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Transformer-based language models have taken many fields in NLP by storm. BERT and its
derivatives dominate most of the existing evaluation benchmarks, including those for Word
Sense Disambiguation (WSD), thanks to their ability in capturing context-sensitive semantic
nuances. However, there is still little knowledge about their capabilities and potential limitations
in encoding and recovering word senses. In this article, we provide an in-depth quantitative
and qualitative analysis of the celebrated BERT model with respect to lexical ambiguity. One
of the main conclusions of our analysis is that BERT can accurately capture high-level sense
distinctions, even when a limited number of examples is available for each word sense. Our anal-
ysis also reveals that in some cases language models come close to solving coarse-grained noun
disambiguation under ideal conditions in terms of availability of training data and computing
resources. However, this scenario rarely occurs in real-world settings and, hence, many practical
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challenges remain even in the coarse-grained setting. We also perform an in-depth comparison of
the two main language model-based WSD strategies, namely, fine-tuning and feature extraction,
finding that the latter approach is more robust with respect to sense bias and it can better
exploit limited available training data. In fact, the simple feature extraction strategy of averaging
contextualized embeddings proves robust even using only three training sentences per word
sense, with minimal improvements obtained by increasing the size of this training data.

1. Introduction

In the past decade, word embeddings have undoubtedly been one of the major points
of attention in research on lexical semantics. The introduction of Word2vec (Mikolov
et al. 2013b), as one of the pioneering word embedding models, generated a massive wave
in the field of lexical semantics, the impact of which is still being felt today. However,
static word embeddings (such as Word2vec) suffer from the limitation of being fixed
or context insensitive, that is, the word is associated with the same representation in all
contexts, disregarding the fact that different contexts can trigger various meanings of the
word, which might be even semantically unrelated. Sense representations were an at-
tempt at addressing the meaning conflation deficiency of word embeddings (Reisinger
and Mooney 2010; Camacho-Collados and Pilehvar 2018). Despite computing distinct
representations for different senses of a word, hence addressing this deficiency of word
embeddings, sense representations are not directly integrable into downstream NLP
models. The integration usually requires additional steps, including a (non-optimal)
disambiguation of the input text, which make sense embeddings fall short of fully
addressing the problem.

The more recent contextualized embeddings (Peters et al. 2018a; Devlin et al. 2019) are
able to simultaneously address both these limitations. Trained with language modeling
objectives, contextualized models can compute dynamic meaning representations for
words in context that highly correlate with humans’ word sense knowledge (Nair,
Srinivasan, and Meylan 2020). Moreover, contextualized embeddings provide a seam-
less integration into various NLP models, with minimal changes involved. Even better,
given the extent of semantic and syntactic knowledge they capture, contextualized
models get close to the one system for all tasks settings. Surprisingly, fine-tuning the
same model on various target tasks often results in comparable or even higher perfor-
mance when compared with sophisticated state-of-the-art task-specific models (Peters,
Ruder, and Smith 2019). This has been shown for a wide range of NLP applications
and tasks, including Word Sense Disambiguation (WSD), for which they have provided
a significant performance boost, especially after the introduction of Transformer-based
language models like BERT (Loureiro and Jorge 2019a; Vial, Lecouteux, and Schwab
2019; Wiedemann et al. 2019).

Despite their massive success, there has been limited work on the analysis of recent
language models and on explaining the reasons behind their effectiveness in lexical
semantics. Most analytical studies focus on syntax (Hewitt and Manning 2019; Saphra
and Lopez 2019) or explore the behavior of self-attention heads (Clark et al. 2019) or
layers (Tenney, Das, and Pavlick 2019), but there has been little work on investigating the
potential of language models and their limitations in capturing other linguistic aspects,
such as lexical ambiguity. Moreover, the currently popular language understanding
evaluation benchmarks—for example, GLUE (Wang et al. 2018) and SuperGLUE (Wang
et al. 2019)—mostly involve sentence-level representation, which does not shed much
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light on the semantic properties of these models for individual words.1 To our knowl-
edge, there has so far been no in-depth analysis of the abilities of contextualized models
in capturing the ambiguity property of words.

In this article, we carry out a comprehensive analysis to investigate how pretrained
language models capture lexical ambiguity in the English language. Specifically, we
scrutinize the two major language model-based WSD strategies (i.e., feature extraction
and fine-tuning) under various disambiguation scenarios and experimental configu-
rations. The main contributions of this work can be summarized as follows: (1) we
provide an extensive quantitative evaluation of pretrained language models in standard
WSD benchmarks; (2) we develop a new data set, CoarseWSD-20, which is particularly
suited for the qualitative analysis of WSD systems; and (3) with the help of this data
set, we perform an in-depth qualitative analysis and test the limitations of BERT on
coarse-grained WSD. Data and code to reproduce all our experiments is available at
https://github.com/danlou/bert-disambiguation.

The remainder of the article is organized as follows. In Section 2, we delineate
the literature on probing pretrained language models and on analyzing the potential
of representation models in capturing lexical ambiguity. We also describe in the same
section the existing benchmarks for evaluating WSD. Section 3 presents an overview
of WSD and its conventional paradigms. We then describe in the same section the
two major approaches to utilizing language models for WSD, namely, nearest-neighbor
feature extraction and fine-tuning. We also provide a quantitative comparison of some
of the most prominent WSD approaches in each paradigm in various disambiguation
scenarios, including fine- and coarse-grained settings. This quantitative analysis is fol-
lowed by an analysis of models’ performance per word categories (parts of speech) and
for various layer-wise representations (in the case of language model-based techniques).
Section 4 introduces CoarseWSD-20, the WSD data set we have constructed to facilitate
our in-depth qualitative analysis. In Section 5 we evaluate the two major BERT-based
WSD strategies on the benchmark. To highlight the improvement attributable to contex-
tualized embeddings, we also provide results of a linear classifier based on pretrained
FastText static word embeddings. Based on these experiments, we carry out an analysis
on the impact of fine-tuning and also compare the two strategies with respect to ro-
bustness across domains and bias toward the most frequent sense. Section 6 reports our
observations upon further scrutinizing the two strategies on a wide variety of settings
such as few-shot learning and different training distributions. Section 7 summarizes
the main results from the previous sections and discusses the main takeaways. Finally,
Section 8 presents the concluding remarks and potential areas for future work.

2. Related Work

Recently, there have been several attempts at analyzing pretrained language models. In
Section 2.1 we provide a general overview of the relevant works, and Section 2.2 covers
those related to lexical ambiguity. Finally, in Section 2.3 we outline existing evaluation
benchmarks for WSD, including CoarseWSD-20, which is the disambiguation data set
we have constructed for our qualitative analysis.

