflect the actual situation in the language. The written side
can be taken as given (modulo the choice of tokenization), but the pronunciations are
automatically generated and in particular, as noted above, in general we perform no
homograph disambiguation. This will inevitably make the pronunciations of the input
text less variable than would have been the case if the pronunciations were completely
accurate. In what follows, we will collectively refer to the entropic measures from
Equations (11) and (12) as E when there is no need to distinguish them.

6. Experiments

In this section we study the behavior of various logography measures introduced so
far. The details of the Bible corpus and the data preparation methods used for the main
experiments are described in Section 6.1. The details of the default Bahdanau neural
attention architecture are provided in Section 6.2 and the results of the main body
of experiments are presented in Section 6.3. Section 6.4 describes the performance of
neural logography measures for selected languages trained on alternative data from
Wikipedia. In Section 6.5 we study how using higher-quality data derived using state-
of-the-art pronunciation extraction pipelines affects our results. Section 6.6 describes
our investigation of low-resource scenarios for a bunch of languages, where the possi-
bly low-quality data are derived using a rule-based grapheme-to-phoneme approach.
Finally, in Section 6.7 we explore more sophisticated neural attention architectures
(multihead self attention in transformer models and multistep attention in temporal
convolution networks) using both Bible and Wikipedia data.

6.1 Data and Data Preparation

Data were collected from the Bible Corpus (Christodoulopoulos and Steedman 2015)
for English, French, Russian, Swedish, Finnish, Korean, Chinese, and Japanese. Since
the Hebrew bible in the Bible Corpus was undiacritized, whereas the original Hebrew
(Old Testament) Bible is traditionally fully diacritized, for Hebrew we used instead the
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Old Testament data from Mechon Mamre.13 The languages chosen represent a sample
of the spectrum from highly non-logographic systems, represented here by Finnish and
Korean, to much more logographic systems like Chinese, Japanese, and English (per
Sampson [1985] and also Sproat [2016]). Hebrew presents an interesting case because,
as we describe below, we run the experiments with two versions, one with Biblical and
the other with Modern pronunciation. Since Hebrew spelling is archaic, and Modern
pronunciation coalesces many of the phonemes that were distinct in Biblical Hebrew
(Berman 1997; Hornkohl 2019), we would expect Modern Hebrew to look more logo-
graphic than its ancient counterpart.

The set of verses was divided into training and testing by randomly choosing verses
from both the Old and New Testaments, or in the case of Hebrew, the Old Testament
only. Note that the train-test division was uniform across languages so that for example
Genesis 1:1 was in the training set for all languages, and Genesis 1:8 was in the test
set for all languages. See Table 4 for the corpus sizes. Each verse was tokenized to a
list of tokens, each followed by their pronunciation. Thus, for example for Japanese,
Genesis 1:3 appears as shown in Example 1, with each Japanese token followed by its
pronunciation approximated by Romaji.

Example 1
神/kami は/wa 「/” 光/hikari あ/a れ/re 」/” と/to 言/i わ/wa れ/re

た/ta 。/. する/suru と/to 光/hikari が/ga あ/a っ/tsu た/ta 。/.

The details of processing differ for each language, as outlined directly below and as
partially summarized in Table A.1.

English. Words were tokenized based on whitespace and punctuation, and rendered
into ARPAbet pronunciations using the Pronouncing toolkit,14 which simply looks up
words in the CMU Pronouncing Dictionary.15 This is obviously incomplete and any
windowed region in which a word’s pronunciation was not found was eliminated from
the data. The pronunciation prediction also does no homograph disambiguation, so that
the pronunciation is completely predictable by lexical lookup on the basis of the spelling
for this set.

French. Words were tokenized based on whitespace and punctuation and pronounced
using the lexicon developed by New et al. (2004).16 As with English, windowed regions
with unknown words were eliminated. Also, as with English, no homograph disam-
biguation was performed.

Russian. Words were tokenized based on whitespace and punctuation and pronounced
using the WikiPron lexicon (Lee et al. 2020).17 As with English, windowed regions with
unknown words were eliminated. Also, as with English, no homograph disambiguation
was performed.

13 http://www.mechon-mamre.org.
14 https://pypi.org/project/pronouncing.
15 The choice of the CMU Dictionary is motivated by the fact that while it is dated, and there are better

options available, it has the advantage of being completely open source.
16 http://www.lexique.org/databases/Lexique383.
17 https://github.com/CUNY-CL/wikipron/blob/master/data/scrape/tsv/rus cyrl narrow.tsv.
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Swedish. Words were tokenized as in English. The pronunciations were derived us-
ing the public domain Swedish lexicon hosted by the National Library of Norway
(Nasjonalbiblioteket 2011).18 This manually transcribed lexicon was originally devel-
oped by Nordisk Språkteknologi (NST), a Norwegian language technology company.
The phonetic transcriptions are loosely based on the SAMPA standard (Wells 1997).
Although Swedish is known to have a higher percentage of homographs than English
(Hedlund, Pirkola, and Järvelin 2001), we perform no homograph disambiguation.

Finnish. Words were tokenized as in English. Because Finnish orthography is close to
perfectly phonemic (Aro 2017), we simply used the identity mapping, with lower-casing
of any capitalized letters, to derive the phonemic representation.

Hebrew. Words were tokenized as in English. The Hebrew Bible (Old Testament only)
is fully diacritized, where the diacritics indicate vowels, quality of various consonants,
and in some cases distinguish between completely separate phonemes (e.g., /s/ versus
/S/). The standard orthography, both Ancient and Modern, mostly eschews these di-
acritics, so we took the written form to be the completely undiacritized text. The fully
diacritized text was then used to generate two forms of Hebrew pronunciation, namely,
Biblical and Modern, using simple rules to produce IPA-like transcriptions:19 Once the
full diacritization of the word is known, the pronunciation of both Biblical and Modern
Hebrew is mostly straightforward, the main complexity having to do with the treatment
of schwa. The main difference between Biblical and Modern pronunciation resides in
the collapse of various consonant distinctions. For example, in Modern Hebrew, both
and〈ת〉 〈ט〉 are pronounced /t/, whereas in Biblical Hebrew the former was /t/ or
/T/ depending on the context and the latter was an emphatic alveolar /tQ/. Given that
Hebrew spelling is conservative, the result is that Modern Hebrew is more logographic
than Biblical Hebrew since in principle spelling distinctions are retained to distinguish
words that are otherwise pronounced the same.

Korean. Words were tokenized as in English. Hangeul syllable code points were then
converted to sequences of jamo (letters). Pronunciations were produced using the Ko-
Pron project,20 which produces transcriptions in Revised Romanization (Doll 2017).
Thus the word 하나님 (‘god’) is rendered as ㅎㅏㄴㅏㄴㅣㅁ/hananim.

Chinese. Chinese data were produced in four forms, along two dimensions, the first
dimension being character-based (i.e., morpheme-based) versus “word” based, and the
second being whether to represent characters as simply their Unicode code points, or
using their Cangjie encodings. Cangjie is a Chinese input system that is structural in
that the coding loosely relates to the structure of the character in terms of traditional
character components; it thus provides a decomposition of characters into a smaller
set of somewhat sensible units. The Bible Corpus provides the Chinese Bible in two
forms, unsegmented, and segmented into word-like units using a segmenter based on
the Peking University segmentation standard (Yu 2002). Cangjie forms for both were
produced using the Unicode Consortium’s Unihan Dictionary21 (Jenkins, Cook, and

18 http://www.nb.no/sbfil/leksikalske databaser/leksikon/sv.leksikon.tar.gz.
19 https://github.com/google-research/google-research/tree/master/homophonous logography

/hebrew.
20 https://pypi.org/project/ko-pron.
21 https://unicode.org/Public/UNIDATA/Unihan.zip.
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Table 4
Summary of the data sets for each of the languages/conditions. Note that Chinese tokenized
input units are given as ‘words’ because in general the segmentation quality is very poor and
therefore the units only loosely correspond to Chinese words. The Korean unit is listed as a
phonological phrase, which includes words and additional particles, in Korean terminology
referred to as eojeol.

