
Approximating Probabilistic Models as
Weighted Finite Automata

Ananda Theertha Suresh
Google Research
theertha@google.com

Brian Roark
Google Research
roark@google.com

Michael Riley
Google Research
riley@google.com

Vlad Schogol
Google Research
vlads@google.com

Weighted finite automata (WFAs) are often used to represent probabilistic models, such as
n-gram language models, because among other things, they are efficient for recognition tasks
in time and space. The probabilistic source to be represented as a WFA, however, may come in
many forms. Given a generic probabilistic model over sequences, we propose an algorithm to
approximate it as a WFA such that the Kullback-Leibler divergence between the source model
and the WFA target model is minimized. The proposed algorithm involves a counting step and a
difference of convex optimization step, both of which can be performed efficiently. We demonstrate
the usefulness of our approach on various tasks, including distilling n-gram models from neural
models, building compact language models, and building open-vocabulary character models. The
algorithms used for these experiments are available in an open-source software library.

1. Introduction

Given a sequence of symbols x1, x2, . . . , xn−1, where symbols are drawn from the alpha-
bet Σ, a probabilistic model S assigns probability to the next symbol xn ∈ Σ by

ps[xn|xn−1 . . . x1]

Some of the results in this article were previously presented in Suresh et al. (2019).

Submission received: 13 January 2020; revised version received: 11 September 2020; accepted for publication:
6 January 2021.

https://doi.org/10.1162/COLI a 00401

© 2021 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:theertha@google.com
mailto:roark@google.com
mailto:riley@google.com
mailto:vlads@google.com
https://doi.org/10.1162/COLI_a_00401

Computational Linguistics Volume 47, Number 2

Such a model might be Markovian, where

ps[xn|xn−1 . . . x1] = ps[xn|xn−1 . . . xn−k+1]

such as a k-gram language model (LM) (Chen and Goodman 1998) or it might be
non-Markovian such as a long short-term memory (LSTM) neural network LM
(Sundermeyer, Schlüter, and Ney 2012). Our goal is to approximate a probabilistic
model as a weighted finite automaton (WFA) such that the weight assigned by the
WFA is close to the probability assigned by the source model. Specifically, we will seek
to minimize the Kullback-Leibler (KL) divergence between the source S and the target
WFA model.

Representing the target model as a WFA has many advantages, including efficient
use, compact representation, interpretability, and composability. WFA models have
been used in many applications including speech recognition (Mohri, Pereira, and
Riley 2008), speech synthesis (Ebden and Sproat 2015), optical character recognition
(Breuel 2008), machine translation (Iglesias et al. 2011), computational biology (Durbin
et al. 1998), and image processing (Albert and Kari 2009). One particular problem of
interest is language modeling for on-device (virtual) keyboard decoding (Ouyang et al.
2017), where WFA models are widely used because of space and time constraints. One
example use of methods we present in this article comes from this domain, involving
approximation of a neural LM. Storing training data from the actual domain of use
(individual keyboard activity) in a centralized server and training k-gram or WFA
models directly may not be feasible because of privacy constraints (Hard et al. 2018).
To circumvent this, an LSTM model can be trained by federated learning (Konečnỳ
et al. 2016; McMahan et al. 2017; Hard et al. 2018), converted to a WFA at the server,
and then used for fast on-device inference. This not only may improve performance
over training the models just on out-of-domain publicly available data, but also benefits
from the additional privacy provided by federated learning. Chen et al. (2019) use the
methods presented in this article for this very purpose.

There are multiple reasons why one may choose to approximate a source model
with a WFA. One may have strong constraints on system latency, such as the virtual
keyboard example above. Alternatively, a specialized application may require a distri-
bution over just a subset of possible strings, but must estimate this distribution from a
more general model—see the example below regarding utterances for setting an alarm.
To address the broadest range of use cases, we aim to provide methods that permit
large classes of source models and target WFA topologies. We explore several distinct
scenarios experimentally in Section 5.

Our methods allow failure transitions (Aho and Corasick 1975; Mohri 1997) in the
target WFA, which are taken only when no immediate match is possible at a given state,
for compactness. For example, in the WFA representation of a backoff k-gram model,
failure transitions can compactly implement the backoff (Katz 1987; Chen and Goodman
1998; Allauzen, Mohri, and Roark 2003; Novak, Minematsu, and Hirose 2013; Hellsten
et al. 2017). The inclusion of failure transitions complicates our analysis and algorithms
but is highly desirable in applications such as keyboard decoding. Further, to avoid
redundancy that leads to inefficiency, we assume the target model is deterministic, which
requires that at each state there is at most one transition labeled with a given symbol.

The approximation problem can be divided into two steps: (1) select an unweighted
automaton A that will serve as the topology of the target automaton and (2) weight
the automaton A to form our weighted approximation Â. The main goal of this article

222

Suresh et al. Approximating Probabilistic Models as WFA

0 1set 3
alarm

2

my 4to
foralarm 5

twelve

eleven

ten

nine

eight

seven
six

five

four

three

two

one

7
$

6

o'clock
$

Figure 1
An unweighted automaton that specifies what one might say to set an alarm. The initial state is
the bold circle and the final state is the double circle. By convention, we terminate all accepted
strings with the symbol $.

is the latter determination of the automaton’s weighting in the approximation. If the
topology is not known, we suggest a few techniques for inferring topology later in the
Introduction.

We will now give some simple topology examples to illustrate the approximation
idea. In Section 5 we will give larger-scale examples. Consider the unweighted automa-
ton A in Figure 1 that was designed for what one might say to set an alarm. To use this in
an application such as speech recognition, we would want to weight the automaton with
some reasonable probabilities for the alternatives. For example, people may be more
likely to set their alarms for six or seven than four. In the absence of data specifically for
this scenario, we can fall back on some available background LM M, trained on a large
suitable corpus. In particular, we can use the conditional distribution

pM[x1 . . . xn|x1 . . . xn ∈ L(A)] =
pM[x1 . . . xn]1x1...xn∈L(A)∑

x1...xn∈L(A) pM[x1 . . . xn]
(1)

where 1 is the indicator function and L(A) is the regular language accepted by the
automaton A, as our source distribution S. We then use the unweighted automaton A as
our target topology.

If M is represented as a WFA, our approximation will in general give a different so-
lution than forming the finite-state intersection with A and weight-pushing to normalize
the result (Mohri, Pereira, and Riley 2008; Mohri 2009). Our approximation has the same
states as A whereas weight-pushed M ∩ A has O(|M||A|) states. Furthermore, weight-
pushed M ∩ A is an exact WFA representation of the distribution in Equation (1).

As stated earlier, some applications may simply require smaller models or those
with lower latency of inference, and in such scenarios the specific target topology

223

Computational Linguistics Volume 47, Number 2

^

^aa ε

φ

aa
a _aφ a

_b
b

$

$

φ

abb

φ

a

b φ
$

φ

$

(a)

^

^a

a

ε
φ

aa

a

^_φ

_a

a
_b

b

$

$

ab

b

a_φ

φ

a φ

a

b
$

φ

φ

$
φ

b

$

(b)

Figure 2
Topology examples derived from the corpus aab. States are labeled with the context that is
remembered, ∧ denotes the initial context, ε the empty context, $ the final context (and
terminates accepted strings), and matches any symbol in a context. (a) 3-gram topology: failure
transitions, labeled with ϕ, implement backoff from histories xy to y to ε. (b) skip-gram
topology: failure transitions implement backoff instead from histories xy to x .

may be unknown. In such cases, one choice is to build a k-gram deterministic finite
automaton (DFA) topology from a corpus drawn from S (Allauzen, Mohri, and Roark
2003). This could be from an existing corpus or from random samples drawn from S.
Figure 2(a) shows a trigram topology for the very simple corpus aab. Figure 2(b) shows
an alternative topology that allows skip-grams. Both of these representations make use
of failure transitions. These allow modeling strings unseen in the corpus (e.g., abab) in a
compact way by failing or backing-off to states that correspond to lower-order histories.
Such models can be made more elaborate if some transitions represent classes, such as
names or numbers, that are themselves represented by sub-automata. As mentioned
previously, we will mostly assume we have a topology either pre-specified or inferred
by some means and focus on how to weight that topology to best approximate the
source distribution. We hence focus our evaluation on intrinsic measures of model
quality such as perplexity or bits-per-character.1

1 Model size or efficiency of inference may be a common motivation for the model approximations we
present, which may suggest a demonstration of the speed/accuracy tradeoff for some downstream use of
the models. However, as stated earlier in this Introduction, there are mulitple reasons why an
approximation may be needed, and our goal in this article is to establish that our methods provide a
well-motivated approach should an approximation be required for any reason.

224

Suresh et al. Approximating Probabilistic Models as WFA

This article expands upon an earlier, shorter version (Suresh et al. 2019) by also pro-
viding, beyond the additional motivating examples that have already been presented
in this Introduction: an extended related work section and references; expansion of
the theoretical analysis from three lemmas without proofs (omitted for space) to five
lemmas (and a corollary) with full proofs; inclusion of additional algorithms for count-
ing (for general WFA source and target in addition to ϕ-WFA); inclusion of additional
experiments, including some illustrating the exact KL-minimization methods available
for WFA sources of different classes; and documentation of the open-source library that
provides the full functionality presented here.

The article is organized as follows. In Section 2 we review previous work in this
area. In Section 3 we give the theoretical formulation of the problem and the minimum
KL divergence approximation. In Section 4 we present algorithms to compute that
solution. One algorithm is for the case that the source itself is finite-state. A second
algorithm is for the case when it is not and involves a sampling approach. In Section 5
we show experiments using the approximation. In Section 6 we briefly describe the
open-source software used in our experiments. Finally, in Section 7 we discuss the
results and offer conclusions.

2. Related Work

In this section we will review methods both for inferring unweighted finite-state models
from data and estimating the weight distribution as well in the weighted case. We start
with the unweighted case.

There is a long history of unweighted finite-state model inference (Parekh and
Honavar 2000; Cicchello and Kremer 2003). Gold (1967) showed that an arbitrary reg-
ular set L cannot be learned, identified in the limit, strictly from the presentation of a
sequence of positive examples that eventually includes each string in L. This has led to
several alternative lines of attack.

One approach is to include the negative examples in the sequence. Given such a
complete sample, there are polynomial-time algorithms that identify a regular set in
the limit (Gold 1978). For example, a prefix tree of the positive examples can be built
and then states can be merged so long as they do not cause a negative example to
be accepted (Oncina and Garcia 1992; Dupont 1996). Another approach is to train a
recurrent neural network (RNN) on the positive and negative examples and then extract
a finite automaton by quantizing the continuous state space of the RNN (Giles et al.
1992; Jacobsson 2005).

A second approach is to assume a teacher is available that determines not only if a
string is a positive or negative example but also if the language of the current hypothe-
sized automaton equals L or, if not, provides a counterexample. In this case the minimal
m-state DFA corresponding to L can be learned in time polynomial in m (Angluin 1987).
Weiss, Goldberg, and Yahav (2018) apply this method for DFA extraction from an RNN.

A third approach is to assume a probability distribution over the (positive only)
samples. With some reasonable restrictions on the distribution, such as that the proba-
bilities are generated from a weighted automaton A with L = L(A), then L is identifiable
in the limit with “high probability” (Angluin 1988; Pitt 1989).

There have been a variety of approaches for estimating weighted automata. A
variant of the prefix tree construction can be used that merges states with sufficiently
similar suffix distributions, estimated from source frequencies (Carrasco and Oncina
1994, 1999). Approaches that produce (possibly highly) non-deterministic results in-
clude the Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977)

225

Computational Linguistics Volume 47, Number 2

applied to fully connected Hidden Markov models or spectral methods applied to au-
tomata (Balle and Mohri 2012; Balle et al. 2014). Eisner (2001) describes an algorithm for
estimating probabilities in a finite-state transducer from data using EM-based methods.
Weiss, Goldberg, and Yahav (2019) and Okudono et al. (2020) provide adaptations to
the Weiss, Goldberg, and Yahav (2018) DFA extraction algorithm to yield weighted
automata.