1 WiC (Pilehvar and Camacho-Collados 2019) is the only SuperGLUE task where systems need to model
the semantics of words in context (extended to several more languages in XL-WiC [Raganato et al. 2020]).
In the Appendix we provide results for this task.
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2.1 Analysis of Pretrained Language Models

Despite their young age, pretrained language models, in particular, those based on
Transformers, have now dominated the evaluation benchmarks for most NLP tasks
(Devlin et al. 2019; Liu et al. 2019b). However, there has been limited work on under-
standing behind the scenes of these models.

Various studies have shown that fulfilling the language modeling objective inher-
ently forces the model to capture various linguistic phenomena. A relatively highly
studied phenomenon is syntax, which is investigated both for earlier LSTM-based mod-
els (Linzen, Dupoux, and Goldberg 2016; Kuncoro et al. 2018) as well as for the more
recent Transformer-based ones (Goldberg 2019; Hewitt and Manning 2019; Saphra and
Lopez 2019; Jawahar, Sagot, and Seddah 2019; van Schijndel, Mueller, and Linzen 2019;
Tenney et al. 2019). A recent work in this context is the probe proposed by Hewitt and
Manning (2019), which enabled them to show that Transformer-based models encode
human-like parse trees to a very good extent. In terms of semantics, fewer studies
exist, including the probing study of Ettinger (2020) on semantic roles, and that of
Tenney, Das, and Pavlick (2019), which also investigates entity types and relations. The
closest analysis to ours is that of Peters et al. (2018b), which provides a deep analysis of
contextualized word embeddings, both from the representation point of view and per
architectural choices. In the same spirit, Conneau et al. (2018) proposed a number of
linguistic probing tasks to analyze sentence embedding models. Perhaps more related
to the topic of this article, Shwartz and Dagan (2019) showed how contextualized
embeddings are able to capture non-literal usages of words in the context of lexical
composition. For a complete overview of existing probe and analysis methods, the
survey of Belinkov and Glass (2019) provides a synthesis of analysis studies on neural
network methods. The more recent survey of Rogers, Kovaleva, and Rumshisky (2020)
is a similar synthesis but targeted at BERT and its derivatives.

Despite all this analytical work, the investigation of neural language models
from the perspective of ambiguity (and, in particular, lexical ambiguity) has been
surprisingly neglected. In the following we discuss studies that aimed at shedding
some light on this important linguistic phenomenon.

2.2 Lexical Ambiguity and Language Models

Given its importance, lexical ambiguity has for long been an area of investigation in vec-
tor space model representations (Schütze 1993; Reisinger and Mooney 2010; Camacho-
Collados and Pilehvar 2018). In a recent study on word embeddings, Yaghoobzadeh
et al. (2019) showed that Word2vec (Mikolov et al. 2013a) can effectively capture differ-
ent coarse-grained senses if they are all frequent enough and evenly distributed. In this
work we try to extend this conclusion to a language model-based representation and
to the more realistic scenario of disambiguating words in context, rather than probing
them in isolation for if they capture specific senses (as was the case in that work).

Most of the works analyzing language models and lexical ambiguity have opted
for lexical substitution as their experimental benchmark. Amrami and Goldberg (2018)
showed that an LSTM language model can be effectively applied to the task of word
sense induction. In particular, they analyzed how the predictions of an LSTM for a word
in context provided a useful way to retrieve substitutes, proving that this information
is indeed captured in the language model. From a more analytical point of view, Aina,
Gulordava, and Boleda (2019) proposed a probe task based on lexical substitution to
understand the internal representations of an LSTM language model for predicting
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words in context. Similarly, Soler et al. (2019) provided an analysis of LSTM-based
contextualized embeddings in distinguishing between usages of words in context. As
for Transformer-based models, Zhou et al. (2019) proposed a model based on BERT to
achieve state-of-the-art results in lexical substitution, showing that BERT is particularly
suited to find senses of a word in context. While lexical substitution has been shown
to be an interesting proxy for WSD, we provide a direct and in-depth analysis of the
explicit capabilities of recent language models in encoding lexical ambiguity, both
quantitatively and qualitatively.

Another related work to ours is the analysis of Reif et al. (2019) on quantifying the
geometry of BERT. The authors observed that, generally, when contextualized BERT
embeddings for ambiguous words are visualized, clear clusters for different senses are
identifiable. They also devised an experiment to highlight a potential failure with BERT
(or presumably other attention-based models): It does not necessarily respect seman-
tic boundaries when attending to neighboring tokens. In our qualitative analysis in
Section 6.4 we further explore this. Additionally, Reif et al. (2019) present evidence
supporting the specialization of representations from intermediate layers of BERT for
sense representation, which we further confirm with layer-wise WSD evaluation in
Section 3.4.5. Despite these interesting observations, their paper mostly focuses on
the syntactic properties of BERT, similarly to most other studies in the domain (see
Section 2.1).

Finally, a few works have attempted to induce semantic priors coming from
knowledge resources like WordNet to improve the generalization of pretrained
language models like BERT (Levine et al. 2020; Peters et al. 2019). Other works have
investigated BERT’s emergent semantic space using clustering analyses (Yenicelik,
Schmidt, and Kilcher 2020; Chronis and Erk 2020), seeking to characterize how distinct
sense-specific representations occupy this space.

Our work differs in that we are trying to understand to what extent pretrained
language models already encode this semantic knowledge and, in particular, what are
their implicit practical disambiguation capabilities.

2.3 Evaluation Benchmarks

The most common evaluation benchmarks for WSD are based on fine-grained resources,
with WordNet (Fellbaum 1998) being the de facto sense inventory. For example, the
unified all-words WSD benchmark of Raganato, Camacho-Collados, and Navigli (2017)
is composed of five data sets from Senseval/SemEval tasks: Senseval-2 (Edmonds
and Cotton 2001, SE02), Senseval-3 (Mihalcea, Chklovski, and Kilgarriff 2004, SE03),
SemEval-2007 (Agirre, Màrquez, and Wicentowski 2007, SE07), SemEval-2013 (Navigli,
Jurgens, and Vannella 2013, SE13), and SemEval-2015 (Moro and Navigli 2015, SE15).
Vial, Lecouteux, and Schwab (2018) extended this framework with other manually
and automatically constructed data sets.2 All these data sets are WordNet-specific
and mostly use SemCor (Miller et al. 1993) as their training set. Despite being the
largest WordNet-based sense-annotated data set, SemCor does not cover many senses
occurring in the test sets, besides providing a limited number of examples per sense.
Although scarcity in the training data is certainly a realistic setting, in this article we are
interested in analyzing the limits of language models with and without training data,
also for senses not included in WordNet, and run a qualitative analysis.