Language Tokens Types
# Train # Test Type # Train # Test

English 713,721 176,259 word 7,863 5,232
French 749,359 185,389 word 16,571 9,648
Finnish 541,853 134,317 word 48,127 22,000
Russian 492,461 121,584 word 24,613 12,373
Swedish 515,230 128,035 word 15,156 8,875
Hebrew (Biblical) 277,657 86,014 word 38,225 17,040
Hebrew (Modern) 277,657 86,014 word 37,647 16,855
Korean (jamo) 378,565 94,136 phon. phrase 56,384 24,272
Chinese 822,317 204,558 morpheme 3,129 2,627
Chinese (Cangjie) 822,317 204,558 morpheme 3,127 2,626
Chinese (tokenized) 542,955 134,964 ‘word’ 45,063 18,312
Chinese (tokenized, Cangjie) 542,955 134,964 ‘word’ 45,060 18,312
Japanese 1,020,638 254,404 morpheme? 12,948 7,556
Japanese (Cangjie) 1,020,638 254,404 morpheme? 12,948 7,556

Lunde 2020). Finally, pinyin transcriptions were produced using the Pinyin project,22

and these were used as pronunciations. The pinyin transcriptions include tone but,
as with English, perform no homograph disambiguation. As examples of the four
forms, in the basic configuration the expression for ‘heaven and earth’ would appear as
“天/tiān 地/dı̀,” and in the Cangjie encoding as “MK/tiān GPD/dı̀.” In the tokenized
version these two characters are tokenized together “天地/tiāndı̀,” and in the Cangjie
version appear as “MKGPD/tiāndı̀.”

Japanese. Japanese was segmented using the KyTea project tools (Neubig and Mori
2010; Neubig, Nakata, and Mori 2011),23 and converted to Romaji using the JPhones
project.24 The result of the segmentation is somewhat intermediate between doing no
segmentation at all, and segmenting the text into linguistically sensible units such as
bunsetsu (accentual phrases). That is, words seem to be segmented out as units, but
particles are usually treated as a unit by themselves. This has the rather odd result that
segmentations like あ/a っ/tsu た/ta (‘it was’) occur, as in the example from Genesis
1:3 above, whereas a more sensible segmentation would be あった/atta. In addition,
a Cangjie version of the Japanese corpus was produced by replacing all kanji by their
Cangjie code, where available: Cangjie is not used for inputting Japanese text, but it
serves the same function as in our treatment of Chinese as providing a structurally
motivated encoding of the Chinese characters. The above discussion is summarized in
Table A.1 in the Appendix.

Corpus sizes for the various conditions are shown in Table 4. For each corpus
division we list the number of written-spoken tokens, and the number of written-
spoken (unique) types.

22 https://pypi.org/project/pinyin/.
23 http://www.phontron.com/kytea/.
24 https://github.com/JRMeyer/jphones.
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The use of automatic tools to create pronunciations and (for some languages)
tokenization for the corpora obviously has drawbacks; we discuss this issue further
below, especially in Section 6.5.1, where we compare the results for Japanese with
those from a higher quality Japanese tokenization and pronunciation system, and in
Section 6.5.2 where we report a similar experiment for English. However we would
like to clear up one possible misconception up front. One of the reviewers expressed
concern about the methodology, asking how it would be possible to transcribe a text
phonetically without already knowing how logographic a system is. But bear in mind
that the measure of logography that we are investigating here is the phoneme-to-
grapheme direction, whereas an automatic pronunciation system converts in the other
direction, from graphemes to phonemes. It would at least be theoretically possible to
have a system where it is almost always straightforward to phonetically transcribe
a text automatically, because each written symbol has only one pronunciation; but
where determining how to spell a given phoneme sequence requires one to consider
the context. Chinese is, in fact, almost such a system, since most characters have only
one pronunciation, or at least only one that is at all common; whereas determining the
written form of a spoken word often requires broader context.

Also, it is necessarily the case that different languages have required different
processing schemes: different tools and lexical resources with different quality; in some
languages there is the necessity of doing word segmentation and indeed deciding what
should count as a token. Could these choices affect the results? Certainly they can, and
as we show below it makes quite a bit of difference, for example, in how we segment
Chinese text: We argue in Section 6.3 that this difference actually makes sense if one con-
siders what the distinct homophones notion of logography must mean operationally.
On the other hand, our Modern and Biblical Hebrew processing was for all intents and
purposes identical, yet yielded different results and, as we argue below, in the expected
direction. On balance, while clearly one can expect that processing details will affect the
results, we have no reason to believe this situation is any different for our work than it
is for any research involving comparative multilingual NLP.

6.2 Default Neural Architecture Details

As discussed in Section 4, we utilize a neural sequence-to-sequence model (Sutskever,
Vinyals, and Le 2014), where the input side corresponds to the phonemes in a discrete
phoneme sequence and the output side represents the discrete orthographic symbol
sequence. Recall from Section 4 that our input context is a window of 3 non-space tokens
on each side of the target word. Our model is an instance of RNN encoder-decoder
architecture with additive attention mechanism (Bahdanau, Cho, and Bengio 2015). The
encoder embeds the inputs into a sequence of vectors in a continuous vector space,
while the decoder component predicts the next symbol of the output, given the inputs
and the previous outputs. Our model is implemented in TensorFlow (Abadi et al. 2016)
with Keras abstractions (Géron 2019), and is derived in part from the TensorFlow Neural
Machine Translation (NMT) tutorial.25

The encoder consists of an embedding layer (using a uniform initializer for the
embedding matrix) that maps the inputs into continuous space with dimension d = 256,
followed by a single recurrent layer of 256 gated recurrent units (GRUs) by Cho et al.
(2014) with the following defaults: initialization by the Glorot and Bengio (2010),

25 https://www.tensorflow.org/tutorials/text/nmt with attention.
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Table 5
Neural (Stoken, Stype), lexical (Ltoken, Ltype), and entropic (Etoken, Etype) logography measures
computed on the Bible corpora. Recall that lower values for S and L measures correspond to a
lower degree of logography (inverse is true for Etype). The unexpectedly low values for some of
the Chinese and Japanese encodings for L as opposed to the expected higher values for the same
with the S measures suggests that on balance the neural attention-based metric is better at
capturing the notion of logography. The fourth column gives the per-token spelling accuracy of
the neural S model on the test data. For Russian and Swedish the † marker in the columns for the
E measures indicates that the number is suspect because a very small number of training and
testing verses (3,289 and 3,823, respectively) were left after removing verses that contained null
pronunciations.

Language Neural Lexical Entropic
Stoken Stype Accuracy Ltoken Ltype Etoken Etype

Chinese 1.00 1.00 0.85 4.46 2.96 −0.12 7.86
Chinese (Cangjie) 0.74 0.71 0.87 4.45 2.96 −0.12 7.85
Chinese (tokenized) 0.55 0.37 0.89 2.10 1.05 −0.02 9.43
Chinese (tokenized, Cangjie) 0.51 0.32 0.78 2.10 1.05 −0.02 9.42
English 0.40 0.32 0.95 2.08 1.15 0.02 8.05
Finnish 0.19 0.12 0.96 1.43 1.05 0.02 10.10
French 0.57 0.36 0.89 3.10 1.68 0.14 8.24
Hebrew (Biblical) 0.65 0.50 0.94 1.06 1.04 0.06 9.18
Hebrew (Modern) 0.72 0.56 0.87 1.19 1.06 0.05 9.14
Japanese 0.97 0.88 0.94 7.19 1.25 −0.05 7.38
Japanese (Cangjie) 0.88 0.65 0.92 7.19 1.25 −0.06 7.38
Korean (jamo) 0.26 0.21 0.96 1.06 1.01 0.00 12.21
Russian 0.46 0.29 0.89 1.58 1.10 †0.12 †8.87
Swedish 0.35 0.20 0.90 1.13 1.01 †0.01 †8.95

hyperbolic tangent tanh activation function and a sigmoid for the recurrent activation
function.26 The decoder consists of a single GRU layer, identically configured to the
one in the encoder, that takes its additional inputs as context vectors from the additive
attention mechanism by Bahdanau, Cho, and Bengio (2015), followed by the usual feed-
forward logits layer. We optimize the sparse categorical cross-entropy function using the
Adam optimizer (Kingma and Ba 2014) with default hyper-parameters: initial learning
rate α = 0.001, exponential decay rates for the first and second moments β1 = 0.9 and
β2 = 0.999, and ε = 10−7. We use a batch size of 256.

6.3 Results on the Bible Corpus

The attention model was trained in the pronunciation-to-spelling direction for each of
the languages/conditions until reasonable performance (low loss) was obtained on the
training set. We found that 5 epochs was generally sufficient for the training to converge.
The models were then evaluated on the held out test verses, omitting trivial predictions
such as the “pronunciation” of punctuation symbols. Neural model accuracy for the
different languages is shown in the fourth column of Table 5, where the language
configurations are sorted in alphabetic order.