For approximating neural network (NN) models as WFAs, Deoras et al. (2011) used
an RNN LM to generate samples that they then used to train a k-gram LM. Arisoy et al.
(2014) used deep neural network (DNN) models of different orders to successively build
and prune a k-gram LM with each new order constrained by the previous order. Adel
et al. (2014) also trained DNNs of different orders, built a k-gram LM on the same data
to obtain a topology, and then transferred the DNN probabilities of each order onto
that k-gram topology. Tiño and Vojtek (1997) quantized the continuous state space of
an RNN and then estimated the transition probabilities from the RNN. Lecorvé and
Motlicek (2012) quantized the hidden states in an LSTM to form a finite-state model and
then used an entropy criterion to back off to low-order k-grams to limit the number of
transitions. See Section 4.3 for a more detailed comparison with the most closely related
methods, once the details of our algorithms have been provided.

Our article is distinguished in several respects from previous work. First, our
general approach does not depend on the form of the source distribution although
we specialize our algorithms for (known) finite-state sources with an efficient direct
construction and for other sources with an efficient sampling approach. Second, our
targets are a wide class of deterministic automata with failure transitions. These are con-
siderably more general than k-gram models but retain the efficiency of determinism and
the compactness failure transitions allow, which is especially important in applications
with large alphabets like language modeling. Third, we show that our approximation
searches for the minimal KL divergence between the source and target distributions,
given a fixed target topology provided by the application or some earlier computation.

3. Theoretical Analysis

3.1 Probabilistic Models

Let Σ be a finite alphabet. Let xn
i ∈ Σ∗ denote the string xixi+1 . . . xn and xn , xn

1 . A
probabilistic model p over Σ is a probabilistic distribution over the next symbol xn, given
the previous symbols xn−1, such that2

∑
x∈Σ

p(xn = x|xn−1) = 1 and p(xn = x|xn−1) ≥ 0,∀x ∈ Σ

Without loss of generality, we assume that the model maintains an internal state q
and updates it after observing the next symbol.3 Furthermore, the probability of the
subsequent state just depends on the state q

p
(
xn

i+1|xi) = p
(
xn

i+1|q(xi)
)

2 We define x0 , ε, the empty string, and adopt p(ε) = 0.
3 In the most general case, q(xn) = xn.

226

Suresh et al. Approximating Probabilistic Models as WFA

for all i, n, xi, xn
i+1, where q(xi) is the state that the model has reached after observing

sequence xi. Let Q(p) be the set of possible states. Let the language L(p) ⊆ Σ∗ defined
by the distribution p be

L(p) , {xn ∈ Σ∗ : p(xn) > 0 and xn = $ and xi 6= $,∀ i < n} (2)

The symbol $ is used as a stopping criterion. Further, for all xn ∈ Σ∗ such that xn−1 = $,
p(xn|xn−1) = 0.

The KL divergence between the source model ps and the target model pa is given by

D(ps||pa) =
∑

xn∈Σ∗

ps(xn) log
ps(xn)
pa(xn) (3)

where for notational simplicity, we adopt the notion 0/0 = 1 and 0 log(0/0) = 0
throughout the article. Note that for the KL divergence to be finite, we need L(ps) ⊆
L(pa). We will assume throughout that the source entropy H(ps) = −

∑
xn ps(xn)

log ps(xn) is finite.4 We first reduce the KL divergence between two models as follows
(cf. Carrasco 1997; Cortes et al. 2008). In the following, let q∗ denote the states of the
probability distribution p∗.

Lemma 1
If L(ps) ⊆ L(pa), then

D(ps||pa) =
∑

qa∈Qa

∑
qs∈Qs

∑
x∈Σ

γ(qs, qa) ps(x|qs) log
ps(x|qs)
pa(x|qa)

(4)

where

γ(qs, qa) =
∞∑

i=0

∑
xi:qs(xi)=qs,qa(xi)=qa

ps(xi) (5)

Proof.

D(ps||pa) =
∞∑

n=1

∑
xn

ps(xn) log
ps(xn)
pa(xn)

=
∞∑

n=1

∑
xn

ps(xn)
n∑

i=1

log
ps(xi|xi−1)
pa(xi|xi−1)

=
∞∑

n=1

n∑
i=1

∑
xn

ps(xn) log
ps(xi|xi−1)
pa(xi|xi−1)

=
∞∑

n=1

n∑
i=1

∑
xn

ps(xi−1)ps(xi|xi−1)ps(xn
i+1|xi) log

ps(xi|xi−1)
pa(xi|xi−1)

4 If |Q(ps)| is finite, it can be shown that H(ps) is necessarily finite.

227

Computational Linguistics Volume 47, Number 2

=
∞∑

i=1

∑
xi−1

ps(xi−1)
∑

xi

ps(xi|xi−1) log
ps(xi|xi−1)
pa(xi|xi−1)

·
∑
n≥i

∑
xn

i+1

ps(xn
i+1|xi)

=
∞∑

i=1

∑
xi−1

ps(xi−1)
∑

xi

ps(xi|xi−1) log
ps(xi|xi−1)
pa(xi|xi−1)

By definition, the probability of the next symbol conditioned on the past just depends
on the state. Hence grouping terms corresponding to same states both in s and t yields

∞∑
i=1

∑
xi−1

ps(xi−1)
∑

xi

ps(xi|xi−1) log
ps(xi|xi−1)
pa(xi|xi−1)

=
∞∑

i=1

∑
xi−1

ps(xi−1)
∑

xi

ps(xi|qs(xi−1)) log
ps(xi|qs(xi−1))
pa(xi|qa(xi−1))

=
∑

qa∈Qa

∑
qs∈Qs

∞∑
i=1

∑
xi−1:qs(xi−1)=qs,qa(xi−1)=qa

ps(xi−1)
∑

xi

ps(xi|qs) log
ps(xi|qs)
pa(xi|qa)

=
∑

qa∈Qa

∑
qs∈Qs

∑
xi

γ(qs, qa) ps(xi|qs) log
ps(xi|qs)
pa(xi|qa)

Replacing xi by x yields the lemma. �
The quantity γ(qs, qa) counts each string xi that reaches both state qs in Qs and state

qa in Qa weighted by its probability according to ps. Equivalently, it counts each string
xi reaching state (qs, qa) in Qs ×Qa (an interpretation we develop in Section 4.1.1).5 Note
that γ does not depend on distribution pa.

The following corollary is useful for finding the probabilistic model pa that has the
minimal KL divergence from a model ps.

Corollary 1
Let P be a set of probabilistic models pa for which L(ps) ⊆ L(pa). Then

argmin
pa∈P

D(ps||pa) = argmax
pa∈P

∑
qa∈Qa

∑
x∈Σ

c(x, qa) log pa(x|qa)

where

c(x, qa) =
∑

qs∈Qs

γ(qs, qa) ps(x|qs) (6)

5 γ is not (necessarily) a probability distribution over Qs ×Qa. In fact, γ(qs, qa) can be greater than 1.

228

Suresh et al. Approximating Probabilistic Models as WFA

Proof. By Lemma 1

argmin
pa∈P

D(ps||pa) = argmin
pa∈P

∑
qa∈Qa

∑
qs∈Qs

∑
x∈Σ

γ(qs, qa) ps(x|qs) log
ps(x|qs)
pa(x|qa)

= argmin
pa∈P

∑
qa∈Qa

∑
qs∈Qs

∑
x∈Σ

γ(qs, qa) ps(x|qs) log ps(x|qs)

−
∑

qa∈Qa

∑
qs∈Qs

∑
x∈Σ

γ(qs, qa) ps(x|qs) log pa(x|qa)

 (7)

= argmax
pa∈P

∑
qa∈Qa

∑
x∈Σ

c(x, qa) log pa(x|qa)

since the first term in Equation (7) does not depend on pa. �
The quantity c(xi, qa) counts each string xi that reaches a state (qs, qa) in Qs × {qa} by

xi−1
1 weighted by its probability according to ps (cf. Equation (18)).

3.2 Weighted Finite Automata

A weighted finite automaton A = (Σ, Q, E, i, f) over R+ is given by a finite alphabet Σ, a
finite set of states Q, a finite set of transitions E ⊆ Q× Σ× R+ ×Q, an initial state i ∈ Q,
and a final state f ∈ Q. A transition e = (p[e], `[e], w[e], n[e]) ∈ E represents a move from
a previous (or source) state p[e] to the next (or destination) state n[e] with the label `[e]
and weight w[e]. The transitions with previous state q are denoted by E[q] and the labels
of those transitions as L[q].

A deterministic WFA has at most one transition with a given label leaving each
state. An unweighted (finite) automaton is a WFA that satisfies w[e] = 1,∀e ∈ E. A
probabilistic (or stochastic) WFA satisfies∑

e∈E[q]

w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}

Transitions e1 and e2 are consecutive if n[ei] = p[ei+1]. A path π = e1 · · · en ∈ E∗ is
a finite sequence of consecutive transitions. The previous state of a path we denote by
p[π] and the next state by n[π]. The label of a path is the concatenation of its transition
labels `[π] = `[e1] · · · `[en]. The weight of a path is obtained by multiplying its transition
weights w[π] = w[e1]× · · · × w[en]. For a non-empty path, the i-th transition is denoted
by πi.

P(q, q′) denotes the set of all paths in A from state q to q′. We extend this to sets in
the obvious way: P(q, R) denotes the set of all paths from state q to q′ ∈ R and so forth.
A path π is successful if it is in P(i, f) and in that case the automaton is said to accept the
input string α = `[π].

The language accepted by an automaton A is the regular set L(A) = {α ∈ Σ∗ :
α = `[π],π ∈ P(i, f)}. The weight of α ∈ L(A) assigned by the automaton is A(α) =
Σπ∈P(i,f): `[π]=αw[π]. Similar to Equation (2), we assume a symbol $ ∈ Σ such that

L(A) ⊆ {xn ∈ Σ∗ : xn = $ and xi 6= $,∀ i < n}

Thus all successful paths are terminated by the symbol $.

229

Computational Linguistics Volume 47, Number 2

For a symbol x ∈ Σ and a state q ∈ Q of a deterministic, probabilistic WFA A,
define a distribution pa(x|q) , w if (q, x, w, q′) ∈ E and pa(x|q) , 0 otherwise. Then pa is
a probabilistic model over Σ as defined in the previous section. If A = (Σ, Q, E, i, f) is
an unweighted deterministic automaton, we denote by P (A) the set of all probabilistic
models pa representable as a weighted WFA Â = (Σ, Q, Ê, i, f) with the same topology
as A where Ê = {(q, x, pa(x|q), q′) : (q, x, 1, q′) ∈ E}.

Given an unweighted deterministic automaton A, our goal is to find the target dis-
tribution pa ∈P (A) that has the minimum KL divergence from our source probability
model ps.

Lemma 2
If L(ps) ⊆ L(A), then

argmin
pa∈P(A)

D(ps||pa) = p̃(x|qa) ,
c(x, qa)
c(qa) (8)

where

c(qa) =
∑
x∈Σ

c(x, qa)

Proof. From Corollary 1

argmin
pa∈P(A)

D(ps||pa) = argmax
pa∈P(A)

∑
qa∈Qa

∑
x∈Σ

c(x, qa) log pa(x|qa)

= argmax
pa∈P(A)

∑
qa∈Qa

∑
x∈Σ

c(qa) p̃(x|qa) log pa(x|qa)

= argmin
pa∈P(A)

∑
qa∈Qa

c(qa)
{
−
∑
x∈Σ

p̃(x|qa) log pa(x|qa)
}

The quantity in braces is minimized when pa(x|qa) = p̃(x|qa) because it is the cross
entropy between the two distributions. Since L(ps) ⊆ L(A), it follows that p̃ ∈P (A). �

3.3 Weighted Finite Automata with Failure Transitions

A weighted finite automaton with failure transitions (ϕ-WFA) A = (Σ, Q, E, i, f) is a
WFA extended to allow a transition to have a special failure label denoted by ϕ. Then
E ⊆ Q× (Σ ∪ {ϕ})× R+ ×Q.