2 Pasini and Camacho-Collados (2020) provide an overview of existing sense-annotated corpora for
WordNet and other resources.
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To this end, in addition to running an evaluation in standard benchmarks, for this arti-
cle we constructed a coarse-grained WSD data set, called CoarseWSD-20. CoarseWSD-20
includes a selection of 20 ambiguous words of different nature (see Section 4 for more
details on CoarseWSD-20) where we run a qualitative analysis on various aspects
of sense-specific information encoded in language models. Perhaps the closest data
sets to CoarseWSD-20 are those of Lexical Sample WSD (Edmonds and Cotton 2001;
Mihalcea, Chklovski, and Kilgarriff 2004; Pradhan et al. 2007). These data sets usually
target dozens of ambiguous words and list specific examples for their different senses.
However, these examples are usually fine-grained, limited in number,3 and are limited
to concepts (i.e., no entities such as Java are included). The CoarseWSD-20 data set is
similar in spirit, but has larger training sets extracted from Wikipedia. Constructing the
data set based on the sense inventory of Wikipedia brings the additional advantage of
having both entities and concepts as targets, and a direct mapping to Wikipedia pages,
which is the most common resource for entity linking (Ling, Singh, and Weld 2015;
Usbeck et al. 2015), along with similar inter-connected resources such as DBpedia.

Another related data set to CoarseWSD-20 is WIKI-PSE (Yaghoobzadeh et al. 2019).
Similarly to ours, WIKI-PSE is constructed based on Wikipedia, but with a different
purpose. WIKI-PSE clusters all Wikipedia concepts and entities into eight general
“semantic classes.” This is an extreme coarsening of the sense inventory that may
not fully reflect the variety of human-interpretable senses that a word has. Instead,
for CoarseWSD-20, sense coarsening is performed at the word level, which preserves
sense-specific information. For example, the word bank in WIKI-PSE is mainly identified
as a location only, conflating the financial institution and river meanings of the word,
whereas CoarseWSD-20 distinguishes between the two senses of bank. Moreover, our
data set is additionally post-processed in a semi-automatic manner (an automatic pre-
processing, followed by a manual check for problematic cases), which helps remove
errors from the Wikipedia dump.

3. Word Sense Disambiguation: An Overview

Our analysis is focused on the task of word sense disambiguation. WSD is a core module
of human cognition and a long-standing task in NLP. Formally, given a word in context,
the task of WSD consists of selecting the intended meaning (sense) from a predefined
set of senses for that word defined by a sense inventory (Navigli 2009). For example
consider the word star in the following context:

• Sirius is the brightest star in Earth’s night.

The task of a WSD system is to identify that the usage of star in this context refers to
its astronomical meaning (as opposed to celebrity or star shape, among others). The
context could be a document, a sentence, or any other information-carrying piece of
text that can provide a hint on the intended semantic usage,4 probably as small as a
word, for example, “dwarf star.”5

3 For instance, the data set of Pradhan et al. (2007), which is the most recent and the largest among the
three mentioned lexical sample data sets, provides an average of 320/50 training/test instances for each
of the 35 nouns in the data set. In contrast, CoarseWSD-20 includes considerably larger data sets for all
words (1,160 and 510 sentences on average for each word in the training and test sets, respectively).

4 For this analysis we focus on sentence-level WSD, because it is the most standard practice in the
literature.

5 A dwarf star is a relatively small star with low luminosity, such as the Sun.
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WSD is described as an AI-hard6 problem (Mallery 1988). In a comprehensive
survey of WSD, Navigli (2009) discusses some of the reasons behind its difficulty,
including heavy reliance on knowledge, difficulty in distinguishing fine-grained sense
distinctions, and lack of application to real-world tasks. On WordNet-style sense in-
ventories, the human-level performance (which is usually quoted as glass ceiling) is
estimated to be 80% in the fine-grained setting (Gale, Church, and Yarowsky 1992a) and
90% for the coarse-grained one (Palmer, Dang, and Fellbaum 2007). This performance
gap can be mainly attributed to the fine-grained semantic distinctions in WordNet that
are sometimes even difficult for humans to distinguish. For instance, the noun star
has 8 senses in WordNet 3.1, two of which refer to the astronomical sense (celestial
body) with the minor semantic difference of if the star is visible from Earth at night. In
fact, it is argued that sense distinctions in WordNet are too fine-grained for many NLP
applications (Hovy, Navigli, and Ponzetto 2013). CoarseWSD-20 addresses this issue by
devising sense distinctions that are easily interpretable by humans, essentially pushing
the human performance on the task.

Similarly to many other tasks in NLP, WSD has gone under significant change after
the introduction of Transformer-based language models, which are now dominating
most WSD benchmarks. In the following we first present a background on existing sense
inventories, with a focus on WordNet (Section 3.1), and then describe the state of the art
in both the conventional paradigm (Section 3.2) and the more recent paradigm based
on (Transformer-based) language models (Section 3.3). We then carry out a quantitative
evaluation of some of the most prominent WSD approaches in each paradigm in var-
ious disambiguation scenarios, including fine- and coarse-grained settings (Section 3.4).
This quantitative analysis is followed by an analysis of layer-wise representations
(Section 3.4.5) and performance per word categories (parts of speech, Section 3.4.6).

3.1 Sense Inventories

Given that WSD is usually tied with sense inventories, we briefly describe existing sense
inventories that are also used in our experiments. The main sense inventory for WSD
research in English is the Princeton WordNet (Fellbaum 1998). The basic constituents
of this expert-made lexical resource are synsets, which are sets of synonymous words
that represent unique concepts. A word can belong to multiple synsets denoting to its
different meanings. Version 3.0 of the resource, which is used in our experiments, covers
147,306 words and 117,659 synsets.7 WordNet is also available for languages other than
English through the Open Multilingual WordNet project (Bond and Foster 2013) and
related efforts.

Other common-sense inventories are Wikipedia and BabelNet. The former is gener-
ally used for Entity Linking or Wikification (Mihalcea and Csomai 2007), in which the
Wikipedia pages are considered as concept or entities to be linked in context. On the
other hand, BabelNet (Navigli and Ponzetto 2012) is a merger of WordNet, Wikipedia,
and several other lexical resources, such as Wiktionary and OmegaWiki. One of the key

6 By analogy to NP-completeness, the most difficult problems are referred to as AI-complete, implying that
solving them is equivalent to solving the central artificial intelligence problem.

7 There are several other variants of WordNet available, either the newer v3.1, which is slightly different
from the former version, or other non-Princeton versions that improve coverage, such as WordNet 2020
(McCrae et al. 2020) or CROWN (Jurgens and Pilehvar 2015). We opted for v3.0 given that it is the widely
used inventory according to which most existing benchmarks are annotated.
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features of this resource is its multilinguality, highlighted by the 500 languages covered
in its most recent release (version 5.0).