The neural logography measures Stoken and Stype were computed as described above
and the lexical measures Ltype and Ltoken were computed by compiling a dictionary of
words and their pronunciations from the entire corpus for each language/condition.
The entropic measures Etoken and Etype were computed as described in Section 5.3. The

26 We use no dropout (Srivastava et al. 2014) or regularization.
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Figure 10
Language ranking (in increasing order of logography) according to Stoken and Stype (top row),
Ltoken and Ltype (middle row), and Etoken and Etype (bottom row).

resulting measures are given in columns 2–3, 5–6, and 7–8, respectively, of Table 5. To
compare the six measures, we first sorted the S and L measures in the increasing order
of logography (recall that lower values for these measures correspond to a lower degree
of logography). Because Etype is defined via the concept of mutual information, which
decreases with a higher degree of logography, we sort this measure in descending order.
A similar sorting order is followed for Etoken, which is based on the entropy difference.
The resulting rankings are shown in Figure 10.

Note that there is not a great deal of difference between the token- versus type-based
S measures. The ranking of Chinese (Cangjie) and Japanese (Cangjie) are reversed, and
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Figure 11
Stoken from the attention model versus lexical ambiguity Ltype.

similarly for French and Chinese (tokenized), and Russian and English, but these are all
local perturbations. The Etoken measure seems to work well for Chinese and Japanese in
that it places them as solidly logographic, but for other writing systems the ranking does
not seem to make a great deal of sense. The ranking for Etype is sensible in placing the
non-tokenized Chinese and Japanese, as well as French and English, among the highly
logographic systems, but misplaces tokenized versions of Chinese and assigns Swedish
a more logographic rank than both versions of Hebrew, which in turn bizarrely ranks
higher than tokenized Chinese.

Figure 11 plots Stoken (horizontal axis) against Ltype (vertical axis). While both Ltype
and Stoken rank Chinese and Chinese (Cangjie) as highly logographic, Ltype ranks French
as being more logographic than Japanese. In contrast, the Stoken measure ranks Chinese
and Japanese as most logographic, with only tokenized Chinese being ranked lower—
in this case lower than both varieties of Hebrew and French. Also, Finnish is the least
logographic system according to Stoken in contrast to Ltype, which ranks it as more
logographic than Hebrew, Korean, and Swedish. Interestingly, the estimates of both
measures for Swedish support our hypothesis that logographically, unlike its Danish
relative (Elbro 2006), Swedish is somewhat closer to Finnish than it is to English given
its shallow and relatively uncomplicated orthography (van Daal and Wass 2017). On
balance, S seems to accord more with intuition than L or E.

One thing that we note in the case of the Chinese single-character output (shown in
the first row of Table 5), is that in this case the attention model seems to be waiting until
it has read the whole input before it outputs its decision. This seems to be unique to this
condition, and it obviously has the result that virtually all of the attention is outside the
masked region. See Figure 12 for an example.27

27 This issue may also relate to the concerns expressed by Koehn and Knowles (2017), in particular in
section 3.5, where they note problems with interpreting attention in terms of word alignment in neural
MT systems. Generally though, how exactly attention corresponds to linguistic intuitions is less of a
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Figure 12
An example showing the attention for the output character ‘God’ in the Chinese
single-character output condition. Note that the attention in this case is all past the end of the
input.

For what it is worth, the S measures also seem to yield results that are more in
accord with Rogers’ intuition about the relative amount of logography (morphography)
in various systems; see, again, Figure 2. Of the systems mentioned by Rogers and treated
here, Rogers provides the following ranking from more to less logographic:

Japanese > Chinese > English > Russian > Korean > Finnish

This mostly accords with the ordering assigned by Stoken, in that the majority of the
encodings considered for Chinese are considered less logographic than Japanese, and
the rest of the ordering is the same, with the exception of the placement of English
relative to Russian:

Japanese > Chinese > Russian > English > Korean > Finnish

With Stype, the same ordering is obtained, except that now English and Russian are
ranked according to Rogers’ intuitions:

Japanese > Chinese > English > Russian > Korean > Finnish

In contrast, both L measures rank Korean as less logographic than Finnish, which seems
counterintuitive. Returning to the S measures, the main exception in both cases is
Hebrew, which Rogers would treat under West Semitic, and which turns out to measure
as much more logographic than his original scheme implied.

The difference for all measures for the various Chinese conditions, in particular
the tokenized and non-tokenized versions, underscores an important point: How logo-
graphic a system is depends on what one is trying to spell. Each syllable in Chinese
may be rendered by a variety of different Chinese characters, depending on which
morpheme is intended. So the system seems highly logographic from that point of
view. If one now expands the scope to involve the spelling of words rather than single
morphemes, the amount of ambiguity is reduced. It follows then that in order to resolve
how to spell a given phonological word, one will often have to look outside that word
far less than if one is trying to spell a given morpheme. Thus while the syllable dı̀ may
correspond to any of 6 different characters in the Bible corpus, the pair of syllables
tiāndı̀ has a unique spelling 天地 ‘heaven and earth’. So, in order to spell that syllable
sequence, one does not have to look further in the context than the two syllables
themselves.

concern for our work, because we are only concerned with whether the attention falls largely inside, or
outside, a fixed rectangle in the attention space.
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Figure 13
No correlation between accuracy and the spread Stoken (R2 = 0.08).

Finally, one concern is that there is some variation in the accuracy of the trained
neural models. Could that be affecting our results? Figure 13 attempts to address that
issue by showing that there is no correlation between accuracy and Stoken (R2 = 0.08),
suggesting that the differing quality of the different trained models cannot explain
the differences in the spread measure. Computing the same correlation for Stype and
accuracy yields an even smaller R2(0.04).

6.4 Comparison for Selected Languages on Wikipedia

In order to compare our results across different text genres, we selected four languages
that in our experiments on the Bible corpus were representative of minimal logography
(Finnish), intermediate amounts of logography (Korean and English), and a high degree
of logography (Japanese). We extracted sentences from Wikipedia for each of these
languages, and filtered for clean sentences in that there were only language-appropriate
graphemes, spaces, and punctuation (no numbers or other text normalization issues).
In particular, for English and Finnish we only allowed letters, spaces, and punctuation;
for Korean only hangeul, spaces, and punctuation; and for Japanese only kanji, hiragana,
katakana, spaces, and punctuation. We also filtered to remove sentences more than 100
characters long. We made no attempt to select sentences that were parallel or even
comparable.

We processed the Wikipedia data with the same tools as used for the Bible, and
selected 1 million tokens of each language, selecting 90% for training and the remaining
10% for evaluation. We then trained our baseline neural model as before, and evaluated
on the held-out data for Stoken and Stype. Results are shown in Table 6, where the counts
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Table 6
Neural (Stoken, Stype) logography measures for selected languages on Wikipedia.

Language Types Neural
# Train # Test Stoken Stype Accuracy

English 36,417 15,136 0.49 0.35 0.90
Finnish 145,146 36,409 0.18 0.12 0.90
Japanese 27,150 12,587 0.95 0.81 0.91
Korean (jamo) 150,145 42,524 0.28 0.23 0.90

of unique types in the training and evaluation sets are shown in the second and third
columns, respectively. As can be seen, the results are not largely different from what we
reported for the Bible in Table 5. Overall, accuracies are a bit lower, reflecting the wider
range of vocabulary in Wikipedia. But the S values are only somewhat different, with
the exception of Japanese, where Stype is 0.81, compared to 0.88 for the Bible corpus.

These results largely confirm our results from the Bible corpus for the rankings of
these languages. Although a Bible translation is perhaps not optimal as a corpus for
measuring the full range of logography in a language, it seems to be a good proxy if
other data are not available.

6.5 Experiments with High-quality Data

6.5.1 Japanese. Although the experiments reported above are informative, as we have
noted the results are limited by the quality of the phonetic transcriptions. In particular,
most of the systems we report on do not include homograph disambiguation, which
will inevitably bias to some extent our estimate of the level of ambiguity for some
homophones. Also, in some languages, such as Japanese, the tokenization is rather poor.

We therefore ran an experiment on the Japanese Bible data, automatically tran-
scribed with a high-quality text normalization system. Specifically, we used the Google
RoadRuNNer neural text normalization system (Zhang et al. 2019), trained on about
700 million tokens of Japanese text, mostly from Wikipedia, but also a small amount
of data from internal sources. The text itself had been previously verbalized using an
internal Japanese text-to-speech language analysis component. The system was trained
to provide pronunciations for all tokens. For Japanese, the RoadRuNNer system has
a roughly 1.5% word error rate on held out hand-corrected data. Since for internal
purposes pronunciations are rendered in hiragana, we used the Romkan package28 to
convert the pronunciations to romaji.