A ϕ transition does not add to a path label; it consumes no input.6 However, it is
followed only when the input cannot be read immediately. Specifically, a path e1 · · · en
in a ϕ-WFA is disallowed if it contains a subpath ei · · · ej such that `[ek] = ϕ for all k,
i ≤ k < j, and there is another transition e ∈ E such that p[ei] = p[e] and `[ej] = `[e] ∈ Σ
(see Figure 3). Since the label x = l[ej] can be read on e, we do not follow the failure
transitions to read it on ej as well.

6 In other words, a ϕ label, like an ε label, acts as an identity element in string concatenation (Allauzen and
Riley 2018).

230

Suresh et al. Approximating Probabilistic Models as WFA

qi

qx/ω

qi+1

φ/ωi

qj
φ/ωi+1...φ/ωj-1 qj+1

x/ωj

Figure 3
The (dashed red) path ei = (qi,ϕ,ωi, qi+1) to ej = (qj, x,ωj, qj+1) is disallowed since x can be read
already on e = (qi, x,ω, q).

We use P∗(q, q′) ⊆ P(q, q′) to denote the set of (not dis-) allowed paths from state q
to q′ in a ϕ-WFA. This again extends to sets in the obvious way. A path π is successful
in a ϕ-WFA if π ∈ P∗(i, f) and only in that case is the input string α = `[π] accepted.

The language accepted by the ϕ-automaton A is the set L(A) = {α ∈ Σ∗ :
α = `[π],π ∈ P∗(i, f)}. The weight of α ∈ Σ∗ assigned by the automaton is A(α) =
Σπ∈P∗(i,f): `[π]=αw[π]. We assume each string in L(A) is terminated by the symbol $ as
before. We also assume there are no ϕ-labeled cycles and there is at most one exiting
failure transition per state.

We express the ϕ-extended transitions leaving q as

E∗[q] =
{

(q, x,ω, q′) : π ∈ P∗(q, Q), x = `[π] = `[π|π|] ∈ Σ,ω = w[π], q′ = n[π]
}

This is a set of (possibly new) transitions (q, x,ω, q′), one for each allowed path from
previous state q to next state q′ with optional leading failure transitions and a final
x-labeled transition. Denote the labels of E∗[q] by L∗[q]. Note the WFA (Σ, Q, E∗, i, f)
accepts the same strings with the same weights as ϕ-WFA A and thus L(A) is regular
(Allauzen and Riley 2018).

A probabilistic (or stochastic) ϕ-WFA satisfies∑
e∈E∗[q]

w[e] = 1 and w[e] ≥ 0, ∀q ∈ Q− {f}

A deterministic ϕ-WFA is backoff-complete if a failure transition from state q to q′

implies L[q] ∩ Σ ⊆ L[q′] ∩ Σ. Further, if ϕ /∈ L[q′], then the containment is strict: L[q] ∩
Σ ⊂ L[q′] ∩ Σ. In other words, if a symbol can be read immediately from a state q it can
also be read from a state failing (backing-off) from q and if q′ does not have a backoff
arc, then at least one additional label can be read from q′ that cannot be read from q. For
example, both topologies depicted in Figure 2 have this property. We restrict our target
automata to have a topology with the backoff-complete property since it will simplify
our analysis, make our algorithms efficient, and is commonly found in applications.
For example, backoff n-gram models, such as the Katz model, are ϕ-cycle-free, backoff-
complete ϕ-WFAs (Katz 1987; Chen and Goodman 1998).

For a symbol x ∈ Σ and a state q ∈ Q of a deterministic, probabilistic ϕ-WFA A,
define p∗a (x|q) , w if (q, x, w, q′) ∈ E∗[q] and p∗a (x|q) , 0 otherwise. Then p∗a is a prob-
abilistic model over Σ as defined in Section 3.1. Note the distribution p∗a at a state q

231

Computational Linguistics Volume 47, Number 2

is defined over the ϕ−extended transitions E∗[q] where pa in the previous section is
defined over the transitions E[q]. It is convenient to define a companion distribution pa ∈
P (A) to p∗a as follows:7 Given a symbol x ∈ Σ ∪ {ϕ} and state q ∈ Q, define pa(x|q) ,
p∗a (x|q) when x ∈ L[q] ∩ Σ, pa(ϕ|q) , 1−

∑
x∈L[q]∩Σ p∗a (x|q), and pa(x|q) , 0 otherwise.

The companion distribution is thus defined solely over the transitions E[q].
When A = (Σ, Q, E, i, f) is an unweighted deterministic, backoff-complete ϕ-WFA,

we denote by P∗(A) the set of all probabilistic models p∗a representable as a weighted
ϕ-WFA Â = (Σ, Q, Ê, i, f) of same topology as A with

Ê ={(q, x, pa(x|q), q′) : (q, x, 1, q′) ∈ E, x ∈ Σ}∪

{(q,ϕ,α(q, q′), q′) : (q,ϕ, 1, q′) ∈ E}

where pa ∈P (A) is the companion distribution to p∗a and α(q, q′) = pa(ϕ|q)/d(q, q′) is
the weight of the failure transition from state q to q′ with

d(q, q′) = 1−
∑

x∈L[q]∩Σ

pa(x|q′) (9)

Note that we have specified the weights on the automaton that represents p∗a ∈
P∗(A) entirely in terms of the companion distribution pa ∈P (A). The failure transi-
tion weight α is determined from the requirement that

∑
x E∗[q] = 1 (Katz 1987,

Equation (16)). Thanks to the backoff-complete property, this transition weight depends
only on its previous state q and its next state q′ and not all the states in the failure path
from q. This is a key reason for assuming that property; otherwise our algorithms could
not benefit from this locality.

Conversely, each distribution pa ∈P (A) can be associated with a distribution p∗a ∈
P∗(A) given a deterministic, backoff-complete ϕ-WFA A. First extend α(q, q′) to any
failure path as follows. Denote a failure path from state q to q′ by πϕ(q, q′). Then define

α(q, q′) =
∏

e∈πϕ(q,q′)

pa(ϕ|p[e])
d(p[e], n[e])

(10)

where this quantity is taken to be 1 when the failure path is empty (q = q′). Finally define

p∗a (x|q) =

{
α(q, qx) pa(x|qx), x ∈ L∗[q]
0, otherwise

(11)

where for x ∈ L∗[q], qx signifies the first state q′ on a ϕ-labeled path in A from state q for
which x ∈ L[q′].

For Equation (10) to be well-defined, we need d(p[e], n[e]) > 0. To ensure this condi-
tion, we restrict P (A) to contain distributions such that pa(x|q) ≥ ε for each x ∈ L[q].8

Given an unweighted deterministic, backoff-complete, automaton A, our goal is to
find the target distribution p∗a ∈P∗(A) that has the minimum KL divergence from our
source probability model ps.

7 The meaning of P (A) when A is ϕ-WFA is to interpret it as a WFA with the failure labels as regular
symbols.

8 For brevity, we do not include ε in the notation of P (A).

232

Suresh et al. Approximating Probabilistic Models as WFA

Lemma 3
Assume L(ps) ⊆ L(A). Let p∗ = p̃(x|qa) from Lemma 2. If L(p∗) ⊆ L(A) and p∗ ∈P∗(A)
then

p∗ = argmin
p∗a ∈P∗(A)

D(ps||p∗a)

Proof. This follows immediately from Lemma 2. �

The requirement that the p∗ of Lemma 3 is in P∗(A) will be true if, for instance, the
target has no failure transitions or if the source and target are both ϕ-WFAs with the
same topology and failure transitions. In general, this requirement cannot be assured.
While membership in P (A) principally requires the weights of the transitions leaving
a state are non-negative and sum to 1, membership in P∗(A) imposes additional
constraints due to the failure transitions, indicated in Equation (11).

As such, we restate our goal in terms of the companion distribution pa ∈P (A)
rather than its corresponding distribution p∗a ∈P∗(A) directly. Let Bn(q) be the set of
states in A that back off to state q in n failure transitions and let B(q) =

⋃|Qa|
n=0 Bn(q).

Lemma 4
If L(ps) ⊆ L(A) then

argmin
p∗a ∈P∗(A)

D(ps||p∗a) = argmax
pa∈P(A)

∑
q∈Qa

{ ∑
x∈L[q]

C(x, q) log pa(x|q)−
∑

q0∈B1(q)

C(ϕ, q0) log d(q0, q)
}

where

C(x, q) =
∑

qa∈B(q)

c(x, qa)1q=qx
a
, x ∈ Σ (12)

C(ϕ, q) =
∑

qa∈B(q)

∑
x∈Σ

c(x, qa)1x/∈L[q] (13)

and do not depend on pa.

Proof. From Corollary 1, Equation (11) and the previously shown 1:1 correspondence
between each distribution p∗a ∈P∗(A) and its companion distribution pa ∈P (A)

argmin
p∗a ∈P∗(A)

D(ps||p∗a) = argmin
p∗a ∈P∗(A)

∑
qa∈Qa

∑
x∈L∗[qa]

c(x, qa) log p∗a (x|qa)

= argmax
pa∈P(A)

∑
qa∈Qa

∑
x∈L∗[qa]

c(x, qa) logα(qa, qx
a)pa(x|qx

a)

= argmax
pa∈P(A)

∑
qa∈Qa

∑
x∈L∗[qa]

c(x, qa) log
∏

e∈πϕ(qa,qx
a)

pa(ϕ|p[e])
d(p[e], n[e])

pa(x|qx
a)

= argmax
pa∈P(A)

{
Ax + Aϕ − Ad

}
(14)

233

Computational Linguistics Volume 47, Number 2

where we distribute the factors inside the logarithm in Equation (14) as follows:

Ax =
∑

qa∈Qa

∑
x∈L∗[qa]

c(x, qa) log pa(x|qx
a)

=
∑
q∈Qa

∑
qa∈B(q)

∑
x∈L[q]∩Σ

c(x, qa)1q=qx
a

log pa(x|q) (15)

=
∑
q∈Qa

∑
x∈L[q]∩Σ

C(x, q) log pa(x|q)

Equation (15) follows from q = qx
a implying qa ∈ B(q).

Aϕ =
∑

qa∈Qa

∑
x∈L∗[qa]

c(x, qa) log
∏

e∈πϕ(qa,qx
a)

pa(ϕ|p[e])

=
∑

qa∈Qa

∑
x∈L∗[qa]

c(x, qa)
∑

e∈πϕ(qa,qx
a)

log pa(ϕ|p[e])

=
∑
q∈Qa

∑
qa∈B(q)

∑
x∈L∗[qa]

c(x, qa)
∑

e∈πϕ(qa,qx
a)

1q=p[e] log pa(ϕ|q)

=
∑
q∈Qa

∑
qa∈B(q)

∑
x∈Σ

c(x, qa)1x/∈L[q] log pa(ϕ|q) (16)

=
∑
q∈Qa

C(ϕ, q) log pa(ϕ|q)

Equation (16) follows from e ∈ πϕ(qa, qx
a) implying x /∈ p[e].