3.2 WSD Paradigms

WSD approaches are traditionally categorized as knowledge-based and supervised.
The latter makes use of sense-annotated data for its training whereas the former ex-
ploits sense inventories, such as WordNet, for the encoded knowledge, such as sense
glosses (Lesk 1986; Banerjee and Pedersen 2003; Basile, Caputo, and Semeraro 2014),
semantic relations (Agirre, de Lacalle, and Soroa 2014; Moro, Raganato, and Navigli
2014), or sense distributions (Chaplot and Salakhutdinov 2018). Supervised WSD has
been shown to clearly outperform the knowledge-based counterparts, even before the
introduction of pretrained language models (Raganato, Camacho-Collados, and Navigli
2017). Large pretrained language models have further provided improvements, with
BERT-based models currently approaching human-level performance (Loureiro and
Jorge 2019a; Vial, Lecouteux, and Schwab 2019; Huang et al. 2019; Bevilacqua and
Navigli 2020; Blevins and Zettlemoyer 2020). A third category of WSD techniques, called
hybrid, has recently attracted more attention. In this approach, the model benefits from
both sense-annotated instances and knowledge encoded in sense inventories.8 Most of
the recent state-of-the-art approaches can be put in this category.

3.3 Language Models for WSD

In the context of Machine Translation (MT), a language model is a statistical model that
estimates the probability of a sequence of words in a given language. Recently, the scope
of LMs has gone far beyond MT and generation tasks. This is partly due to the intro-
duction of Transformers (Vaswani et al. 2017), attention-based neural architectures that
have proven immense potential in capturing complex and nuanced linguistic knowl-
edge. In fact, despite their recency, Transformer-based LMs dominate most language
understanding benchmarks, such as GLUE (Wang et al. 2018) and SuperGLUE (Wang
et al. 2019).

There are currently two popular varieties of Transformer-based Language Models
(LMs), differentiated most significantly by their choice of language modeling objective.
There are causal (or left-to-right) models, epitomized by GPT-3 (Brown et al. 2020),
where the objective is to predict the next word, given the past sequence of words.
Alternatively, there are masked models, where the objective is to predict a masked
(i.e., hidden) word given its surrounding words, traditionally known as the Cloze task
(Taylor 1953), of which the most prominent example is BERT. Benchmark results re-
ported in Devlin et al. (2019) and Brown et al. (2020) show that masked LMs are pre-
ferred for semantic tasks, whereas causal LMs are more suitable for language generation
tasks. As a potential explanation for the success of BERT-based models, Voita, Sennrich,
and Titov (2019) present empirical evidence suggesting that the masked LM objective
induces models to produce more generalized representations in intermediate layers.

In our experiments, we opted for the BERT (Devlin et al. 2019) and ALBERT (Lan
et al. 2020) models given their prominence and popularity. Nonetheless, our empirical

8 Note that knowledge-based WSD systems might benefit from sense frequency information obtained from
sense-annotated data, such as SemCor. Given that such models do not incorporate sense-annotated
instances, we do not categorize them as hybrid.
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analysis could be applied to other pretrained language models as well (e.g., Liu et al.
2019b; Raffel et al. 2020). Our experiments focus on two dominant WSD approaches
based on language models: (1) Nearest Neighbors classifiers based on features extracted
from the model (Section 3.3.1), and (2) fine-tuning of the model for WSD classification
(Section 3.3.2). In the following we describe the two strategies.

3.3.1 Feature Extraction. Neural LMs have been utilized for WSD, even before the in-
troduction of Transformers, when LSTMs were the first choice for encoding sequences
(Melamud, Goldberger, and Dagan 2016; Yuan et al. 2016; Peters et al. 2018a). In this
context, LMs were often used to encode the context of a target word, or in other
words, generate a contextual embedding for that word. Allowing for various sense-
inducing contexts to produce different word representations, these contextual embed-
dings proved more suitable for lexical ambiguity than conventional word embeddings
(e.g., Word2vec).

Consequently, Melamud, Goldberger, and Dagan (2016), Yuan et al. (2016), and
Peters et al. (2018a) independently demonstrated that, given sense-annotated corpora
(e.g., SemCor), it is possible to compute an embedding for a specific word sense as
the average of its contextual embeddings. Sense embeddings computed in this manner
serve as the basis for a series of WSD systems. The underlying approach is straight-
forward: Match the contextual embedding of the word to be disambiguated against its
corresponding pre-computed sense embeddings. The matching is usually done using
a simple k Nearest Neighbors (NN) (often with k = 1) classifier; hence, we refer to this
feature extraction approach as 1NN in our experiments. A simple 1NN approach based
on LSTM contextual embeddings proved effective enough to rival the performance of
other systems using task-specific training, such as Raganato, Delli Bovi, and Navigli
(2017), despite using no WSD specific modeling objectives. Loureiro and Jorge (2019a,
LMMS) and Wiedemann et al. (2019) independently showed that the same approach
using contextual embeddings from BERT could in fact surpass the performance of
those task-specific alternatives. Loureiro and Jorge (2019a) also explored a propaga-
tion method using WordNet to produce sense embeddings for senses not present in
training data (LMMS1024) and a variant that introduced information from glosses into
the same embedding space (LMMS2048). Similar methods have been also introduced for
larger lexical resources such as BabelNet, with similar conclusions (Scarlini, Pasini, and
Navigli 2020a, SensEmBERT).

There are other methods based on feature extraction that do not use 1NN for making
predictions. Vial, Lecouteux, and Schwab (2019, Sense Compression) used contextual
embeddings from BERT as input for additional Transformer encoder layers with a soft-
max classifier on top. Blevins and Zettlemoyer (2020) also experimented with a baseline
using the final states of a BERT model with a linear classifier on top. Finally, the solution
by Bevilacqua and Navigli (2020) relied on an ensemble of sense embeddings from
LMMS and SensEmBERT, along with additional resources, to train a high performance
WSD classifier.

3.3.2 Fine-Tuning. Another common approach to benefiting from contextualized lan-
guage models in downstream tasks is fine-tuning. For each target task, it is possible
to simply plug in the task-specific inputs and outputs into pretrained models, such as
BERT, and fine-tune all or part of the parameters end-to-end. This procedure adjusts
the model’s parameters according to the objectives of the target task, for example, the
classification task in WSD. One of the main drawbacks of this type of supervised model
is their need for building a model for each word, which is unrealistic in practice for
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all-words WSD. However, there are several successful WSD approaches in this category
that overcome this limitation in different ways. GlossBERT (Huang et al. 2019) uses
sense definitions to fine-tune the language model for the disambiguation task, simi-
larly to a text classification task. KnowBERT (Peters et al. 2019) fine-tunes BERT for
entity linking exploiting knowledge bases (WordNet and Wikipedia) as well as sense
definitions. BEM (Blevins and Zettlemoyer 2020) proposes a bi-encoder method that
learns to represent sense embeddings leveraging sense definitions while performing
the optimization jointly with the underlying BERT model.