On the test data, the accuracy of the model was 0.91, and the Stoken measure was 0.70,
which is lower than what is found in Table 5. This can be attributed to the fact that for the
original Japanese corpus, the mean written token length was 1.38 characters, whereas
for the RoadRuNNer processed corpus, the mean word length is 1.89 characters. This, in
turn, is due to RoadRuNNer yielding more sensible tokenization than the KyTea tools
used in the corpus processing discussed previously. Once again, how logographic a
system seems to be under the distinct homophones measure depends upon what one
takes the tokens of interest to be.

In a similar vein, by way of example, the Ltype score is 1.1 (compared to 1.25 for
Japanese in Table 5) and the entropic Etoken score is−0.02 (compared to−0.05 in Table 5).
Both of these render Japanese with the longer tokens less logographic under the distinct
homophones measure.

28 https://pypi.org/project/romkan/.

508

https://pypi.org/project/romkan/


Sproat and Gutkin Taxonomy of Writing Systems

6.5.2 English. Similar to the experiment for Japanese reported in Section 6.5.1, we ran
an experiment with English, using the Bible data, and passing it through the linguis-
tic processing component of the Google US English text-to-speech system, part of
the Google Assistant. This component includes the Kestrel text normalization system
(Ebden and Sproat 2014), a very large carefully curated pronunciation lexicon, machine
learning to derive pronunciations for words not found in the lexicon (Rao et al. 2015),
and a homograph disambiguation component that handles hundreds of homographs
(Gorman, Mazovetskiy, and Nikolaev 2018).29

The accuracy of the neural model was 0.96, similar to that reported in Table 5. Stoken
was 0.41 and Stype was 0.29, again similar to the previously reported results. This in
turn suggests that our method will work as long as one can get reasonable overall
pronunciations for a language, and as long as different tokenizations do not come into
play. Note that, unlike the case of Japanese, the different processing of the English text
did not result in a different tokenization, and this seems to be the main cause of the
difference in Japanese reported in the previous section.

6.6 Data from Additional Languages using Epitran

In this experiment, we processed the Bibles from Christodoulopoulos and Steedman
(2015) investigating the languages supported by Epitran grapheme-to-phoneme (G2P)
conversion framework (Mortensen, Dalmia, and Littell 2018). Some of these languages,
like Swedish, were evaluated above using hand-curated pronunciation dictionaries,
while the others, like Shona (van de Velde et al. 2019) and Somali (Saeed 1999), are
low-resource and lack reliable pronunciation resources. The motivation behind this
is to investigate the performance of logography measures in low-resource language
scenarios where pronunciations derived by automatic means, with Epitran or other
approaches (Deri and Knight 2016; Novak, Minematsu, and Hirose 2016; Kirchhoff
et al. 2018), are the only option available.30,31

The results are shown in Table 7 for the neural attention-based measures S and the
lexical measures L. The same hyperparameters as in Section 6.2 were used for training
the attention model with the exception of the number of epochs, which we set to 10:
Epitran provides pronunciation predictions for all words, meaning that there are no
lost examples unlike with some of the languages in our previous experiments with other
open-source pronunciation tools; this results in larger amounts of training data for the
attention model. The corresponding language rankings according to the attention-based
measures S and lexical measures L are shown in Figure 14.

There are three languages (French, Russian, and Swedish) for which we can com-
pare the S and L measures between the higher-quality pronunciations in Table 5 and
the auto-generated ones. The results for both S measures accord with our intuition
that the hand-curated lexicons naturally contain more pronunciation variation that on

29 See https://github.com/google/WikipediaHomographData/blob/master/data/wordids.tsv for a list
of homographs covered.

30 Burmese and Thai are omitted from our set due to segmentation issues with the original data. Vietnamese
is omitted because while tone is marked in standard Vietnamese orthography, tone is not supported by
the Epitran pronunciation rules. Also among the omitted languages are Swahili, Ukrainian, and Zulu, for
which only the New Testament portion of the Bible was available, making the amount of training data for
the attention model significantly smaller than for other languages.

31 It is worth noting that in this study we use simple rule-based G2P methods, leaving more sophisticated
state-of-the-art neural approaches to low-resource G2P using multilingual representations (Peters and
Martins 2020; Zhao et al. 2020) for future work.
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Table 7
Neural and lexical logography measures with pronunciations derived using Epitran. Neural
model accuracy is reported per token. The prefix “S. A.” in Spanish refers to pronunciation
compromise between South American and Castilian dialects of Spanish adopted by the
developers of Epitran.

Language Training Test (Neural) Lexical

# Tokens # Types # Tokens Accuracy # Types Stoken Stype Ltoken Ltype

Amharic 332,197 76,512 159,092 0.973 27,851 0.2264 0.1820 1.0320 1.0028
Cebuano 693,146 25,847 335,985 0.963 11,058 0.3207 0.1771 1.7781 1.0761
Dutch 580,215 21,404 282,528 0.919 9,210 0.3542 0.1982 1.8632 1.0787
Farsi 537,752 38,037 261,287 0.963 14,451 0.3392 0.2172 1.0267 1.0050
French 580,403 24,234 280,557 0.870 7,714 0.5327 0.3435 3.7134 1.3596
German 558,747 20,626 270,213 0.925 7,944 0.3620 0.2179 1.9737 1.1289
Hindi 633,357 19,773 308,223 0.985 9,506 0.2550 0.1743 1.0543 1.0146
Hungarian 480,274 61,494 229,326 0.949 21,819 0.2585 0.1237 1.6233 1.0564
Indonesian 505,765 20,400 243,553 0.908 8,357 0.2513 0.1739 1.7966 1.1770
Marathi 510,964 48,096 245,707 0.983 19,613 0.1984 0.1411 1.0079 1.0018
Polish 488,441 40,902 226,455 0.959 15,991 0.3098 0.1774 1.7010 1.0932
Portuguese 560,116 28,677 270,904 0.947 11,284 0.3430 0.1845 1.9674 1.0919
Romanian 564,080 24,114 273,367 0.943 11,088 0.2888 0.1678 1.7241 1.1065
Russian 450,150 45,387 215,665 0.897 16,009 0.3217 0.1595 1.6182 1.0540
Shona 364,983 59,833 174,503 0.903 19,738 0.1616 0.1148 1.5545 1.0822
Somali 582,823 37,630 283,459 0.952 15,665 0.3049 0.1986 1.6129 1.0794
S. A. Spanish 573,958 27,105 277,761 0.947 11,016 0.6452 0.5396 2.3041 1.1147
Swedish 587,907 25,685 283,275 0.944 10,895 0.3575 0.1955 1.7326 1.0612
Tagalog 661,561 23,584 321,259 0.978 10,460 0.2982 0.1392 2.1257 1.0803
Telugu 354,095 82,033 170,049 0.990 30,213 0.1655 0.1126 1.0002 1.0000
Turkish 360,427 57,819 172,917 0.908 21,638 0.1778 0.1239 1.5369 1.1052
Xhosa 355,175 77,149 169,499 0.910 24,816 0.1904 0.1406 1.5523 1.0830

average results in a higher degree of logography than the corresponding configurations in
Table 7. This is especially true for French and Russian, where the differences between
S measures computed on hand-curated and auto-generated pronunciations, denoted
as (∆Stoken, ∆Stype), are (0.04, 0.02) for French and (0.14, 0.13) for Russian, respectively.
This difference is negligible for the S measures on Swedish, which indicates both the
relatively high quality of Swedish pronunciation rules in Epitran compared with both
French and Russian, and the relatively low degree of Swedish logography that allows
more context-independent pronunciation rules to correctly determine the orthography.
For the L measures things are a bit more mixed: For Ltoken, the Epitran pronunciations
yield higher logography values for all three languages. For Ltype Swedish counts as
slightly more logographic according to the Epitran pronunciations, but Russian and
French as less logographic.

The results for some of the languages in the ranking shown in Figure 14 may seem
surprising. For example, Spanish is typically held up as a language that has a highly
regular spelling system, so it seems odd that it ranks as highly logographic under both
the S and L measures. But a moment’s reflection will reveal that when people note this
property of Spanish, what they are referring to is the fact that it is easy to know how
to pronounce a word in Spanish, given the spelling. Indeed, Spanish orthography even
goes so far as to indicate lexical stress, when that cannot be induced from the regular
letter-to-sound correspondences of the system. But in order to know how to spell a
particular word, one often has to know which word from a set of homophonous words
are intended. Thus in our corpus, /sera/ can be spelled 〈sera〉 ‘evening’, 〈será〉 ‘will
be’, or 〈cera〉 ‘wax’. The first two arise since the Epitran pronunciations do not indicate
stress, so one might discount these, but the first and third are valid homophones for
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Figure 14
Language ranking with Epitran pronunciations (in increasing order of logography) according to
neural (Stoken and Stype, top) and lexical (Ltoken and Ltype, bottom) measures. In comparing this
plot with that in Figure 10, please note that the scales are different.

most dialects of Spanish. As another example consider /kaso/, which occurs as 〈caso〉
‘case’ 〈casó〉 ‘married’ or 〈cazó〉 ‘hunted’. There are in addition to these legitimate cases
instances where what is apparently the same name is spelled differently in different
portions of the corpus—for example, 〈Jahaziel〉, Jaasiel and Jaaziel, but one finds similar
variation in, for example, the English and Finnish corpora. So, in summary, at least some
of the choices the system is forced to make are legitimate, and lead to the conclusion
that from the point of view of the distinct homophones notion of logography, Spanish
is quite logographic.