Ad =
∑

qa∈Qa

∑
x∈L∗[qa]

c(x, qa) log
∏

e∈πϕ(qa,qx
a)

d(p[e], n[e])

=
∑

qa∈Qa

∑
x∈L∗[qa]

c(x, qa)
∑

e∈πϕ(qa,qx
a)

log d(p[e], n[e])

=
∑
q∈Qa

∑
qa∈B(q0)

∑
q0∈B1(q)

∑
x∈L∗[qa]

c(x, qa)
∑

e∈πϕ(qa,qx
a)

1q0=p[e] log d(q0, q)

=
∑
q∈Qa

∑
qa∈B(q0)

∑
q0∈B1(q)

∑
x∈Σ

c(x, qa)1x/∈L[q0] log d(q0, q)

=
∑
q∈Qa

∑
q0∈B1(q)

C(ϕ, q0) log d(q0, q)

Substituting these results into Equation (14) proves the lemma. �

If there are no failure transitions in the target automaton, then C(x, q) = c(x, q), if x
is in Σ, and is 0 otherwise. In this case, the statement of Lemma 4 simplifies to that of
Corollary 1.

234

Suresh et al. Approximating Probabilistic Models as WFA

Unfortunately, we do not have a closed-form solution, analogous to Lemma 2 or
Lemma 3, for the general ϕ-WFA case. Instead we will present numerical optimization
algorithms to find the KL divergence minimum in the next section. This is aided by
the observation that the quantity in braces in the statement of Lemma 4 depends on
the distribution pa only at state q. Thus the KL divergence minimum can be found by
maximizing that quantity independently for each state.

4. Algorithms

Approximating a probabilistic source algorithmically as a WFA requires two steps: (1)
compute the quantity c(x, qa) found in Corollary 1 and Lemma 2 or C(x, q) in Lemma 4
and (2) use this quantity to find the minimum KL divergence solution. The first step,
which we will refer to as counting, is covered in the next section and the KL divergence
minimization step is covered afterwards, followed by an explicit comparison of the
presented algorithms with closely related prior work.

4.1 Counting

How the counts are computed will depend on the form of the source and target models.
We break this down into several cases.

4.1.1 WFA Source and Target. When the source and target models are represented as WFAs
we compute c(x, qa) from Lemma 2. From Equation (6) this can be written as

c(x, qa) =
∑

qs∈Qs

γ(qs, qa)ps(x|qs) (17)

where

γ(qs, qa) =
∞∑

i=0

∑
xi:qs(xi)=qs,qa(xi)=qa

ps(xi)

The quantity γ(qs, qa) can be computed as

γ(qs, qa) =
∑

π∈PS∩A((is,ia),(qs,qa))

w[π]

where S ∩ A is the weighted finite-state intersection of automata S and A (Mohri 2009).
The above summation over this intersection is the (generalized) shortest distance from
the initial state to a specified state computed over the positive real semiring (Mohri
2002; Allauzen and Riley 2018). Algorithms to efficiently compute the intersection and
shortest distance on WFAs are available in OpenFst (Allauzen et al. 2007), an open-
source WFA library.

Then from Equation (17) we can form the sum

c(x, qa) =
∑

((qs,qa),x,w,(q′s ,q′a))∈ES∩A

γ(qs, qa) w (18)

235

Computational Linguistics Volume 47, Number 2

Equation (18) is the weighted count of the paths in S ∩ A that begin at the initial state
and end in any transition leaving a state (qs, qa) labeled with x.

The worst-case time complexity for the counting step is dominated by the short-
est distance algorithm on the intersection S ∩ A. The shortest distance computation
is a meta-algorithm that depends on the queue discipline selected (Mohri 2002). If
s is the maximum number of times a state in the intersection is inserted into the
shortest distance queue, C the maximum cost of a queue operation, and D the max-
imum out-degree in S and A (both assumed deterministic), then the algorithm runs
in O(s(D + C)|QS||QA|) (Mohri 2002; Allauzen and Riley 2018). The worst-case space
complexity is in O(D|QS||QA|), determined by the intersection size.

4.1.2 ϕ-WFA Source and Target. When the source and target models are represented as
ϕ-WFAs we compute C(x, qa) from Lemma 4. From Equation (12) and the previous case
this can be written as

C(x, q) =
∑

qa∈B(q)

∑
qs∈Qs

γ(qs, qa)ps(x|qs)1q=qx
a
, x ∈ Σ (19)

To compute this quantity we first form S ∩ A using an efficient ϕ-WFA intersection that
compactly retains failure transitions in the result as described in Allauzen and Riley
(2018). Equation (19) is the weighted count of the paths in S ∩ A allowed by the failure
transitions that begin at the initial state and end in any transition leaving a state (qs, q)
labeled with x.

We can simplify this computation by the following transformation. First we con-
vert S ∩ A to an equivalent WFA by replacing each failure transition with an epsilon
transition and introducing a negatively weighted transition to compensate for formerly
disallowed paths (Allauzen and Riley 2018). The result is then promoted to a transducer
T with the output label used to keep track of the previous state in A of the compensated

(qs,qa)

x/ω

(qs',qa')

φ/α

x/ν

(qs,qa)

x:qa/ω

(qs',qa')ε:-/α

x:qa'/-α ν

x:qa'/ν

S ∩ A T
Figure 4
A ϕ-WFA is transformed into an equivalent WFA by replacing each failure transition by an
ε-transition. To compensate for the formerly disallowed paths, new (dashed red) negatively
weighted transitions are added. The result is promoted to a transducer T with the output label
used to keep track of the previous state in A of the compensated positive transition.

236

Suresh et al. Approximating Probabilistic Models as WFA

positive transition (see Figure 4).9 Algorithms to efficiently compute the intersection
and shortest distance on ϕ-WFAs are available in the OpenGrm libraries (Allauzen and
Riley 2018).

Then

C(x, q) =
∑

((qs,qa),x,q,w,(q′s ,q′a))∈ET

γT(qs, qa)w, x ∈ Σ (20)

where e = (p[e], il[e], ol[e], w[e], n[e]) is a transition in T and γT(qs, q) is the shortest dis-
tance from the initial state to (qs, qa) in T computed over the real semiring as described in
Allauzen and Riley (2018). Equation (20) is the weighted count of all paths in S ∩ A that
begin at the initial state and end in any transition leaving a state (qs, q) labeled with x
minus the weighted count of those paths that are disallowed by the failure transitions.

Finally, we compute C(ϕ, q) as follows. The count mass entering a state q must equal
the count mass leaving a state

∑
(qa,x,1,q)∈EA

C(x, qa) =
∑

(q,x′,1,q′a)∈EA

C(x′, q)

=
∑

(q,x′,1,q′a)∈EA,x′∈Σ

C(x′, q) + C(ϕ, q)

Thus

C(ϕ, q) =
∑

(qa,x,1,q)∈EA

C(x, qa)−
∑

(q,x′,1,q′a)∈EA,x′∈Σ

C(x′, q)

This quantity can be computed iteratively in the topological order of states with respect
to the ϕ-labeled transitions.

The worst-case time and space complexity for the counting step for ϕ-WFAs is the
same as for WFAs (Allauzen and Riley 2018).

4.1.3 Arbitrary Source and ϕ-WFA Target. In some cases, the source is a distribution with
possibly infinite states, for example, LSTMs. For these sources, computing C(x, q) can
be computationally intractable as Equation (19) requires a summation over all possible
states in the source machine, Qs. We propose to use a sampling approach to approximate
C(x, q) for these cases. Let x(1), x(2), . . . , x(N) be independent random samples from ps.
Instead of C(x, q), we propose to use

Ĉ(x, q) =
∑

qa∈B(q)

∑
qs∈Qs

γ̂(qs, qa)ps(x|qs)1q=qx
a
, x ∈ Σ

9 The construction illustrated in Figure 4 is sufficient when S ∩ A is acyclic. In the cyclic case a slightly
modified construction is needed to ensure convergence in the shortest distance calculation (Allauzen and
Riley 2018).

237

Computational Linguistics Volume 47, Number 2

where

γ̂(qs, qa) = 1
N

N∑
j=1

∑
i≥1

1qs(xi(j))=qs,qa(xi(j))=qa

Observe that in expectation,

E[γ̂(qs, qa)] = 1
N

N∑
j=1

∑
i≥1

E[1qs(xi(j))=qs,qa(xi(j))=qa
]

=
∑
i≥1

∑
xi:qs(xi)=qs,qa(xi)=qa

ps(xi)

= γ(qs, qa),

and hence γ̂(qs, qa) is an unbiased, asymptotically consistent estimator of γ(qs, qa). Given
Ĉ(x, q), we compute C(ϕ, q) similarly to the previous section. If ` is the expected number
of symbols per sample, then the computational complexity of counting in expectation is
in O(N`|Σ|).

4.2 KL Divergence Minimization
4.2.1 WFA Target. When the target topology is a deterministic WFA, we use c(x, qa) from
the previous section and Lemma 2 to immediately find the minimum KL divergence
solution.

4.2.2 ϕ-WFA Target. When the target topology is a deterministic, backoff-complete
ϕ-WFA, Lemma 3 can be applied in some circumstances to find the minimum KL diver-
gence solution but not in general. However, as noted before, the quantity in braces in
the statement of Lemma 4 depends on the distribution pa only at state q so the minimum
KL divergence D(ps||p∗a) can be found by maximizing that quantity independently for
each state.

Fix a state q and let yx , pa(x|q) for x ∈ L[q] and let y , [yx]x∈L[q].10 Then our goal
reduces to

argmax
y

∑
x∈L[q]

C(x, q) log yx −
∑

q0∈B1(q)

C(ϕ, q0) log
(
1−

∑
x∈L[q0]∩Σ

yx
)

(21)

subject to the constraints yx ≥ ε for x ∈ L[q] and
∑

x∈L[q]
yx = 1.

This is a difference of two concave functions in y since log(f (y)) is concave for any
linear function f (y), C(x, q), C(ϕ, q0) are always non-negative, and the sum of concave
functions is also concave. We give a DC programming solution to this optimization
(Horst and Thoai 1999). Let

Ω = {y : ∀x, yx ≥ ε,
∑

x∈L(q)

yx ≤ 1}

10 We fix some total order on Σ ∪ {ϕ} so that y is well-defined.

238

Suresh et al. Approximating Probabilistic Models as WFA

and let u(y) =
∑

x∈L[q] C(x, q) log yx and v(y) =
∑

q0∈B1(q) C(ϕ, q0) log(1−
∑

x∈L[q0]∩Σ yx).
Then the optimization problem can be written as

max
y∈Ω

u(y)− v(y)

The DC programming solution for such a problem uses an iterative procedure that
linearizes the subtrahend in the concave difference about the current estimate and then
solves the resulting concave objective for the next estimate (Horst and Thoai 1999), that
is,

yn+1 = argmax
y∈Ω

u(y)− y · Ov(yn)

Substituting u and Ov gives

yn+1 = argmax
y∈Ω

∑
x∈L[q]

{
C(x, q) log yx + yxf (x, q, yn)

}
(22)

where

f (x, q, yn) =
∑

q0∈B1(q)

C(ϕ, q0)1x∈L[q0]∩Σ

1−
∑

x′∈L[q0]∩Σ yn
x′

(23)

Observe that 1−
∑

x′∈L[q0]∩Σ yn
x′ ≥ ε as the automaton is backoff-complete and

yn ∈ Ω.
Let C(q) be defined as:

C(q) =
∑

x′∈L[q]

C(x′, q)

The following lemma provides the solution to the optimization problem in Equa-
tion (22) that leads to a stationary point of the objective.

Lemma 5
Solution to Equation (22) is given by

yn+1
x = max

(
C(x, q)

λ− f (x, q, yn)
,ε
)

(24)

where λ ∈
[
maxx∈L[q] f (x, q, yn) + C(x, q), maxx∈L[q] f (x, q, yn) +

C(q)
1−|L[q]|ε

]
such that∑

x yn+1
x = 1.