3.4 Evaluation in Standard Benchmarks

In our first experiment, we perform a quantitative evaluation on the unified WSD
evaluation framework (Section 3.4.3), which verifies the extent to which a model can
distinguish between different senses of a word as defined by WordNet’s inventory.

3.4.1 BERT Models. For this task we use a NN strategy (1NN henceforth) that has
been shown to be effective with pretrained language models, both for LSTMs and
more recently for BERT (see Section 3.3.1). In particular, we used the cased base and
large variants of BERT released by Devlin et al. (2019), as well as the xxlarge (v2)
variant of ALBERT (Lan et al. 2020), via the Transformers framework (v2.5.1) (Wolf
et al. 2020). Following LMMS, we also average sub-word embeddings and represent
contextual embeddings as the sum of the corresponding representations from the final
four layers. However, here we do not apply the LMMS propagation method aimed at
fully representing the sense inventory, resorting to the conventional MFS fallback for
lemmas unseen during training.

3.4.2 Comparison Systems. In addition to BERT and ALBERT, we include results for 1NN
systems that exploit precomputed sense embeddings, namely, Context2vec (Melamud,
Goldberger, and Dagan 2016) and ELMo (Peters et al. 2018a). Moreover, we include
results for hybrid systems, namely, supervised models that also make use of additional
knowledge sources (cf. Section 3.2), particularly semantic relations and textual defini-
tions in WordNet. Besides the models already discussed in Sections 3.3.1 and 3.3.2, we
also report results from additional hybrid models. Raganato, Delli Bovi, and Navigli
(2017, Seq2Seq) trained a neural BiLSTM sequence model with losses specific not only
to specific senses from SemCor but also part-of-speech tags and WordNet supersenses.
EWISE (Kumar et al. 2019), which inspired EWISER (Bevilacqua and Navigli 2020), also
uses a BiLSTM to learn contextual representations that can be matched against sense
embeddings learned from both sense definitions and semantic relations.

For completeness we also add some of the best linear supervised baselines, namely,
IMS (Zhong and Ng 2010) and IMS with embeddings (Zhong and Ng 2010; Iacobacci,
Pilehvar, and Navigli 2016, IMS+emb), which are Support Vector Machine (SVM)
classifiers based on several manually curated features. Finally, we report results for
knowledge-based systems (KB) that mainly rely on WordNet: Leskext+emb (Basile,
Caputo, and Semeraro 2014), Babelfy (Moro, Raganato, and Navigli 2014), UKB (Agirre,
López de Lacalle, and Soroa 2018), and TM (Chaplot and Salakhutdinov 2018). More
recently, SyntagRank (Scozzafava et al. 2020) showed best KB results by combining
WordNet with the SyntagNet (Maru et al. 2019) database of syntagmatic relations. How-
ever, as discussed in Section 3.2, we categorize these as knowledge-based because they
do not directly incorporate sense-annotated instances as their source of knowledge.
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Table 1
F-Measure performance on the unified WSD evaluation framework (Raganato,
Camacho-Collados, and Navigli 2017) for three classes of WSD models (i.e., knowledge-based
[KB], supervised, and hybrid), and for two sense specification settings (i.e., fine-grained [FN]
and coarse-grained [CS]. Results marked with * make use of SE07/SE15 as development set.
Systems marked with † rely on external resources other than WordNet. The results from
complete rows were computed by ourselves given the system outputs, while those from
incomplete rows were taken from the original papers.

Type System SE2 SE3 SE07 SE13 SE15 ALL

FN CS FN CS FN CS FN CS FN CS FN CS
Leskext+emb 63.0 74.9 63.7 75.5 56.7 71.6 66.2 77.4 64.6 73.9 63.7 75.3
Babelfy† 67.0 78.4 63.5 77.5 51.6 68.8 66.4 77.0 70.3 79.1 65.5 77.3

KB TM 69.0 − 66.9 − 55.6 − 65.3 − 69.6 − 66.9 −
UKB 68.8 81.2 66.1 78.1 53.0 70.8 68.8 79.1 70.3 77.4 67.3 78.7
SyntagRank 71.6 − 72.0 − 59.3 − 72.2 − 75.8 − 71.7 −

Su
pe

rv
is

ed

SVM IMS 70.9 81.5 69.3 80.8 61.3 74.3 65.3 77.4 69.5 75.7 68.4 79.1
IMS+emb 72.2 82.8 70.4 81.5 62.6 75.8 65.9 76.9 71.5 76.7 69.6 79.8

1NN

Context2vec 71.8 82.6 69.1 80.5 61.3 74.5 65.6 78.0 71.9 76.6 69.0 79.7
ELMo 71.6 82.8 69.6 80.9 62.2 74.7 66.2 77.7 71.3 77.0 69.0 79.6
BERT-Base 75.5 84.9 71.5 81.4 65.1 78.9 69.8 82.1 73.4 78.1 72.2 82.0
BERT-Large 76.3 84.8 73.2 82.9 66.2 80.0 71.7 83.1 74.1 79.1 73.5 82.8
ALBERT-XXL 76.6 85.6 73.1 82.6 67.3 80.1 71.8 83.5 74.3 78.3 73.7 83.0

Seq2Seq Att+Lex+PoS 70.1 − 68.5 − 63.1* − 66.5 − 69.2 − 68.6* −
Sense Compr. Ens. 79.7 − 77.8 − 73.4 − 78.7 − 82.6 − 79.0 −
LMMS 1024 75.4 − 74.0 − 66.4 − 72.7 − 75.3 − 73.8 −
LMMS 2048 76.3 84.5 75.6 85.1 68.1 81.3 75.1 86.4 77.0 80.8 75.4 84.4

Hybrid EWISE 73.8 − 71.1 − 67.3* − 69.4 − 74.5 − 71.8* −
KnowBert† WN+WK 76.4 85.6 76.0 85.1 71.4 82.6 73.1 83.8 75.4 80.2 75.1 84.1
GlossBERT 77.7 − 75.2 − 72.5* − 76.1 − 80.4 − 77.0* −
BEM 79.4 − 77.4 − 74.5* − 79.7 − 81.7 − 79.0* −
EWISER† 80.8 − 79.0 − 75.2 − 80.7 − 81.8* − 80.1* −

− MFS Baseline 65.6 77.4 66.0 77.8 54.5 70.6 63.8 74.8 67.1 75.3 64.8 76.2

3.4.3 Data Sets: Unified WSD Benchmark. Introduced by Raganato, Camacho-Collados,
and Navigli (2017) as an attempt to construct a standard evaluation framework for
WSD, the unified benchmark comprises five data sets from Senseval/SemEval work-
shops (see Section 2.3).9 The framework provides 7,253 test instances for 4,363 sense
types. In total, around 3,663 word types are covered with an average polysemy of 6.2
and across four parts of speech: nouns, verbs, adjectives, and adverbs.