For Indonesian, the L scores are relatively high, but this seems to be due to
variation in within word capitalization. Thus for /tindakanmu/ we find 〈TindakanMu〉,
〈Tindakanmu〉, 〈tindakanmu〉, and 〈tindakanMu〉. The S measures seem to be less
sensitive to this variation. We encounter a similar issue with other languages, such as
Shona. Modern Shona has uncomplicated and rather rigid orthography (Magwa 2002)
and the Stoken measure firmly ranks it as the least logographic of all languages in the
list. Similar to Indonesian, however, the Ltype measure for Shona cannot distinguish
between capitalization variants, where the spelling variants for /namwari/ (‘by god’)
include 〈naMwari〉, 〈Namwari〉, and 〈NaMwari〉. Some other higher logographic Ltype
scores for other languages, such as Turkish, can be explained similarly.
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6.7 Investigation of Alternative Neural Attention Architectures

So far our experiments have focused on one of the simplest neural sequence-to-
sequence architectures, the encoder-decoder RNN network with attention described by
Bahdanau, Cho, and Bengio (2015). In this section we investigate the performance of
neural logography measures using some alternative neural models of attention that
have been proposed since. Although the models under investigation are significantly
different structurally, it is interesting to note that fundamentally they still form a bipar-
tite architecture, going back to the work of Cho et al. (2014) and Sutskever, Vinyals, and
Le (2014), equipped with some form of attention mechanism of varying complexity. We
hypothesize that this organizing principle should reinforce our tentative neural view of
logography (based on the S measures computed over the alignments between pronun-
ciations and corresponding spellings) for these types of more sophisticated models as
well.

6.7.1 Transformer Architecture. This type of model was introduced by Vaswani et al.
(2017). Unlike other bipartite attention architectures for sequence-to-sequence modeling
that utilize recurrent or convolution layers in their encoder and decoder components,
the transformer model replaces these in both the encoder and the decoder with N
stacked layers each consisting of a multihead self attention mechanism and feed-forward
network. An additional multihead self attention layer in the decoder serves as an
interface to the decoder receiving its input from the encoder. The multihead self at-
tention is a key component of the transformer architecture. Informally, within each
transformer layer instead of computing attention once, the multihead mechanism splits
the inputs into h smaller portions and then computes the scaled dot-product attention
over each subspace independently. The parallel attention outputs are then concatenated
and linearly transformed using a feed-forward network. Since its inception this archi-
tecture has become a de facto standard modeling paradigm, its numerous flavors and
generalizations achieving state-of-the-art results in many NLP tasks (Devlin et al. 2019;
Dehghani et al. 2019; Dai et al. 2019; Kitaev, Kaiser, and Levskaya 2020).

Network Details. Our transformer model is based on one of the public-domain Ten-
sorFlow implementations of the original model by Vaswani et al. (2017).32 We use
N = 4 layers in both the encoder and the decoder, h = 8 parallel heads in the attention
mechanism, set the size of the feed-forward layer to dff = 512, the dimension for model
inputs and outputs, and the respective embeddings, dmodel = 128. The rest of the model
parameter details, such as normalization and optimization strategy, are as per Vaswani
et al. (2017). We set the batch size to 256 and train the model for 15 epochs. We denote
the thus constructed transformer configuration V.

Multihead Self Attention and Logography. The canonical transformer model by Vaswani
et al. (2017) has three attention mechanisms: the self attentions in the encoder and
decoder, and the decoder-encoder attention in the decoder that performs attention over
the encoder stack outputs. It is the latter mechanism that is of primary interest to us for
the purpose of computing the neural logography measures S over a matrix of attention
weights between pronunciations and corresponding spellings. One difficulty that nat-
urally arises in the transformer setting is how to select the appropriate representation

32 https://blog.tensorflow.org/2019/05/transformer-chatbot-tutorial-with-tensorflow-2.html.
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of attention weights given multiple self attention heads. There has been an increased
research focus on analyzing the behavior of attention mechanisms in various flavors of
transformer models in order to understand the linguistic function of the attention and
also improve model compression schemes (Clark et al. 2019; Michel, Levy, and Neubig
2019; Vig and Belinkov 2019; Voita et al. 2019; Behnke and Heafield 2020; Wang et al.
2020; Rogers, Kovaleva, and Rumshisky 2021). While in-depth investigation into the
precise role the multiple attention heads play for logography is outside the scope of
this work, we opt for a simple strategy whereby we inspect multiple attention heads in
the top layer of the decoder-encoder attention block. To compute the attention weight
matrix over the multiple heads we utilize two basic approaches: averaging all the heads
(Voita et al. 2018) (denoted VA) and choosing the maximum element from any of the
heads (Tang, Sennrich, and Nivre 2018) (denoted VM).

Results. The evaluation of the transformer model on the Bible corpus is shown in Table 8,
where the results for transformer configurations VA and VM (computed using the same
transformer model V, hence we show a single accuracy column) are shown alongside
our core RNN model (denoted B) from the previous sections (the evaluation data are
described in Table 4). As can be seen from the table, transformers are significantly
more accurate on our task, outperforming the Bahdanau RNN configuration by 4.6%
on average over the given 14 writing system configurations.

Examining the languages from the original Rogers’ logography ranking from
Section 6.3, the first three languages with the most degree of logography (Japanese >
Chinese > English) that obey Rogers’ intuition are consistently ranked by all four neu-
ral transformer measures. The language rankings for the remaining least logographic
languages vary. The “averaging” token-based measure SVA

tok swaps Finnish and Korean
around, while its type-based counterpart SVA

typ swaps around Korean and Russian. The
ranking produced by measure SVM

tok for languages in Rogers’ list is identical to the ranking

Table 8
Neural (Stoken and Stype) logography measures computed on the Bible corpora. The first measure
(denoted B) corresponds to the RNN configuration from Table 5 and is copied here to ease the
comparison. The rest of the measures were computed for a single transformer model V, where
VA and VM measures were computed by combining over multiple heads in the last decoder
block by averaging and choosing the maximum element, respectively.

Language B VA VM

SB
tok SB

typ Acc. SVA
tok SVA

typ Acc. SVM
tok SVM

typ

Chinese 1.00 1.00 0.85 0.87 0.84 0.95 0.80 0.74
Chinese (Cangjie) 0.74 0.71 0.87 0.79 0.76 0.94 0.65 0.61
Chinese (tok.) 0.55 0.37 0.89 0.90 0.81 0.93 0.91 0.82
Chinese (tok., Cangjie) 0.51 0.32 0.78 0.84 0.75 0.90 0.84 0.73
English 0.40 0.32 0.95 0.81 0.73 0.98 0.75 0.68
Finnish 0.19 0.12 0.96 0.34 0.24 0.98 0.37 0.26
French 0.57 0.36 0.89 0.52 0.35 0.94 0.51 0.33
Hebrew (Biblical) 0.65 0.50 0.94 0.44 0.30 0.96 0.39 0.28
Hebrew (Modern) 0.72 0.56 0.87 0.53 0.35 0.92 0.49 0.31
Japanese 0.97 0.88 0.94 0.94 0.85 0.96 0.92 0.83
Japanese (Cangjie) 0.88 0.65 0.92 0.90 0.83 0.96 0.90 0.84
Korean (jamo) 0.26 0.21 0.96 0.33 0.26 0.99 0.33 0.27
Russian 0.46 0.29 0.89 0.38 0.25 0.93 0.40 0.27
Swedish 0.35 0.20 0.90 0.43 0.27 0.91 0.47 0.33
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Table 9
Neural (Stoken and Stype) logography measures computed on the subsets of Wikipedia using
transformer architecture V. Multihead attention strategies similar to Table 8.