Proof. With KKT multipliers, the optimization problem can be written as

max
y,λ,µx:µx≤0

∑
x∈L[q]

{
C(x, q) log yx + yx f (x, q, yn)

}
+ λ
(
1−

∑
x∈L[q]

yx
)

+
∑

x∈L[q]

µx(ε− yx)

239

Computational Linguistics Volume 47, Number 2

We divide the proof into two cases depending on the value of C(x, q). Let C(x, q) 6= 0.
Differentiating this equation with respect to yx and equating to zero, we get

yn+1
x =

C(x, q)
λ+ µx − f (x, q, yn)

Furthermore, by the KKT condition, µx(ε− yn+1
x) = 0. Hence, µx is only non-zero if

yn+1
x = ε and if µx is zero, then yn+1

x =
C(x,q)

λ−f (x,q,yn) . Furthermore, because for all x, µx ≤ 0,
for yn+1

x to be positive, we need λ ≥ maxx f (x, q, yn). Hence, the above two conditions
can be re-expressed as Equation (24). If C(x, q) = 0, then we get

f (x, q, yn) = λ+ µx and µx(ε− yn+1
x) = 0

and the solution is given by yn+1
x = ε and µx = f (x, q, yn)− λ. Since µx cannot be pos-

itive, we have f (x, q, yn) ≤ λ for all x. Hence, irrespective of the value of C(x, q), the
solution is given by Equation (24).

The above analysis restricts λ ≥ maxx f (x, q, yn). If λ < f (x, q, yn) + C(x, q), then
yn+1

x > 1 and if λ > maxx f (x, q, yn) +
C(q)

1−|L[q]|ε , then
∑

x yn+1
x < 1. Hence λ needs to

lie in [
max
x∈L[q]

f (x, q, yn) + C(x, q), max
x∈L[q]

f (x, q, yn) +
C(q)

1− |L[q]|ε

]

to ensure that
∑

x yn+1
x = 1. �

Algorithm KL-MINIMIZATION
Notation:
• yx = pa(x|q) for x ∈ L(q) • k = |L[q]|
• C(x, q) from Equations (12) and (13) • lb = maxx∈L[q] f (x, q, yn) + C(x, q)
• C(q) =

∑
x′∈L[q] C(x′, q) • ub = maxx∈L[q] f (x, q, yn) +

C(q)
1−kε

• f (x, q, yn) from Equation (23) • ε = lower bound on yx

Trivial case: If C(q) = 0, output y given by yx = 1/k for all x.
Initialization: Initialize:

y0
x =

C(x, q)
C(q) (1− kε) + ε.

Iteration: Until convergence do:

yn+1
x = max

(
C(x, q)

λ− f (x, q, yn)
,ε
)

,

where λ ∈ [lb, ub] is chosen (in a binary search) to ensure
∑

x∈L(q) yx = 1.

Figure 5
KL-MINIMIZATION algorithm.

240

Suresh et al. Approximating Probabilistic Models as WFA

From this, we form the KL-MINIMIZATION algorithm in Figure 5. Observe that if
all the counts are zero, then for any y, u(y)− v(y) = 0 and any solution is an optimal
solution and the algorithm returns a uniform distribution over labels. In other cases, we
initialize the model based on counts such that y0 ∈ Ω. We then repeat the DC program-
ming algorithm iteratively until convergence. Because Ω is a convex compact set and
functions u, v, and Ov are continuous and differentiable in Ω, the KL-MINIMIZATION
converges to a stationary point (Sriperumbudur and Lanckriet 2009, Theorem 4). For
each state q, the computational complexity of KL-MINIMIZATION is in O(|E[q]|) per
iteration. Hence, if the maximum number of iterations per each state is s, the overall
computational complexity of KL-MINIMIZATION is in O(s|E|).

4.3 Discussion

Our method for approximating from source ϕ-WFAs, specifically from backoff k-gram
models, shares some similarities with entropy pruning (Stolcke 2000). Both can be used
to approximate onto a more compact k-gram topology and both use a KL-divergence
criterion to do so. They differ in that entropy pruning, by sequentially removing tran-
sitions, selects the target topology and in doing so uses a greedy rather than global
entropy reduction strategy. We will empirically compare these methods in Section 5.1
for this use case.

Perhaps the closest to our work on approximating arbitrary sources is that of Deoras
et al. (2011), where they used an RNN LM to generate samples that they then used to
train a k-gram LM. In contrast, we use samples to approximate the joint state probability
γ(qs, qa). If ` is the average number of words per sentence and N is the total number
of sampled sentences, then the time complexity of Deoras et al. (2011) is O(N`|Σ|)
as it takes O(|Σ|) time to generate a sample from the neural model for every word.
This is the same as that of our algorithm in Section 4.1.3. However, our approach has
several advantages. First, for a given topology, our algorithm provably finds the best
KL minimized solution, whereas their approach is optimal only when the size of the
k-gram model tends to infinity. Second, as we show in our experiments, the proposed
algorithm performs better compared with that of Deoras et al. (2011).

Arisoy et al. (2014) and Adel et al. (2014) both trained DNN models of different
orders as the means to derive probabilities for a k-gram model, rather than focusing on
model approximation as the above-mentioned methods do. Further, the methods are
applicable to k-gram models specifically, not the larger class of target WFA to which our
methods apply.

5. Experiments

We now provide experimental evidence of the theory’s validity and show its usefulness
in various applications. For the ease of notation, we use WFA-APPROX to denote the
exact counting algorithm described in Section 4.1.2 followed by the KL-MINIMIZATION
algorithm of Section 4.2. Similarly, we use WFA-SAMPLEAPPROX(N) to denote the
sampled counting described in Section 4.1.3 with N sampled sentences followed by KL-
MINIMIZATION.

We first give experimental evidence that supports the theory in Section 5.1. We
then show how to approximate neural models as WFAs in Section 5.2. We also use the
proposed method to provide lower bounds on the perplexity given a target topology
in Section 5.3. Finally, we present experiments in Section 5.4 addressing scenarios with
source WFAs, hence not requiring sampling. First, motivated by low-memory applica-

241

Computational Linguistics Volume 47, Number 2

tions such as (virtual) keyboard decoding (Ouyang et al. 2017), we use our approach
to create compact language models in Section 5.4.1. Then, in Section 5.4.2, we use our
approach to create compact open-vocabulary character language models from count-
thresholded n-grams.

For most experiments (unless otherwise noted) we use the 1996 CSR Hub4 Lan-
guage Model data, LDC98T31 (English Broadcast News data). We use the processed
form of the corpus and further process it to downcase all the words and remove
punctuation. The resulting data set has 132M words in the training set, 20M words in the
test set, and has 240K unique words. For all the experiments that use word models, we
create a vocabulary of approximately 32K words consisting of all words that appeared
more than 50 times in the training corpus. Using this vocabulary, we create a trigram
Katz model and prune it to contain 2M n-grams using entropy pruning (Stolcke 2000).
We use this pruned model as a baseline in all our word-based experiments. We use
Katz smoothing because it is amenable to pruning (Chelba et al. 2010). The perplexity of
this model on the test set is 144.4.11 All algorithms were implemented using the open-
source OpenFst and OpenGrm n-gram and stochastic automata (SFst) libraries12 with the
last library including these implementations (Allauzen et al. 2007; Roark et al. 2012;
Allauzen and Riley 2018).

5.1 Empirical Evidence of Theory

Recall that our goal is to find the distribution on a target DFA topology that minimizes
the KL divergence to the source distribution. However, as stated in Section 4.2, if the
target topology has failure transitions, the optimization objective is not convex so the
stationary point solution may not be the global optimum. We now show that the model
indeed converges to a good solution in various cases empirically.

Idempotency. When the target topology is the same as the source topology, we show that
the performance of the approximated model matches the source model. Let ps be the
pruned Katz word model described above. We approximate ps onto the same topol-
ogy using WFA-APPROX and WFA-SAMPLEAPPROX(·) and then compute perplexity
on the test corpus. The results are presented in Figure 6. The test perplexity of the
WFA-APPROX model matches that of the source model and the performance of the
WFA-SAMPLEAPPROX(N) model approaches that of the source model as the number of
samples N increases.

Comparison to Greedy Pruning. Recall that entropy pruning (Stolcke 2000) greedily re-
moves n-grams such that the KL divergence to the original model ps is small. Let pgreedy
be the resulting model and Agreedy be the topology of pgreedy. If the KL-MINIMIZATION
converges to a good solution, then approximating ps onto Agreedy would give a model
that is at least as good as pgreedy. We show that this is indeed the case; in fact, approximat-
ing ps onto Agreedy performs better than pgreedy. As before, let ps again be the 2M n-gram
Katz model described above. We prune it to have 1M n-grams and obtain pgreedy, which
has a test perplexity of 157.4. We then approximate the source model ps on Agreedy, the

11 For all perplexity measurements, we treat the unknown word as a single token instead of a class. To
compute the perplexity with the unknown token being treated as class, multiply the perplexity by k0.0115,
where k is the number of tokens in the unknown class and 0.0115 is the out-of-vocabulary rate in the test
data set.

12 These libraries are available at www.openfst.org and www.opengrm.org.

242

www.openfst.org
www.opengrm.org

Suresh et al. Approximating Probabilistic Models as WFA

●

●

●
●

5e+05 1e+06 2e+06 5e+06

14
0

14
5

15
0

15
5

of samples (N)

te
st

 p
er

pl
ex

ity

●

Katz baseline
WFA−Approx
WFA−SampleApprox(N)

Figure 6
Idempotency: Test set perplexity for Katz baseline and approximations of that baseline trained on
the same data. The Katz baseline and Katz WFA-APPROX plots are identical (and thus overlap),
while WFA-SAMPLEAPPROX(N) plot converges to the baseline.

Table 1
Test perplexity of greedy pruning and approximated models.

Model size Greedy pruning Approximated model

250K 205.7 198.3
500K 177.3 173.0
1M 157.4 155.7
1.5M 149.0 148.4

topology of pgreedy. The resulting model has a test perplexity of 155.7, which is smaller
than the test perplexity of pgreedy. This shows that the approximation algorithm indeed
finds a good solution. We repeat the experiment with different pruning thresholds and
observe that the approximation algorithm provides a good solution across the resulting
model sizes. The results are in Table 1.

5.2 Neural Models to WFA Conversion

Since neural models such as LSTMs give improved performance over n-gram models,
we investigate whether an LSTM distilled onto a WFA model can obtain better per-
formance than the baseline WFA trained directly from Katz smoothing. As stated in
the Introduction, this could then be used together with federated learning for fast and
private on-device inference, which was done in Chen et al. (2019) using the methods
presented here.

To explore this, we train an LSTM language model on the training data. The model
has 2 LSTM layers with 1,024 states and an embedding size of 1,024. The resulting model
has a test perplexity of 60.5. We approximate this model as a WFA in three ways.

243

Computational Linguistics Volume 47, Number 2

●

●

●
● ● ● ●

5e+05 1e+06 2e+06 5e+06 1e+07 2e+07 5e+07

14
0

15
0

16
0

17
0

of samples (N)

te
st

 p
er

pl
ex

ity

●

Katz baseline
WFA−SampleKatz(N)
WFA−SampleApprox(N) (KT)
WFA−SampleApprox(N) (UT)

Figure 7
Approximated Neural Models for the English Broadcast News corpus. Test set perplexity for Katz
baseline and LSTM models approximated in three ways. One uses LSTM samples to build a new
Katz model (WFA-SAMPLEKATZ(N)). The remaining two use our approximation algorithm
(WFA-SAMPLEAPPROX(N)), but with different topologies. One topology (KT) is known, using
the baseline Katz topology, and one (UT) is unknown, using the samples drawn for
WFA-SAMPLEAPPROX(N) to also infer the topology.