Note that the data sets are originally designed for the fine-grained WSD setting.
Nonetheless, in addition to the fine-grained setting, we provide results on the coarse-
grained versions of the same test sets. To this end, we merged those senses that belonged
to the same domain according to CSI (Coarse Sense Inventory) domain labels from
Lacerra et al. (2020).10 With this coarsening, we can provide more meaningful compar-
isons and draw interpretable conclusions. Finally, we followed the standard procedure
and trained all models on SemCor (Miller et al. 1993).

3.4.4 Results. Table 1 shows the results11 of all comparison systems on the unified WSD
framework, both for fine-grained (FN) and coarse-grained (CS) versions. The LMMS2048

9 Data set downloaded from http://lcl.uniroma1.it/wsdeval/.
10 CSI domains downloaded from http://lcl.uniroma1.it/csi.
11 SensEmBERT not included because it is only applicable to the noun portions of these test sets.
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hybrid model, which is based on the 1NN BERT classifier, is the best-performer based
solely on feature extraction. The latest fine-tuning hybrid solutions, particularly BEM
and EWISER, show overall best performance, making the case for leveraging glosses
and semantic relations to optimize pretrained weights for the WSD task. Generally,
all BERT-based models achieve fine-grained results that are in the same ballpark as
human average inter-annotator agreements for fine-grained WSD, which ranges from
64% and 80% in the three earlier data sets of this benchmark (Navigli 2009). In the
more interpretable coarse-grained setting, LMMS achieves a score of 84.4%, similar to
the other BERT-based models, which surpass 80%. The remaining supervised models
perform roughly equal, marginally below 80% and clearly underperformed by BERT-
based models.

3.4.5 Layer Performance. Current BERT-based 1NN WSD methods (see Section 3.3.1),
such as LMMS and SensEmBERT, apply a pooling procedure to combine represen-
tations extracted from various layers of the model. The convention is to sum the
embeddings from the last four layers, following the Named Entity Recognition exper-
iments reported by Devlin et al. (2019). It is generally understood that lower layers
are closer to their static representations (i.e., initialization) and, conversely, upper lay-
ers better match the modeling objectives (Tenney, Das, and Pavlick 2019). Still, Reif
et al. (2019) have shown that this relation is not monotonic when it comes to sense
representations from BERT. Additional probing studies have also pointed to irregular
progression of context-specificity and token identity across the layers (Ethayarajh
2019; Voita, Sennrich, and Titov 2019), two important pre-requisites for sense
representation.

Given our focus on measuring BERT’s adeptness for WSD, and the known vari-
ability in layer specialization, we performed an analysis to reveal which layers produce
representations that are most effective for WSD. This analysis involved obtaining sense
representations learned from SemCor for each layer individually using the process
described in Section 3.3.1.

Figure 1 shows the performance of each layer using a restricted version of the MASC
corpus (Ide et al. 2008) as a validation set where only annotations for senses that occur
in SemCor are considered. Any sentence that contained annotations for senses not oc-
curring in SemCor was removed, restricting this validation set to 14,645 annotations out
of 113,518. We restrict the MASC corpus so that our analysis is not affected by strategies
for inferring senses (e.g., Network Propagation) or fallbacks (e.g., Most Frequent Sense).
This restricted version of MASC is based on the release introduced in Vial, Lecouteux,
and Schwab (2018), which mapped annotations to Princeton WordNet (3.0).

Similarly to Reif et al. (2019), we find that lower layers are not as effective for
disambiguation as upper layers. However, our experiment specifically targets WSD
and its results suggest a different distribution of the best performing layers than
those reported by Reif et al. (2019). Nevertheless, this analysis shows that the current
convention of using the sum of the last four layers for sense representations is sensible,
even if not optimal.

Several model probing works have revealed that the scalar mixing method in-
troduced by Peters et al. (2018a) allows for combining information from all layers
with improved performance on lexico-semantic tasks (Liu et al. 2019a; Tenney et al.
2019; de Vries, van Cranenburgh, and Nissim 2020). However, scalar mixing essentially
involves training a learned probe, which can limit attempts at analyzing the inherent
semantic space represented by NLMs (Mickus et al. 2020).
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Figure 1
F-measure performance on a restricted version of the MASC corpus (Ide et al. 2008) for
representations derived from individual layers of the two BERT models used in our
experiments.

Table 2
F-Measure performance in the concatenation of all data sets of the unified WSD evaluation
framework (Raganato, Camacho-Collados, and Navigli 2017), split by part of speech. As in
Table 1 systems marked with †make use of external resources other than WordNet.

Type System Nouns Verbs Adjectives Adverbs

FN CS FN CS FN CS FN CS

KB
UKB 71.2 80.5 50.7 69.2 75.0 82.7 77.7 91.3
Leskext+emb 69.8 79.0 51.2 69.2 51.7 62.4 80.6 92.8
Babelfy† 68.6 78.9 49.9 67.6 73.2 82.1 79.8 91.6

Su
pe

rv
is

ed 1NN

Context2vec 71.0 80.5 57.6 72.9 75.2 83.1 82.7 92.5
ELMo 70.9 80.0 57.3 73.5 77.4 85.4 82.4 92.8
BERT-Base 74.0 83.0 61.7 75.3 77.7 84.9 85.8 93.9
BERT-Large 75.1 83.7 63.2 76.6 79.5 85.4 85.3 94.2

SVM IMS 70.4 79.4 56.1 72.5 75.6 84.1 82.9 93.1
IMS+emb 71.9 80.5 56.9 73.1 75.9 83.8 84.7 93.4

Hybrid LMMS2048 78.0 86.2 64.0 76.5 80.7 86.7 83.5 92.8
KnowBert† WN+WK 77.0 85.0 66.4 78.8 78.3 86.1 84.7 93.9

− MFS Baseline 67.6 77.0 49.6 67.2 73.1 82.0 80.5 92.9

3.4.6 Analysis by part of speech. Table 2 shows the results of BERT and the comparison
systems by part of speech.12 The results clearly show that verbs are substantially more
difficult to model, which corroborates the findings of Raganato, Camacho-Collados, and
Navigli (2017), while adverbs are the least problematic in terms of disambiguation. For
example, in the fine-grained setting, BERT-Large achieves an overall F1 of 75.1% on
nouns vs. 63.2% on verbs (85.3% on adverbs). The same trend is observed for other

12 For this table we only included systems for which we received access to their system outputs.
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models, including hybrid ones. This may also be related to the electrophysiological
evidence suggesting that humans process nouns and verbs differently (Federmeier
et al. 2000). Another more concrete reason for this gap is due to the fine granularity
of verb senses in WordNet. For instance, the verb run has 41 sense entries in WordNet,
twelve of which denote some kind of motion.