Language VA VM

SVA
tok SVA

typ Acc. SVM
tok SVM

typ

English 0.53 0.42 0.94 0.53 0.42
Finnish 0.46 0.40 0.96 0.54 0.50
Japanese 0.86 0.75 0.92 0.84 0.73
Korean (jamo) 0.36 0.31 0.97 0.34 0.30

from SVA
tok . The measure SVM

typ is the only transformer-based measure out of the four that
nearly ranks the languages according to Rogers’ intuition, however it cannot distinguish
between Korean and Russian, which both receive an identical score of 0.27. In addition,
all the four neural measures correctly identify modern Hebrew as more logographic
than Biblical Hebrew, but place English as significantly more logographic than French,
as opposed to the inverse ranking obtained with our core RNN-based neural measures
S.

It is worth noting that the scores in each of the four transformer-based logography
rankings appear to be slightly more “clumped,” offering smaller resolution compared to
the corresponding RNN-based scores. For example, Finnish is not as “purely“ phono-
graphic and Chinese not as “purely” logographic according to transformer measures
(V) if we compare them to the RNN ones (B). This is most likely due to the difficulties in
interpreting multiple self-attention transformer heads that require us to combine them
in ways that introduce unnecessary noise.

Finally, we computed the neural logography measures using the transformer ar-
chitecture trained on the Wikipedia subsets of the four languages. The corresponding
results obtained with the RNNs are shown in Table 6 of Section 6.4. The neural S mea-
sures computed from attention averaged across attention heads (VA) and element-wise
maximum (VM) are shown in Table 9. Similar to our experiments on the Bible corpus, the
transformer architecture outperforms its RNN counterpart in terms of pronunciation-to-
spelling accuracy by about 4.5% on average. In terms of logography rankings, the best
configuration again corresponds to the rankings VA computed from attention averaged
across multiple self attention heads. We note that the VM configuration is clearly worse,
ranking Finnish more logographic than English. In contrast, both the token- and type-
based measures SVA

tok and SVA
typ produce a ranking of the form Japanese > English >

Finnish > Korean, which is better than VM and more acceptable, but is still different
from the more intuitive corresponding RNN ranking from Table 6 that places Korean
above Finnish.

6.7.2 Convolutional Architecture. In this type of model the recurrent units of the RNNs
are replaced with temporal convolutions while retaining the original encoder-decoder
structure. Prior to the emergence of now dominant transformer-based architectures,
temporal convolution networks (TCNs) were shown to be competitive with RNNs in
certain scenarios on several NLP tasks, such as language modeling (Bai, Kolter, and
Koltun 2018) and neural machine translation (Kalchbrenner et al. 2016; Kaiser, Gomez,
and Chollet 2018). Evaluating this type of model equipped with an attention mechanism
on the logography task is interesting because this architecture is sufficiently different
from both the RNNs and transformers.

514



Sproat and Gutkin Taxonomy of Writing Systems

The TCN architecture in this study (which we denote G) mostly follows the fully
convolutional sequence-to-sequence attention-based architecture proposed by Gehring
et al. (2017), with some minor modifications. Both the encoder and decoder consist of
stacked blocks with each block consisting of a temporal convolution layer with residual
connection from the input of each convolution to the block’s output, followed by non-
linearity implemented with gated linear units proposed by Dauphin et al. (2017). Our
modifications to the original architecture include dilated convolutions (Yu and Koltun
2016; van den Oord et al. 2016), which are causal in the decoder, inspired by the ByteNet
architecture by Kalchbrenner et al. (2016), and the positional embeddings in the encoder
described by Devlin et al. (2019).

Multistep Attention. Each decoder layer in this architecture is equipped with the at-
tention mechanism that is mostly similar to the RNN attention by Luong, Pham, and
Manning (2015) and is computed using the current decoder state, the embedding of
the target element, outputs from the last encoder block, and, unlike the traditional
RNN attention, the encoder input embeddings (Gehring et al. 2017). The context vector
computed using the attention mechanism and the corresponding residuals is used as
an input for the next decoder block. Unlike the transformers considered earlier, the
attention in each decoder layer has a single head, but one still has multiple potential
alignments to consider when computing neural logography measures S. For the TCN
architecture we investigate five ways of inspecting or combining the alignments given
multiple layers of attention: averaging over all the layers (A), selecting the maximum
element from the available attention scores (M), multiplying the attention scores (J),
and simply selecting the attention in the decoder’s bottom (B) or top (T) layers.

Network Details. Our TensorFlow implementation is based on the original implementa-
tion of Gehring et al. (2017) in the FAIRSEQ toolkit (Ott et al. 2019),33 but our parameters
differ. Both the encoder and the encoder components consist of two temporal convolu-
tion blocks with 256 hidden units. Because the gated linear units require the dimension
of the inputs to be twice the size of the outputs, this amounts to 512 hidden units for
the actual temporal convolution layers. We set the convolution kernel width k = 3 and
exponential dilation rates to 1 (for the bottom layer) and 2 (for the top layer). Causal
padding is used in the decoder convolution layers. The dimensions of input and target
embeddings is 64. During training we apply dropout (Srivastava et al. 2014) with a rate
of 0.1 to all the embedding and convolution layers. Our optimization strategy follows
the work of Vaswani et al. (2017), while the rest of the parameters including the residual
scaling factors are used as described by Gehring et al. (2017). As with transformers, we
employ a batch size of 256 and train the models for 15 epochs.

Results. We trained and evaluated the TCN architecture G on the Bible corpus. The
results are shown in Table 10 where, in addition to the usual accuracy metric, we
evaluate the logography measures S using five different ways of inspecting the TCN
multistep attention mechanism within the same model: Averaging over all the layers
(A), choosing the maximum element from the available layers (M), choosing the top (T)
or bottom (B) layer, and element-wise multiplication (J). We start by observing that in
terms of pronunciation-to-spelling prediction accuracy, our TCN architecture performs
nearly as well as the transformer architecture (see Table 8); the average performance

33 https://github.com/pytorch/fairseq/.

515

https://github.com/pytorch/fairseq/


Computational Linguistics Volume 47, Number 3

Table 10
Neural (Stoken and Stype) logography measures computed on the Bible corpora using fully
convolutional architecture (denoted G). Attention combination strategies: Averaging (A),
choosing maximum (M), top layer (T), bottom layer (B), and multiplying (J).

Language GA GM GT GB GJ
Acc.

SGA
tok SGA

typ SGM
tok SGM

typ SGT
tok SGT

typ SGB
tok SGB

typ SGJ
tok SGJ

typ

Chinese 0.63 0.63 0.63 0.63 0.59 0.60 0.67 0.67 0.73 0.73 0.89
Chinese (Cangjie) 0.42 0.41 0.42 0.41 0.47 0.50 0.37 0.31 0.49 0.47 0.93
Chinese (tok.) 0.54 0.36 0.54 0.36 0.39 0.26 0.69 0.46 0.99 0.98 0.91
Chinese (tok., Cangjie) 0.39 0.31 0.40 0.31 0.47 0.35 0.31 0.26 0.29 0.20 0.92
English 0.30 0.21 0.30 0.22 0.38 0.27 0.21 0.16 0.32 0.23 0.99
Finnish 0.29 0.20 0.30 0.21 0.28 0.18 0.31 0.22 0.27 0.18 0.99
French 0.49 0.29 0.49 0.30 0.45 0.27 0.52 0.31 0.38 0.21 0.94
Hebrew (Biblical) 0.44 0.35 0.45 0.36 0.44 0.34 0.45 0.36 0.43 0.33 0.96
Hebrew (Modern) 0.41 0.31 0.41 0.32 0.43 0.33 0.38 0.30 0.41 0.30 0.93
Japanese 0.75 0.56 0.75 0.56 0.91 0.67 0.59 0.44 0.97 0.87 0.94
Japanese (Cangjie) 0.55 0.37 0.55 0.37 0.75 0.43 0.35 0.30 0.57 0.35 0.96
Korean (jamo) 0.24 0.19 0.25 0.20 0.28 0.22 0.19 0.16 0.20 0.16 0.99
Russian 0.34 0.23 0.35 0.24 0.39 0.25 0.29 0.22 0.38 0.24 0.93
Swedish 0.41 0.31 0.41 0.32 0.39 0.22 0.43 0.40 0.34 0.18 0.92

degradation being around 0.4% computed over 14 writing system configurations. As
can be seen from Table 10, in terms of logography measures, all the configurations
rank Japanese and Chinese as the most logographic, although the S measures computed
using the bottom layer (GB) and using the element-wise product of attentions (GJ) both
rank Chinese solidly above Japanese. Furthermore, the measures computed from layer-
wise average (GA) and element-wise maximum (GM) rank Russian as more logographic
than English and place Finnish above Korean. Perhaps unsurprisingly, we find that the
most satisfactory configuration is GT, which corresponds to the S measures computed
using Equation (8) (Section 5.1) from the attention in the top layer of the decoder. Out of
the two measures, the type-based SGT

typ matches Rogers’ ranking and mostly corresponds
to our intuition. The resulting ranking is not without oddities—similar to all other
rankings in Table 10, the best configuration places Biblical Hebrew as more logographic
than Modern Hebrew and places English and French on equal footing, something at
which its token-based counterpart SGT

tok does a better job.
We also evaluated the TCN architecture on Wikipedia subsets of the four languages,

similar to the previously described experiments with the RNN (Table 6) and transformer
architectures (Table 9). Evaluation results for token- and type-based logography mea-
sures S computed for five TCN configurations are shown in Table 11. With the excep-
tion of Japanese, the TCNs for other languages outperform the corresponding RNN
configurations by at least 3% in terms of accuracy. Inspecting the logography measures,
both token- and type-based S measures corresponding to layerwise averaging (GA),
layerwise maximum (GM), and bottom decoder layer (GB), as well as the type-based
product (GJ) measure, are problematic because they misplace Finnish above English.
Similar to our findings on the Bible corpus, the configuration GT corresponding to
the neural measures computed over the attention in the top decoder block produces
ranking that makes most sense: Japanese > English > Finnish > Korean. This mirrors
the ranking produced by the best transformer configuration (shown in Table 9) and has
a similar problem of placing Finnish as more logographic than Korean.