The first way is to construct a Katz n-gram model on N LSTM samples and entropy-
prune to 2M n-grams, which we denote by WFA-SAMPLEKATZ(N). This approach is
very similar to that of Deoras et al. (2011), except that we use Katz smoothing instead
of Kneser-Ney smoothing. We used Katz due to the fact that, as stated earlier, Kneser-
Ney models are not amenable to pruning (Chelba et al. 2010). The second way is to
approximate onto the baseline Katz 2M n-gram topology described above using WFA-
SAMPLEAPPROX(N). We refer to this experiment as WFA-SAMPLEAPPROX(N) (KT),
where KT stands for known topology. The results are shown in Figure 7. The WFA-
SAMPLEKATZ(N) models perform significantly worse than the baseline Katz model
even at 32M samples, while the WFA-SAMPLEAPPROX(N) models have better perplex-
ity than the baseline Katz model with as little as 1M samples. With 32M samples this
way of approximating the LSTM model as a WFA is 3.6 better in perplexity than the
baseline Katz.

Finally, if the WFA topology is unknown we use the samples obtained in WFA-
SAMPLEAPPROX(·) to create a Katz model entropy-pruned to 2M n-grams. We refer
to this experiment as WFA-SAMPLEAPPROX(N) (UT), where UT stands for unknown
topology. The results are shown in Figure 7. The approximated models obtained by
WFA-SAMPLEAPPROX(N) (UT) perform better than WFA-SAMPLEKATZ(N). However,
they do not perform as well as WFA-SAMPLEAPPROX(N) (KT), the models obtained
with the known topology derived from the training data. However, with enough sam-
ples, their performance is similar to that of the original Katz model.

We then compare our approximation method with other methods that approximate
DNNs with n-gram LMs (Arisoy et al. 2014; Adel et al. 2014). Both these methods require
training DNNs of different orders and we used DNNs with two layers with 1,024 nodes
and an embedding size of 1,024. The results are in Table 2. The proposed algorithms
WFA-SAMPLEAPPROX(·) perform better than the existing approaches.

244

Suresh et al. Approximating Probabilistic Models as WFA

Table 2
Test perplexity of k-gram models obtained by different approximation methods for the
English Broadcast News corpus. We use 32M samples for both WFA-SAMPLEKATZ(·) and
WFA-SAMPLEAPPROX(·).

Model Test perplexity

Katz 144.4
WFA-SAMPLEKATZ(·) 151.8
Arisoy et al. (2014) 159.6
Adel et al. (2014) 146.7
WFA-SAMPLEAPPROX(·) (KT) 140.8
WFA-SAMPLEAPPROX(·) (UT) 143.9

● ● ● ●

5e+05 1e+06 2e+06 5e+06

18
0

20
0

22
0

24
0

of samples (N)

te
st

 p
er

pl
ex

ity

●

Katz baseline
WFA−SampleKatz(N)
WFA−SampleApprox(N) (KT)
WFA−SampleApprox(N) (UT)

Figure 8
Approximated Neural Models for the Polish (Europarl) corpus. Test set perplexity for Katz baseline
and LSTM models approximated in three ways. One uses LSTM samples to build a new Katz
model (WFA-SAMPLEKATZ(N)). The remaining two use our approximation algorithm
(WFA-SAMPLEAPPROX(N)), but with different topologies. One topology (KT) is known, using
the baseline Katz topology, and one (UT) is unknown, using the samples drawn for
WFA-SAMPLEAPPROX(N) to also infer the topology.

Experiment on Polish. To repeat the above experiment on a different language and corpus,
we turn to the Polish language section13 of the Europarl corpus (Koehn 2005). We
chose Polish for this follow-up experiment due to the fact that it belongs to a different
language family than English, is relatively highly inflected (unlike English), and is
found in a publicly available corpus. We use the processed form of the corpus and
further process it to downcase all the words and remove punctuation. The resulting
data set has approximately 13M words in the training set and 210K words in the test
set. The selected vocabulary has approximately 30K words, consisting of all words that
appeared more than 20 times in the training corpus. Using this vocabulary, we create a
trigram Katz model and prune it to contain 2M n-grams using entropy pruning (Stolcke
2000). We use this pruned model as a baseline. The results are in Figure 8. The trend

13 https://www.statmt.org/europarl/v7/pl-en.tgz.

245

https://www.statmt.org/europarl/v7/pl-en.tgz

Computational Linguistics Volume 47, Number 2

Table 3
Test perplexity of k-gram models obtained by different approaches for the Polish (Europarl)
corpus. We use 32M samples for both WFA-SAMPLEKATZ(·) and WFA-SAMPLEAPPROX(·).

Model Test perplexity

Katz 185.5
WFA-SAMPLEKATZ(·) 189.3
Arisoy et al. (2014) 197.8
Adel et al. (2014) 187.1
WFA-SAMPLEAPPROX(·) (KT) 181.4
WFA-SAMPLEAPPROX(·) (UT) 177.0

is similar to that of the English Broadcast News corpus with the proposed algorithm
WFA-SAMPLEAPPROX(·) performing better than the other methods. We also compare
the proposed algorithms with other neural approximation algorithms. The comparison
results are shown in Table 3.

5.3 Lower Bounds on Perplexity

Best Approximation for Target Topology. The neural model in Section 5.2 has a perplexity
of 60.5, but the best perplexity for the approximated model is 140.8. Is there a better
approximation algorithm for the given target topology? We place bounds on that next.

Let T be the set of test sentences. The test-set log-perplexity of a model p can be
written as

1
|T|

∑
x∗∈T

log 1
p(x∗) =

∑
x∗

p̂t(x∗) log 1
p(x∗)

where p̂t is the empirical distribution of test sentences. Observe that the best model with
topology A can be computed as

p′a = argmin
pa∈P(A)

∑
x∗

p̂t(x∗) log 1
pa(x∗)

which is the model with topology A that has minimal KL divergence from the test
distribution p̂t. This can be computed using WFA-APPROX. If we use this approach
on the English Broadcast News test set with the 2M n-gram Katz model, the resulting
model has perplexity of 121.1, showing that, under the assumption that the algorithm
finds the global KL divergence minimum, the test perplexity with this topology cannot
be improved beyond 121.1, irrespective of the method.

Approximation onto Best Trigram Topology. If we approximate the LSTM onto the best
trigram topology, how well does it perform over the test data? To test this, we build a
trigram model from the test data and approximate the LSTM on the trigram topology.
This approximated model has 11M n-grams and a perplexity of 81. This shows that for
large data sets, the largest shortfall of n-gram models in the approximation is due to the
n-gram topology.

246

Suresh et al. Approximating Probabilistic Models as WFA

5.4 WFA Sources

While distillation of neural models is an important use case for our algorithms, there are
other scenarios where approximations will be derived from WFA sources. In such cases,
no sampling is required and we can use the algorithms presented in Sections 4.1.1 or
4.1.2, namely, WFA-APPROX. For example, it is not uncommon for applications to place
maximum size restrictions on models, so that existing WFA models are too large and
must be reduced in size prior to use. Section 5.4.1 presents a couple of experiments
focused on character language model size reduction that were motivated by such
size restrictions. Another scenario with WFA sources is when, for privacy reasons, no
language model training corpus is available in a domain, but only minimum-count-
thresholded (i.e., high frequency) word n-gram counts are provided. In Section 5.4.2 we
examine the estimation of open-vocabulary character language models from such data.

Creating Compact Models for Infrequent Words. In low-memory applications such as on-
device keyboard decoding (Ouyang et al. 2017), it is often useful to have a character-
level WFA representation of a large set of vocabulary words that act only as unigrams,
for example, those words beyond the 32K words of our trigram model. We explore how
to compactly represent such a unigram-only model.

To demonstrate our approach, we take all the words in the training set (without a
count cutoff) and build a character-level deterministic WFA of those words weighted by
their unigram probabilities. This is represented as a tree rooted at the initial state (a trie).
This automaton has 820K transitions. Storing this many transitions can be prohibitive;
we can reduce the size in two steps.

The first step is to minimize this WFA using weighted minimization (Mohri 2000) to
produce pchar, which has a topology Achar. Although pchar is already much smaller (it has
378K transitions, a 54% reduction), we can go further by approximating onto the min-
imal deterministic unweighted automaton, Minimize(Achar). This gives us a model with
only 283K transitions, a further 25% reduction. Because Minimize(Achar) accepts exactly
the same words as Achar, we are not corrupting our model by adding or removing any
vocabulary items. Instead, we find an estimate that is as close as possible to the original,
but that is constrained to the minimal deterministic representation that preserves the
vocabulary.

To evaluate this approach, we randomly select a 20K sentence subset of the original
test set, and represent each selected string as a character-level sequence. We evaluate us-
ing cross entropy in bits-per-character, common for character-level models. The result-
ing cross entropy for pchar is 1.557 bits-per-character. By comparison, the cross entropy
for pchar approximated onto Minimize(Achar) is 1.560 bits-per-character. In exchange for
this small accuracy loss we are rewarded with a model that is 25% smaller. Wolf-Sonkin
et al. (2019) used the methods presented here to augment the vocabulary of an on-device
keyboard to deal with issues related to a lack of standard orthography.

Creating Compact WFA Language Models. Motivated by the previous experiment, we
also consider applying (unweighted) minimization to Agreedy, the word-based trigram
topology that we pruned to 1M n-grams described earlier. In Table 4 we show that
applying minimization to Agreedy and then approximating onto the resulting topology
leads to a reduction of 7% in the number of transitions needed to represent the model.
However, the test perplexity also increases some. To control for this, we prune the

247

5.4.1 Creating Compact Language Models

Computational Linguistics Volume 47, Number 2

Table 4
Test perplexity of models when approximated onto smaller topologies.

Topology Test perplexity # Transitions

Agreedy 155.7 1.13M
Minimize(Agreedy) 156.4 1.05M

A′greedy 154.1 1.22M
Minimize(A′greedy) 154.9 1.13M

original model to a 1.08M n-gram topology A′greedy instead of the 1M as before and
apply the same procedure to obtain an approximation on Minimize(A′greedy). We achieve
a 0.4% perplexity reduction compared to the approximation on Agreedy with very nearly
the same number of transitions.

5.4.2 Count Thresholded Data for Privacy. One increasingly common scenario that can
benefit from these algorithms is modeling from frequency thresholded substring counts
rather than raw text. For example, word n-grams and their frequencies may be pro-
vided from certain domains of interest only when they occur within at least k separate
documents. With a sufficiently large k (say 50), no n-gram can be traced to a specific
document, thus providing privacy in the aggregation. This is known as k-anonymity
(Samarati 2001).

However, for any given domain, there are many kinds of models that one may want
to build depending on the task, some of which may be trickier to estimate from such a
collection of word n-gram counts than with standard approaches for estimation from a
given corpus. For example, character n-gram models can be of high utility for tasks like
language identification, and have the benefit of a relatively small memory footprint and
low latency in use. However, character n-gram models might be harder to learn from a
k-anonymized corpus.

Here we will compare open-vocabulary character language models, which accept
all strings in Σ∗ for a character vocabulary Σ, trained in several ways. Each approach
relies on the training corpus and 32k vocabulary, with every out-of-vocabulary word
replaced by a single OOV symbol F. Additionally, for each approach we add 50 to
the unigram character count of any printable ASCII character, so that even those that
are unobserved in the words of our 32k vocabulary have some observations. Our three
approaches are:

1. Baseline corpus trained models: We count character 5-grams from the
k-anonymized corpus, then remove all n-grams that include theF symbol
(in any position) prior to smoothing and normalization. Here we present
both Kneser-Ney and Witten Bell smoothed models, as both are popular
for character n-gram models.

2. Word trigram sampled model: First we count word trigrams in the
k-anonymized corpus and discard any n-gram with theF symbol (in any
position) prior to smoothing and normalization. We then sample one
million strings from a Katz smoothed model and build a character 5-gram
model from these strings. We also use this as our target topology for the
next approach.