The coarsening of sense inventory does help in bridging this gap, with the best mod-
els performing in the 75% ballpark. Nonetheless, the lower performance is again found
in verb instances, with noun, adjective, and adverb performance being above 80% on the
BERT-based models (above 90% in the case of adverbs). One problem with the existing
coarsening methods is that they usually exploit domain-level information, whereas in
some cases verbs do not belong to clear domains. For our example verb run, some of
the twelve senses denoting motion are clustered into different domains, which eases the
task for automatic models due to having fewer number of classes. However, one could
argue that this clustering is artificial as all senses of the verb belong to the same domain.

Indeed, while the sense clustering provided by CSI (Lacerra et al. 2020) covers
all PoS categories, it extends BabelDomains (Camacho-Collados and Navigli 2017),
a domain clustering resource that covers mainly nouns. Although out of scope for
this article, in the future it would be interesting to investigate verb-specific clustering
methods (e.g., Peterson and Palmer 2018).

In the remainder of this article we focus on noun ambiguity, and check the extent
to which language models can solve coarse-grained WSD in ideal settings. In Section 7,
we extend the discussion about sense granularity in WSD.

4. CoarseWSD-20 Data Set

Standard WSD benchmarks mostly rely on WordNet. This makes the evaluations
carried out on these data sets and the conclusions drawn from them specific to this
resource only. Moreover, sense distinctions in WordNet are generally known to be too
fine-grained (see more details about the fine granularity of WordNet in the discussion
of Section 7) and annotations are scarce given the knowledge-acquisition bottleneck
(Gale, Church, and Yarowsky 1992a; Pasini 2020). This prevents us from testing the
limits of language models in WSD, which is one of the main motivations of this article.

To this end, we devise a new data set, CoarseWSD-20 henceforth, in an attempt
to solve the aforementioned limitations. CoarseWSD-20 aims to provide a benchmark
for the qualitative analysis of certain types of easily interpretable sense distinctions.
Our data set also serves as a tool for testing the limits of WSD models in ideal training
scenarios (i.e., with plenty of training data available per word).

In the following we describe the procedure we followed to construct CoarseWSD-
20 (Section 4.1). Then, we present an estimation of the human performance (Section 4.2)
and outline some relevant statistics (Section 4.3). Finally, we discuss the out-of-domain
test set we built as a benchmark for experiments in Section 5.3.

4.1 Data Set Construction

CoarseWSD-20 targets noun ambiguity13 for which, thanks to Wikipedia, data is more
easily available. The data set focuses on the coarse-grained disambiguation setting,

13 There are arguably more types of ambiguity, including word categories (e.g., play as a noun or as a verb).
Nevertheless, this type of ambiguity can be solved to a good extent by using state-of-the-art PoS taggers,
which are able to achieve performances above 97% for English in general settings (Akbik, Blythe, and
Vollgraf 2018).
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which is more interpretable by humans (Lacerra et al. 2020). To this end, 20 words14

and their corresponding senses were selected by a group of two expert computational
linguists in order to provide a diverse data set. Wikipedia15 was used as reference
inventory and corpus. In this case, each Wikipedia page corresponds to an unambigu-
ous sense. Sentences where a given Wikipedia page is referred to via a hyperlink are
considered to be its corresponding sense-annotated sentences. The process to select 20
ambiguous words and their corresponding sense-annotated sentences was as follows:

1. A larger set of a few hundred ambiguous words that had a minimum of 30
occurrences16 (i.e., sentences where one of their senses is referred to via a
hyperlink) was selected.

2. Two experts selected 20 words based on a variety of criteria: type of
ambiguity (e.g., spanning across domains or not), polysemy, overall
frequency, distribution of instances across senses of the word, and
interpretability. This process was performed semi-automatically, as
initially the experts filtered words and senses manually providing a
reduced set of words and associated senses. The main goal of this filtering
was to discard those senses that were not easily interpretable or
distinguishable by humans.

Once these 20 words were selected, we tokenized and lowercased the English
Wikipedia and extracted all sentences that contained them and their selected senses
as hyperlinks. All sentences were then semi-automatically verified so as to remove
duplicate and noisy sentences. Finally, for each word we created a single data set based
on a standard 60/40 train/test split.

4.2 Human Performance Estimation

As explained earlier this WSD data set was designed to be simple for humans to
annotate. In other words, the senses considered for CoarseWSD-20 are easily inter-
pretable. As a sanity check, we performed a disambiguation exercise with 1,000 in-
stances randomly sampled from the test set (50 for each word). Four annotators17 were
asked to disambiguate a given target word in context using the CoarseWSD-20 sense
inventory. Each annotator completed the task for five words. In the following section
we provide details of the results of this annotation exercise, as well as general statistics
of CoarseWSD-20.

4.3 Statistics

Table 3 shows the list of words, their associated senses, and the frequency of each
word sense in CoarseWSD-20, along with the ratio of the first sense with respect to

14 The main justification to select 20 words (and no more) was the extent of experiments and the
computation required to run a deep qualitative analysis (see Section 5.1). A larger number of words
would have prevented us from running the analyses at the depth we envisaged: 20 provided a good
trade-off between having a heterogeneous set of words and a deep qualitative analysis.

15 We used the Wikipedia dump of May 2016.
16 This threshold was selected for the goal of testing the language models under close-to-ideal conditions. A

real setting should also include senses with even lower frequency, the so-called long tail (Ilievski, Vossen,
and Schlobach 2018; Blevins and Zettlemoyer 2020), which would clearly harm automatic models.

17 All annotators were fluent English speakers and understood the predefined senses for their assigned
words.
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Table 4
Statistics of the out of domain data set. The two rightmost columns show the number of
instances for each of the seven words and their distribution across senses.