516



Sproat and Gutkin Taxonomy of Writing Systems

Table 11
Neural (Stoken and Stype) logography measures computed on the Wikipedia subsets using fully
convolutional architecture G. Attention strategies identical to Table 10.

Language GA GM GT GB GJ
Acc.

SGA
tok SGA

typ SGM
tok SGM

typ SGT
tok SGT

typ SGB
tok SGB

typ SGJ
tok SGJ

typ

English 0.35 0.25 0.35 0.26 0.38 0.26 0.32 0.25 0.29 0.18 0.93
Finnish 0.42 0.37 0.43 0.38 0.27 0.21 0.57 0.54 0.27 0.20 0.96
Japanese 0.46 0.29 0.46 0.29 0.51 0.29 0.41 0.28 0.56 0.44 0.87
Korean (jamo) 0.28 0.25 0.29 0.26 0.23 0.19 0.33 0.30 0.20 0.17 0.98

6.7.3 Summary of Additional Neural Experiments. In this section we have examined two
further neural architectures, namely, transformers and temporal convolutional net-
works, both of which are more “state-of-the-art” than the simple attentional neural
model introduced in Section 4 and used in the main experiments above. While the more
sophisticated models perform better on the task of converting from spoken to written
form, the logography measures that we derive from them are not clearly better than
those derived from the simpler model. Part of the problem is that because these models
have many more moving parts—the transformer in particular has multiple layers and
heads of attention mechanism that one might consider—it is harder to know what
representation one should be using in order to derive the measure we seek. For both
transformers and the convolutional models we tried several different possible ways of
extracting the information, but it is still possible that we missed a way that would have
produced a better alignment to our previous results.

Ultimately, the advantage of our initial model for this task is its great simplicity:
Because there is but one attention matrix, there is no question about what we should
be looking at, and the computation is therefore straightforward. This observation is in
line with the findings of the line of research that deals with NLP model interpretability
and faithfulness which prefers simpler neural architectures (Wiegreffe and Pinter 2019;
Moradi, Kambhatla, and Sarkar 2021).

7. Critique and Limitations

In Section 2 we presented two distinct ways in which a writing system could be con-
sidered logographic. One, which we have termed the distinct homophones notion,
is based on the idea that a word should be spelled in a way that is particular to
that word, regardless of whether that results in different spellings for words that are
homophonous. As we pointed out, this notion is what Sampson (1985) appealed to
when he presented English orthography as a partly logographic system. The second
was what we termed the uniform spelling notion, which prescribes that the same
morpheme should be spelled the same way even if morphophonological changes result
in different pronunciations for the morpheme in different environments. In this article,
we have focused on the distinct homophones notion.

One obvious criticism of our approach is to suggest that we have merely redefined
the term logography to mean a system in which homophonic words are spelled differ-
ently simply by virtue of their being different words, and that this goes against the
spirit of what authors have meant by the term logograph. The most obvious reply to
this criticism is that, as we showed in Section 2.1, previous authors are by no means
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clear on precisely what is meant by the term “logography,” and nothing in the way of
a formal definition is ever given. It therefore seems reasonable to attempt to define the
term by considering what procedure one might use to determine when one has a case
of logography, and we have provided one such proposal in this article.

Still, one could insist that we have missed the point that in many systems that are
considered logographic, there are components of written symbols that clearly do not
indicate the pronunciation, but rather something to do with the meaning. To repeat
an example we gave above: 琵琶 ‘Chinese lute’ versus 枇杷 ‘loquat’, both pronounced
pı́pá in Mandarin, both having the same phonetic components 比巴 biba, and differing
only in the semantic element used: 木 ‘tree’ in the case of ‘loquat’ and 王王 for ‘musical
instrument’ in the case of ‘lute’. One could argue that these semantic elements are
central to what authors have in mind when they use the term “logography.” Of course,
the methods we have presented in this article would certainly count these examples as
logographic since the two words are homophonous, and one therefore requires context
to determine which one is intended. But suppose for the sake of argument that only
one of the words actually existed, say 枇杷 ‘loquat’, and suppose also for the sake of
argument that this was the only word pronounced pı́pá. Given that the written form still
contains an obviously non-phonological element 木, would the fact that there were now
no homophones make this example any less logographic?

We have two responses to this objection. The first is that while all originally in-
vented writing systems of Mesopotamia, Egypt, China, and Meso-America share the
characteristic of using a mix of semantic and phonological components, logography, as
the term has been used in the literature, does not seem to consist merely in the existence
of such elements in the writing system. Once again, Sampson (1985) argued that English
spelling is at least partly logographic in that it makes a point of distinguishing in writing
words that are homophonous in pronunciation. Clearly English has nothing equivalent
to the 木 or 王王 semantic components, and so the presence of such components is not
really a necessity for a system to count as logographic. In a similar vein the heterograms
of Middle Persian, discussed in Section 2.2.2, which are widely considered as instances
of logography, have nothing equivalent to Chinese semantic components.

Our second response is that to determine how logographic a system is, one has to
consider the whole system, not just individual cases. While the removal of 琵琶 from
the system would render 枇杷 non-logographic according to our measure, it would
not have much of an effect on the logographicity of Chinese as a whole. To be sure,
if there were never any homophonic words, then our measures would count the system
as highly phonographic (S close to 0), no matter how many semantic components were
still found as part of the written characters. But one would have to ask how likely such a
system is to have occurred by chance: One would need a system in which there were no
homophonic words at all (a priori unlikely) and in which nonetheless semantic elements
were used to indicate some aspect of the meaning of the word. One could of course
imagine something like such a system being developed by fiat: Suppose one started with
a system like Chinese where there were in fact many homophonic words or morphemes,
and where these were often distinguished in writing by additional components repre-
senting some aspect of the meaning of the word or morpheme in question. Suppose one
then decided that every phonological unit (syllable or in some cases disyllable) should
be represented by one and only one of the symbols used previously to distinguish
among different words. The (originally) semantic components would still be present,
though their semantic relevance would have been largely eliminated. Such a system
does exist: the Yi syllabary (Shi 1996) mentioned above in the discussion of Penn and
Choma (2006), which historically developed (by committee) from a Chinese-influenced
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semantic-phonetic logographic script. Despite its logographic origins, the Modern Yi
system is largely phonographic.34

We therefore believe that the criticisms cited above can be answered satisfactorily,
and that the measures we have proposed for determining how logographic a system
is are adequate for the one notion of logography we have addressed in this article. We
furthermore believe that this notion of logography is sound. Of course, the measure is
only as good as the corpora from which it is derived and the tools used to construct
the corpora. We have noted the limitations of the tools in our discussion of the data
preparation above. As for the corpora, obviously the Bible does not provide a full
sample for any language, though we have also shown that the measures remain robust
when we consider a different corpus, namely, Wikipedia. Still one might still expect
the measures to be sensitive to the corpus used. Needless to say, this will be true of
any attempt to formalize and quantify a notion such as logography: One is always
dependent on the sample of the language that one chooses, and there is really no way
to define the notion independent of specifying what data one is working with.

8. Conclusions

This article has explored an idea that was first introduced in Sproat (2000). Whereas
writing systems can be classified into fairly distinct buckets according to what phono-
logical units the systems represent, writing systems can also be classified according
to how logographic they are. But this dimension is best treated as orthogonal to the
phonological dimension, and as continuous rather than categorical.

We have argued that a previous attempt of Penn and Choma (2006) to quantify
the difference between more or less logographic systems in fact fails to measure this
distinction at all, but seems instead to be an artifact of using different text sizes in their
two corpora.