248

Suresh et al. Approximating Probabilistic Models as WFA

3. Word trigram KL minimization estimation: We create a source model by
converting the 2M n-gram word trigram model into an open vocabulary
model. We do this using a specialized construction related to the
construction presented in Section 6 of Chen et al. (2019), briefly described
below, that converts the word model into a character sequence model. As
this model is still closed vocabulary (see below), we additionally smooth
the unigram distribution with a character trigram model trained from the
words in the symbol table (and including the 50 extra counts for every
printable ASCII character as with the other methods). From this source
model, we estimate a model on the sampled character 5-gram topology
from the previous approach, using our KL minimization algorithm.

Converting Word n-gram Source to Character Sequence Source Model. Briefly, for every
state q in the n-gram automaton, the set of words labeling transitions leaving q are
represented as a trie of characters including a final end-of-word symbol. Each resulting
transition labeled with the end-of-word symbol represents the last transition for that
particular word spelled out by that sequence of transitions, hence is assigned the same
next state as the original word transition. If q has a backoff transition pointing to
its backoff state q′, then each new internal state in the character trie backs off to the
corresponding state in the character trie leaving q′. The presence of the corresponding
state in the character trie leaving q′ is guaranteed because the n-gram automaton is
backoff-complete, as discussed in Section 3.3.

As stated above, this construction converts from word sequences to character se-
quences, but will only accept character sequences consisting of strings of in-vocabulary
words, that is, this is still closed vocabulary. To make it open vocabulary, we further back
off the character trie leaving the unigram state to a character n-gram model estimated
from the symbol table (and additional ASCII character observations). This is done using
a very similar construction to that described above. The resulting model is used as the
source model for our KL minimization algorithm, to estimate a distribution over the
sampled character 5-gram topology.

We encode the test set as a sequence of characters, without using the symbol table
because our models are intended to be open vocabulary. Following typical practice for
open-vocabulary settings, we evaluate with bits-per-character. The results are presented
in Table 5. Here we achieve slightly lower bits-per-character than even what we get

Table 5
Comparison of character 5-gram models derived from either the original corpus or a word
trigram model. Size of the models is presented in terms of the number of character n-grams, the
numbers of states and transitions in the automaton representation, and the file size in MB. The
two corpus estimated models have the same topology, hence the same size; as do the two word
trigram estimated models.

Source n-grams states transitions MB Estimation bits/char
(x1000) (x1000) (x1000)

Corpus 336 60 381 6.5 Kneser-Ney 2.04
Witten-Bell (WB) 2.01

Word trigram 277 56 322 5.6 Sampled (WB) 2.36
KL min 1.99

249

Computational Linguistics Volume 47, Number 2

straight from the corpus, perhaps due to better regularization of the word-based model
than with either Witten-Bell or Kneser-Ney on the character n-grams.

6. Software Library

All of the algorithms presented here are available in the OpenGrm libraries at http://

www.opengrm.org under the topic: SFST Library: operations to normalize, sample, combine,
and approximate stochastic finite-state transducers. We illustrate the use of this library by
showing how to implement some of the experiments in the previous section.

6.1 Example Data and Models

Instead of Broadcast News, we will use the text of Oscar Wilde’s The Importance of Being
Earnest for our tutorial example. This is a small tutorial corpus that we make available
at http://sfst.opengrm.org.

This corpus of approximately 1,688 sentences and 18,000-words has been upper-
cased and had punctuation removed. The first 850 sentences were used as training data
and the remaining 838 sentences used as test data. From these, we produce two 1,000-
word vocabulary Katz bigram models, the∼6k n-gram earnest train.mod and the∼4k
n-gram earnest test.mod. We also used relative-entropy pruning to create the ∼2k
n-gram earnest train.pru. The data, the steps to generate these models, and how to
compute their perplexity using OpenGrm NGram are all fully detailed in the QuickTour

topic at http://sfst.opengrm.org.

6.2 Computing the Approximation

The following step shows how to compute the approximation of a ϕ-WFA model onto
aϕ-WFA topology. In the example below, the first argument, earnest train.mod, is the
source model, and the second argument, earnest train.pru, provides the topology.
The result is a ϕ-WFA whose perplexity can be measured as before.

$ sfstapprox -phi label=0 earnest train.mod earnest train.pru \
>earnest train.approx

An alternative, equivalent way to perform this approximation is to break it into
two steps, with the counting and normalization (KL divergence minimization) done
separately.

$ sfstcount -phi label=0 earnest train.mod earnest train.pru \
>earnest train.approx cnts

$ sfstnormalize -method=kl min -phi label=0 \
earnest train.approx cnts >earnest train.approx

We can now use these utilities to run some experiments analogous to our larger
Broadcast News experiments by using different target topologies. The results are shown
in Table 6. We see in the idempotency experiment that the perplexity of the approxi-
mation on the same topology matches the source. In the greedy-pruning experiment,
the approximation onto the greedy-pruned topology yields a better perplexity than the
greedily-pruned model. Finally, the approximation onto the test-set bigram topology
gives a better perplexity than the training-set model since we include all the relevant
bigrams.

250

http://www.opengrm.org
http://www.opengrm.org
http://sfst.opengrm.org
http://sfst.opengrm.org

Suresh et al. Approximating Probabilistic Models as WFA

Table 6
Perplexities for example experiments.

Experiment Source Topology Approx.
Model Perplexity

Idempotency earnest train.mod earnest train.mod 73.41
Comparison to greedy pruning earnest train.mod earnest train.pru 83.12
Approx. onto best bigram topology earnest train.mod earnest test.pru 69.68

Table 7
Available Operations in the OpenGrm SFst Library.

Operation Description

sfstapprox Approximates a stochastic ϕ-WFA
wrt a backoff-complete ϕ-WFA.

sfstcount Counts from a stochastic ϕ-WFA
wrt a backoff-complete ϕ-WFA.

sfstintersect Intersects two ϕ-WFAs.

sfstnormalize -method=global Globally normalizes a ϕ-WFA.

sfstnormalize -method=kl min Normalizes a count ϕ-WFA using
KL divergence minimization.

sfstnormalize -method=local Locally normalizes a ϕ-WFA.

sfstnormalize -method=phi ϕ-normalizes a ϕ-WFA.

sfstperplexity Computes perplexity of a
stochastic ϕ-WFA.

sfstrandgen Randomly generates paths from a
stochastic ϕ-WFA.

sfstshortestdistance Computes the shortest distance
on a ϕ-WFA.

sfsttrim Removes useless states and
transitions in a ϕ-WFA.

6.3 Available Operations

Table 7 lists the available command-line operations in the OpenGrm SFst library. We
show command-line utilities here; there are corresponding C++ library functions that
can be called from within a program; see http://sfst.opengrm.org.

7. Summary and Discussion

In this article, we have presented an algorithm for minimizing the KL-divergence
between a probabilistic source model over sequences and a WFA target model. That
our algorithm is general enough to permit source models of arbitrary form (e.g., RNNs)
and deriving an appropriate WFA topology—something we do not really touch on in
this article—is particularly important.

251

http://sfst.opengrm.org

Computational Linguistics Volume 47, Number 2

References
Adel, Heike, Katrin Kirchhoff, Ngoc Thang

Vu, Dominic Telaar, and Tanja Schultz.
2014. Comparing approaches to convert
recurrent neural networks into backoff
language models for efficient decoding. In
Fifteenth Annual Conference of the
International Speech Communication
Association (Interspeech), pages 651–655.

Aho, Alfred V. and Margaret J. Corasick.
1975. Efficient string matching: An aid to
bibliographic search. Communications of the
ACM, 18(6):333–340. https://doi.org/10
.1145/360825.360855

Albert, Jürgen and Jarkko Kari. 2009. Digital
image compression. In M. Droste, W.
Kuich, and H. Vogler, editors, Handbook
of Weighted Automata, Springer,
pages 453–479. https://doi.org/10.1007
/978-3-642-01492-5 11

Allauzen, Cyril, Mehryar Mohri, and Brian
Roark. 2003. Generalized algorithms for
constructing language models. In
Proceedings of ACL, pages 40–47.
https://doi.org/10.3115/1075096
.1075102

Allauzen, Cyril, Michael Riley, Johan
Schalkwyk, Wojciech Skut, and Mehryar
Mohri. 2007. OpenFst Library.
http://www.openfst.org.

Allauzen, Cyril and Michael D. Riley. 2018.
Algorithms for weighted finite automata
with failure transitions. In International
Conference on Implementation and
Application of Automata, pages 46–58.
https://doi.org/10.1007/978-3-319
-94812-6 5

Angluin, Dana. 1987. Learning regular sets
from queries and counterexamples.
Information and Computation, 75(2):87–106.
https://doi.org/10.1016/0890-5401
(87)90052-6

Angluin, Dana. 1988. Identifying languages
from stochastic examples. Technical Report
YALEU /DCS /RR-614, Yale University.

Arisoy, Ebru, Stanley F. Chen, Bhuvana
Ramabhadran, and Abhinav Sethy. 2014.
Converting neural network language
models into back-off language models for
efficient decoding in automatic speech
recognition. IEEE/ACM Transactions on
Audio, Speech and Language Processing
(TASLP), 22(1):184–192. https://doi.org
/10.1109/TASLP.2013.2286919

Balle, Borja, Xavier Carreras, Franco M.
Luque, and Ariadna Quattoni. 2014.
Spectral learning of weighted automata.
Machine Learning, 96(1-2):33–63.
https://doi.org/10.1007/s10994-013
-5416-x

Balle, Borja and Mehryar Mohri. 2012.
Spectral learning of general weighted
automata via constrained matrix
completion. In Advances in Neural
Information Processing Systems,
pages 2159–2167.

Breuel, Thomas M. 2008. The OCRopus open
source OCR system. In Proceedings of
IS&T/SPIE 20th Annual Symposium.
https://doi.org/10.1117/12.783598

Carrasco, Rafael C. 1994. Accurate
computation of the relative entropy
between stochastic regular grammars.
RAIRO-Theoretical Informatics and
Applications, 31(5):437–444.
https://doi.org/10.1051/ita
/1997310504371

Carrasco, Rafael C. and José Oncina. 1994.
Learning stochastic regular grammars by
means of a state merging method. In
International Colloquium on Grammatical
Inference, pages 139–152. https://doi.org
/10.1007/3-540-58473-0 144

Carrasco, Rafael C. and José Oncina. 1999.
Learning deterministic regular grammars
from stochastic samples in polynomial
time. RAIRO-Theoretical Informatics and
Applications, 33(1):1–19. https://doi.org
/10.1051/ita:1999102

Chelba, Ciprian, Thorsten Brants, Will
Neveitt, and Peng Xu. 2010. Study on
interaction between entropy pruning and
Kneser-Ney smoothing. In Eleventh Annual
Conference of the International Speech
Communication Association (Interspeech),
pages 2422–2425.

Chen, Mingqing, Ananda Theertha Suresh,
Rajiv Mathews, Adeline Wong, Françoise
Beaufays, Cyril Allauzen, and Michael
Riley. 2019. Federated learning of N-gram
language models. In Proceedings of the 23rd
Conference on Computational Natural
Language Learning (CoNLL), pages 121–130.
https://doi.org/10.18653/v1/K19-1012

Chen, Stanley and Joshua Goodman. 1998.
An empirical study of smoothing
techniques for language modeling.
TR-10-98, Harvard University.

Cicchello, Orlando and Stefan C. Kremer.
2003. Inducing grammars from sparse data
sets: A survey of algorithms and results.
Journal of Machine Learning Research,
4(Oct):603–632.

Cortes, Corinna, Mehryar Mohri, Ashish
Rastogi, and Michael Riley. 2008. On the
computation of the relative entropy of
probabilistic automata. International Journal
of Foundations of Computer Science,
19(01):219–242. https://doi.org/10.1142
/S0129054108005644

252

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1007/978-3-642-01492-5_11
https://doi.org/10.1007/978-3-642-01492-5_11
https://doi.org/10.3115/1075096.1075102
https://doi.org/10.3115/1075096.1075102
http://www.openfst.org
https://doi.org/10.1007/978-3-319-94812-6_5
https://doi.org/10.1007/978-3-319-94812-6_5
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TASLP.2013.2286919
https://doi.org/10.1109/TASLP.2013.2286919
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1117/12.783598
https://doi.org/10.1051/ita/1997310504371
https://doi.org/10.1051/ita/1997310504371
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1051/ita:1999102
https://doi.org/10.1051/ita:1999102
https://doi.org/10.18653/v1/K19-1012
https://doi.org/10.1142/S0129054108005644
https://doi.org/10.1142/S0129054108005644

Suresh et al. Approximating Probabilistic Models as WFA

Dempster, Arthur P., Nan M. Laird, and
Donald B. Rubin. 1977. Maximum
likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38.
https://doi.org/10.1111/j.2517-6161
.1977.tb01600.x

Deoras, Anoop, Tomáš Mikolov, Stefan
Kombrink, Martin Karafiát, and Sanjeev
Khudanpur. 2011. Variational
approximation of long-span language
models for LVCSR. In 2011 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP),
pages 5532–5535. https://doi.org/10
.1109/ICASSP.2011.5947612

Dupont, Pierre. 1996. Incremental regular
inference. In International Colloquium on
Grammatical Inference, pages 222–237.
https://doi.org/10.1007/BFb0033357

Durbin, Richard, Sean R. Eddy, Anders
Krogh, and Graeme J. Mitchison. 1998.
Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids,
Cambridge University Press. https://
doi.org/10.1017/CBO9780511790492

Ebden, Peter and Richard Sproat. 2015. The
Kestrel TTS text normalization system.
Natural Language Engineering,
21(3):333–353. https://doi.org/10
.1017/S1351324914000175

Eisner, Jason. 2001. Expectation semirings:
Flexible EM for learning finite-state
transducers. In Proceedings of the ESSLLI
Workshop on Finite-state Methods in NLP,
pages 1–5.

Giles, C. Lee, Clifford B. Miller, Dong Chen,
Hsing-Hen Chen, Guo-Zheng Sun, and
Yee-Chun Lee. 1992. Learning and
extracting finite state automata with
second-order recurrent neural networks.
Neural Computation, 4(3):393–405.
https://doi.org/10.1162/neco.1992.4
.3.393

Gold, E. Mark. 1967. Language identification
in the limit. Information and Control,
10(5):447–474. https://doi.org/10.1016
/S0019-9958(67)91165-5

Gold, E. Mark. 1978. Complexity of
automaton identification from given data.
Information and Control, 37(3):302–320.
https://doi.org/10.1016/S0019
-9958(78)90562-4

Hard, Andrew, Kanishka Rao, Rajiv
Mathews, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé
Kiddon, and Daniel Ramage. 2018.
Federated learning for mobile keyboard
prediction. arXiv preprint arXiv:1811.03604.

Hellsten, Lars, Brian Roark, Prasoon Goyal,
Cyril Allauzen, Françoise Beaufays, Tom
Ouyang, Michael Riley, and David Rybach.
2017. Transliterated mobile keyboard input
via weighted finite-state transducers. In
FSMNLP 2017, pages 10–19. https://
doi.org/10.18653/v1/W17-4002

Horst, Reiner and Nguyen V. Thoai. 1999.
DC programming: Overview. Journal of
Optimization Theory and Applications,
103(1):1–43. https://doi.org/10.1023
/A:1021765131316

Iglesias, Gonzalo, Cyril Allauzen, William
Byrne, Adrià de Gispert, and Michael
Riley. 2011. Hierarchical phrase-based
translation representations. In EMNLP
2011, pages 1373–1383.

Jacobsson, Henrik. 2005. Rule extraction
from recurrent neural networks: A
taxonomy and review. Neural Computation,
17(6):1223–1263. https://doi.org/10
.1162/0899766053630350

Katz, Slava M. 1987. Estimation of
probabilities from sparse data for the
language model component of a speech
recognizer. IEEE Transactions on Acoustic,
Speech, and Signal Processing, 35(3):400–401.
https://doi.org/10.1109/TASSP.1987
.1165125

Koehn, Philipp. 2005. Europarl: A parallel
corpus for statistical machine translation.
In MT Summit, 5:79–86.

Konečnỳ, Jakub, H. Brendan McMahan,
Felix X. Yu, Peter Richtárik, Ananda
Theertha Suresh, and Dave Bacon. 2016.
Federated learning: Strategies for
improving communication efficiency. arXiv
preprint arXiv:1610.05492.

Lecorvé, Gwénolé and Petr Motlicek. 2012.
Conversion of recurrent neural network
language models to weighted finite state
transducers for automatic speech
recognition. In Thirteenth Annual Conference
of the International Speech Communication
Association (Interspeech), pages 1668–1671.

McMahan, Brendan, Eider Moore,
Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep
networks from decentralized data. In
Artificial Intelligence and Statistics,
pages 1273–1282.

Mohri, Mehryar. 1997. String-matching with
automata. Nordic Journal of Computing,
4(2):217–213.

Mohri, Mehryar. 2000. Minimization
algorithms for sequential transducers.
Theoretical Computer Science,
234(1-2):177–201. https://doi.org
/10.1016/S0304-3975(98)00115-7

253

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/ICASSP.2011.5947612
https://doi.org/10.1109/ICASSP.2011.5947612
https://doi.org/10.1007/BFb0033357
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1162/neco.1992.4.3.393
https://doi.org/10.1162/neco.1992.4.3.393
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.18653/v1/W17-4002
https://doi.org/10.18653/v1/W17-4002
https://doi.org/10.1023/A:1021765131316
https://doi.org/10.1023/A:1021765131316
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1016/S0304-3975(98)00115-7
https://doi.org/10.1016/S0304-3975(98)00115-7

Computational Linguistics Volume 47, Number 2

Mohri, Mehryar. 2002. Semiring frameworks
and algorithms for shortest-distance
problems. Journal of Automata, Languages
and Combinatorics, 7(3):321–350.

Mohri, Mehryar. 2009. Weighted automata
algorithms. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of Weighted
Automata. Springer, pages 213–254.
https://doi.org/10.1007/978-3-642
-01492-5 6

Mohri, Mehryar, Fernando C. N. Pereira, and
Michael Riley. 2008. Speech recognition
with weighted finite-state transducers. In
J. Benesty, M. M. Sondhi, and Y. A. Huang,
editors, Handbook on Speech Processing and
Speech Communication, Springer,
pages 559–584. https://doi.org/10
.1007/978-3-540-49127-9 28

Novak, Josef R., Nobuaki Minematsu, and
Keikichi Hirose. 2013. Failure transitions
for joint n-gram models and G2P
conversion. In Fourteenth Annual Conference
of the International Speech Communication
Association (Interspeech), pages 1821–1825.

Okudono, Takamasa, Masaki Waga, Taro
Sekiyama, and Ichiro Hasuo. 2020.
Weighted automata extraction from
recurrent neural networks via regression
on state spaces. In Proceedings of the AAAI
Conference on Artificial Intelligence,
34:5306–5314. https://doi.org/10
.1609/aaai.v34i04.5977

Oncina, José and Pedro Garcia. 1992.
Identifying regular languages in
polynomial time. In Advances in Structural
and Syntactic Pattern Recognition. World
Scientific, pages 99–108. https://doi.org
/10.1142/9789812797919 0007

Ouyang, Tom, David Rybach, Françoise
Beaufays, and Michael Riley. 2017.
Mobile keyboard input decoding with
finite-state transducers. arXiv preprint
arXiv:1704.03987.

Parekh, Rajesh and Vasant Honavar. 2000.
Grammar inference, automata induction,
and language acquisition. In R. Dale, H.
Moisl, and H. Somers, editors, Handbook of
Natural Language Processing, pages 727–764.

Pitt, Leonard. 1989. Inductive inference,
DFAs, and computational complexity. In
International Workshop on Analogical and
Inductive Inference, pages 18–44.
https://doi.org/10.1007/3-540
-51734-0 50

Roark, Brian, Richard Sproat, Cyril Allauzen,
Michael Riley, Jeffrey Sorensen, and Terry
Tai. 2012. The OpenGrm open-source
finite-state grammar software libraries.
Proceedings of the ACL 2012 System
Demonstrations, pages 61–66.

Samarati, Pierangela. 2001. Protecting
respondents’ identities in microdata
release. IEEE Transactions on Knowledge and
Data Engineering, 13(6):1010–1027.
https://doi.org/10.1109/69
.971193

Sriperumbudur, Bharath K. and Gert R. G.
Lanckriet. 2009. On the convergence of the
concave-convex procedure. In Proceedings
of the 22nd International Conference on
Neural Information Processing Systems,
pages 1759–1767.

Stolcke, Andreas. 2000. Entropy-based
pruning of backoff language models.
arXiv preprint cs/0006025.

Sundermeyer, Martin, Ralf Schlüter, and
Hermann Ney. 2012. LSTM neural
networks for language modeling.
Thirteenth Annual Conference of the
International Speech Communication
Association, pages 194–197.

Suresh, Ananda Theertha, Brian Roark,
Michael Riley, and Vlad Schogol. 2019.
Distilling weighted finite automata from
arbitrary probabilistic models. In
Proceedings of the 14th International
Conference on Finite-State Methods and
Natural Language Processing (FSMNLP),
pages 87–97. https://doi.org/10
.18653/v1/W19-3112

Tiño, Peter and Vladimir Vojtek. 1997.
Extracting stochastic machines from
recurrent neural networks trained on
complex symbolic sequences. In
Proceedings of the First International
Conference on Knowledge-Based Intelligent
Electronic Systems, volume 2,
pages 551–558, IEEE.

Weiss, Gail, Yoav Goldberg, and Eran Yahav.
2018. Extracting automata from recurrent
neural networks using queries and
counterexamples. In International
Conference on Machine Learning,
pages 5244–5253.

Weiss, Gail, Yoav Goldberg, and Eran Yahav.
2019. Learning deterministic weighted
automata with queries and
counterexamples. Advances in Neural
Information Processing Systems,
pages 8560–8571.

Wolf-Sonkin, Lawrence, Vlad Schogol, Brian
Roark, and Michael Riley. 2019. Latin script
keyboards for South Asian languages with
finite-state normalization. In Proceedings of
the 14th International Conference on
Finite-State Methods and Natural Language
Processing (FSMNLP), pages 108–117.
https://doi.org/10.18653/v1/W19
-3114

254

https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1609/aaai.v34i04.5977
https://doi.org/10.1609/aaai.v34i04.5977
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1142/9789812797919_0007
https://doi.org/10.1007/3-540-51734-0_50
https://doi.org/10.1007/3-540-51734-0_50
https://doi.org/10.1109/69.971193
https://doi.org/10.1109/69.971193
https://doi.org/10.18653/v1/W19-3112
https://doi.org/10.18653/v1/W19-3112
https://doi.org/10.18653/v1/W19-3114
https://doi.org/10.18653/v1/W19-3114

	Introduction
	Related Work
	Theoretical Analysis
	Probabilistic Models
	Weighted Finite Automata
	Weighted Finite Automata with Failure Transitions

	Algorithms
	Counting
	KL Divergence Minimization
	Discussion

	Experiments
	Empirical Evidence of Theory
	Neural Models to WFA Conversion
	Lower Bounds on Perplexity
	WFA Sources

	Software Library
	Example Data and Models
	Computing the Approximation
	Available Operations

	Summary and Discussion