We then presented an alternative approach, focusing on one notion of logography,
which we have termed the distinct homophones notion. We have argued that one way
to measure this is to consider the amount of attention paid outside the word in a simple
attention-based RNN model when trying to spell that word given its pronunciation and
the context in which it occurs, by an attention-based sequence-to-sequence model. This
seems like an intuitively satisfying measure insofar as it relates to the intuition that in
a highly logographic system, in order to know how to write a word, one must know

34 The above arguments justifying our notion of logography might still not satisfy those who would argue
that writing systems like those of Chinese or Japanese, which make their logography overt in the form of
the semantic radicals (Section 4), should be treated as a separate taxonomic class; two examples of such a
position can be found in work of Joyce (2011) and Handel (2019). As noted in Section 1, Joyce argues
against the term logography, favoring instead morphography, precisely because for him it is crucial that
Chinese (and Japanese) characters represent morphemes rather than words, and of course as opposed to
the letters of an alphabet, which basically represent sounds. The problem with this all-or-nothing view is
that it has no way of describing systems like English orthography, other than to say that English spelling
is just irregular. But this misses the point that English spelling irregularities function in much the same
way as the more extreme and more overtly logographic systems of Chinese and Japanese, namely, to
distinguish words or morphemes that would otherwise be written the same way. English orthography,
the Perso-Aramaic heterograms we discussed in Section 2.2.2, and all other writing systems that have
become more logographic over time are of course all secondary developments, unlike the case of
Chinese, which has always had a strong logographic (or morphographic) component. Nevertheless, the
fact that English uses a script where the basic elements are phonographic should not obscure the point
that English orthography uses the elements of that script in ways that cannot be reconciled with the view
that English is simply a phonographic writing system.
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not only how it is pronounced, but which specific word or morpheme (among various
possible identically pronounced words or morphemes) is involved.

This measure was compared to two computationally much simpler methods,
namely, our L measures, which involved computing the mean number of spellings for
given pronunciations found in a dictionary or corpus, as well as two E measures based
on n-gram entropy. Although these also plausibly relate to the notion of logography, we
have argued that they are ultimately less satisfactory than the attention measure S in the
way they rank various writing systems. We also compared this measure to some more
modern neural architectures, and while the results are comparable to what we achieved
with the simpler model, we argued that they also show no great advantage over the
simpler model.

In addition to the distinct homophones notion of logography, we also introduced
the uniform spelling notion of logography, for which, however, we did not provide a
method for measuring. We leave this problem to future work.

The results presented here are admittedly hard to evaluate, given that there is
no defined evaluation set that ranks the degree of logography of various languages.
One therefore cannot evaluate against “ground truth.” We believe, however, that our
results are useful for two reasons. First, we provide the first quantifiable measure of a
notion that has been around for a long time, but has only occasionally been precisely
defined. We noted in Section 2.1 that the distinct homophones notion of logography
that we evaluate in this article corresponds exactly to the definition used by Handel
(2019): Assuming Handel’s definition is to be taken seriously, our work shows what
that would mean for assessing how logographic a writing system is. Second, we believe
that quantitative analysis of the kind we present here serves as a sort of baseline for
future rigorous work on this topic.

Still, in principle we would like to correlate the results of our work reported here
with results in the acquisition of reading and writing—with the acquisition of spelling
being most directly relevant to the distinct homophones notion of logography. One
would expect that the logographic rankings of writing systems reported here would
correlate with the difficulty that native speakers of the language have in learning to spell
in their writing system. Unfortunately, this is very hard to verify. Despite the existence
of volumes that in principle deal with cross-linguistic comparison (e.g., Perfetti, Rieben,
and Fayol 1997) there is really a dearth of careful cross-linguistic work. Part of the prob-
lem is that controlled comparison is hard, because reading and writing acquisition is
obviously affected by the education system, when children learn to read and write, and
how they are taught, and all these things vary substantially across countries. Another
part of the problem is the overwhelming “Anglocentrism” of work on spelling and
reading (Share 2008). And even when studies exist that compare spelling acquisition
across languages, these invariably deal with just a handful of languages, often just two
for a given study. That said, one study that does briefly survey prior work is Marinelli
et al. (2015). Their own study compared spelling acquisition in primary school children
in England and Italy, and found that Italian-speaking children were able to acquire
accurate spelling after only two years of schooling, whereas English-speaking children
still showed poor performance after 5 years. The paper also cites other studies that
show similar results where a more “transparent” orthography is compared with a more
“opaque” orthography, such as Czech versus English (Caravolas and Bruck 1993), Ice-
landic versus Danish (Juul and Sigurdsson 2005), and German versus English (Wimmer
et al. 1991). While our experiments do not directly compare German and English, our
Epitran experiments do compare German and French, and yield a substantially lower
logography measure for German for Stype; whereas our main experiments show French
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as being just slightly more logographic than English for Stype, suggesting that German
would in any case count as less logographic than English, which is at least consistent
with reported results for spelling acquisition. In general, the rankings in figures 10 and
14 for Stype are consistent with the finding in the literature on spelling acquisition that
more opaque orthographies make it harder to learn to spell, the only surprise being
Spanish, which we already discussed above.35

While our purpose in this article has been to investigate a question of interest in the
study of writing systems, it may be reasonable to ask what broader applications results
of this kind could have.36 We do think that measures of the sort we propose could inform
other areas. For example, assuming one can compute in the grapheme-to-phoneme
direction a reasonable pronunciation for words in running text, our measure could
highlight cases where transducing in the other direction, from phonemes to graphemes,
could be potentially problematic. We noted a somewhat surprising instance of that,
with Spanish, in Section 6.6. This could for example have implications for Automatic
Speech Recognition, since in such cases the system has the potential to make a mistake
in transcription; or in applied areas such as second-language learning (or even first
language literacy), to identify potential areas where students may have problems.

Finally, we noted in the introduction that for the present ancient languages are
outside the scope of the investigation since the methods we propose require a reasonable
minimum amount of data. This is unfortunate insofar as all the originally invented
ancient writing systems, and many of their derivatives had significant amounts of
logography. We also mentioned in Section 2.2.2 the case of Middle Persian, which also
had significant amounts of logography in the form of aramaeograms, Persian words
that were spelled as the semantically equivalent Aramaic word. We would expect that
the methods proposed in this article, applied to appropriately annotated corpora of
Egyptian, Sumerian, Akkadian, Mayan, or Middle Persian would yield a high measure
of logography for these writing systems. Hopefully, with further development of on-
line corpora in such projects as the Cuneiform Digital Library Initiative,37 Thesaurus
Indogermanischer Text- und Sprachmaterialien (including Middle Persian),38 or the
Ramses Online project,39 we may be able to address this problem in future work. If
this becomes possible we would be able to quantify the degree to which the world’s
writing systems have become on balance less logographic over time, an interesting
computational twist on Gelb’s original intuition.

Appendix A: Further Details of Data Preparation

Table A.1 summarizes the details of data preparation (Section 6.1) for the languages
used in the main experiments.

35 For a different approach to this issue see Beinborn, Zesch, and Gurevych (2016), who train a model to
predict spelling difficulty, based on corpora of spelling errors in three languages.

36 We note in passing that such burden of proof of broader interest is inconsistently applied across areas of
computational linguistics. For example, the authors of a paper on an improvement to machine translation
or question answering would most likely not get such a question. On the other hand, the first author has
in the past received comments on a paper on text normalization for speech synthesis that questioned the
importance of the results since they seemed only to be of interest to TTS. Because one of the stated goals
of the field of computational linguistics is to understand natural language phenomena via computational
methods, such biases seem out of place.

37 https://cdli.ucla.edu/.
38 https://titus.uni-frankfurt.de/indexe.htm?/texte/texte2.htm.
39 https://be.dariah.eu/project/ramses-online.
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Table A.1
Summary of the resources used for each of the languages.

Language Phonetic Transcription Additional packages/sources used

English ARPAbet https://pypi.org/project/pronouncing/
French Idiosyncratic system http://www.lexique.org/databases/Lexique383
Russian Idiosyncratic system https://github.com/kylebgorman/wikipron
Finnish Finnish letters
Swedish SAMPA-derived http://www.nb.no
Hebrew (Biblical) Idiosyncratic system
Hebrew (Modern) Idiosyncratic system https://www.mechon-mamre.org

Korean Revised Romanization https://pypi.org/project/ko-pron
Chinese Pinyin https://pypi.org/project/pinyin/

http://www.phontron.com/kytea
https://github.com/chezou/Mykytea-pythonJapanese Romaji
https://github.com/JRMeyer/jphones
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