Polysemy Normalized entropy No. of instances Sense distribution

bank 2 0.87 48 34/14
chair 2 0.47 40 4/36
pitcher 2 0.52 17 15/2
pound 2 0.43 46 42/4
spring 3 0.63 31 3/24/4
square 3 0.49 26 22/2/2
club 2 0.39 13 12/1

the rest (F2E), normalized entropy18 (Ent.), and an estimation of the human accuracy
(see Section 4.2). The number of senses per word varies from 2 to 5 (11 words with two
associated senses, 6 with three, 2 with four, and 1 with five) while the overall frequency
ranges from 110 instances (68 for training) for digit to 9,240 (6,421 for training) for
pitcher. As for the human performance, we can see how annotators did not have special
difficulty in assigning the right sense for each word in context. Annotators achieve an
accuracy of over 96% in all cases except for a couple of senses with slightly finer-grained
distinctions such as club and bass.

Normalized entropy ranges from 0.04 to 0.99 (higher entropy shows more balanced
sense distribution). While some words contain a roughly balanced distribution of
senses (e.g., crane or java), other words’ distribution are highly skewed (see normalized
entropy values, e.g., for pitcher or bank).

Finally, in the Appendix we include more information for each of the senses avail-
able in CoarseWSD-20, including definitions and an example sentence from the data set.

4.4 Out of Domain Test Set

The CoarseWSD-20 data set was constructed exclusively based on Wikipedia. Therefore,
the variety of language present in the data set might be limited. To verify the robustness
of WSD models in a different setting, we constructed an out-of-domain test set from
existing WordNet-based data sets.

To construct this test set, we leveraged BabelNet mappings from Wikipedia to
WordNet (Navigli and Ponzetto 2012) to link the Wikipedia-based CoarseWSD-20 to
WordNet senses. After a manual verification of all senses, we retrieved all sentences
containing one of the target words in either SemCor (Miller et al. 1993) or any of the
Senseval/SemEval evaluation data sets from Raganato, Camacho-Collados, and Navigli
(2017). Finally, we only kept those target words for which all the associated senses were
present in the WordNet-based sense annotated corpora and occurred at least 10 times.
This resulted in a test set with seven target words (i.e., bank, chair, pitcher, pound,
spring, square, and club). Table 4 shows the relevant statistics of this out-of-domain
test set.

18 Computed as
∑

fi log( fi ) normalized by log(n) where n is the number of senses.
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5. Evaluation

In this section we report on our quantitative evaluation in the coarse-grained WSD
setting on CoarseWSD-20. We describe the experimental setting in Section 5.1 and then
present the main results on CoarseWSD-20 (Section 5.2) and the out-of-domain test set
(Section 5.3).

5.1 Experimental Setting

CoarseWSD-20 consists of 20 separate sets, each containing sentences for different
senses of the corresponding target word. Therefore, the evaluation can be framed as a
standard classification task for each word.

Given the classification nature of the CoarseWSD-20 data sets, we can perform
experiments with our 1NN BERT system and compare it with a standard fine-tuned
BERT model (see Section 3.3 for more details on the LM-based WSD approaches).
Note that fine-tuning for individual target words results in many models (one per
word). Therefore, this setup would not be computationally feasible in a general WSD
setting, as the number of models would approach the vocabulary size. However, in
our experiments we are interested in verifying the limits of BERT, without any other
confounds or model-specific restrictions.

To ensure that our conclusions are generalizable, we also report 1NN and fine-
tuning results using ALBERT. In spite of substantial operational differences, BERT and
ALBERT have the most similar training objectives and tokenization methods out of
several other prominent Transformer-based models (Yang et al. 2019; Liu et al. 2019b),
thus being the most directly comparable. Given the similar performance between
BERT-Large and ALBERT-XXLarge on the main CoarseWSD-20 data set, we proceed
with further experiments using only BERT.

We also include two FastText linear classifiers (Joulin et al. 2017) as baselines: FTX-B
(base model without pretrained embeddings) and FTX-C (using pretrained embeddings
from Common Crawl). We chose FastText as the baseline given its efficiency and com-
petitive results for sentence classification.

Configuration. Our experiments with BERT and ALBERT used the Transformers frame-
work (v2.5.1) developed by Wolf et al. (2020), and we used the uncased pretrained base
and large models released by Devlin et al. (2019) for BERT, and the xxlarge (v2) models
released by Lan et al. (2020) for ALBERT. We use the uncased variants of Transform-
ers models to match the casing in CoarseWSD-20 (except for ALBERT, which is only
available in cased variants). Following previous feature extraction works (including our
experiment in Section 3.4.1), with CoarseWSD-20 we also average sub-word representa-
tions and use the sum of the last four layers when extracting contextual embeddings. For
fine-tuning experiments, we used a concatenation of the average embedding of target
word’s sub-words with the embedding of the [CLS] token, and fed them to a classifier.
We used the same default hyper-parameter configuration for all the experiments. Given
the fluctuation of results with fine-tuning, all the experiments are based on the aver-
age of three independent runs. Our experiments with FastText used the official pack-
age19 (v0.9.1), with FastText-Base corresponding to the default supervised classification
pipeline using randomly-initialized vectors, and FastText-Crawl corresponding to the

19 https://fasttext.cc/.
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same pipeline but starting with pretrained 300-dimensional vectors based on Common
Crawl. Following Joulin et al. (2017), classification with FastText is performed using
multinominal logistic regression and averaged sub-word representations.

Evaluation Measures. In a classification setting, the performance of a model is measured
by various metrics, among which precision, recall, and F-score are the most popular.
Let TPi (true-positive) and FPi (false-positive) be the number of instances correctly /
incorrectly classified as class ci, respectively. Also, let TNi (true-negative) and FNi (false-
negative) be the number of instances correctly / incorrectly classified as class cj for any
j 6= i. Therefore, for class ci, precision Pi and recall Ri are defined as follows:

Pi =
TPi

TPi + FPi
(1) Ri =

TPi
TPi + FNi

(2)

In other words, precision is the fraction of relevant instances among the retrieved
instances, and recall is the fraction of the total number of relevant instances that were
actually retrieved. The F-score Fi for class ci is then defined as the harmonic mean of its
precision and recall values:

Fi = 2
P−1

i + R−1
i

= 2 Pi.Ri
Pi + Ri

(3)

In order to have a single value to measure the overall performance of the model, we
can take the weighted average of these computed values over all the classes, which
is referred to as average micro, if the weights are set to be the number of instances
for each class, and macro if the weights are set to be equal. For our experiments we
mainly report Macro-F1 and Micro-F1.

Number of Experiments. To provide an idea of the experiments run on (including the
analysis in Section 6), in the following we detail the number of computations required.
We evaluated six models, each of them trained and tested separately for each word
(there are twenty of them). The same models are also trained with balanced data sets
(Section 6.2.1). In total, 240 models trained and tested for the main results (excluding
multiple runs). Then, the computationally more demanding models (BERT-Large) are
also evaluated on the out-of-domain test set, and trained with different training data
sizes (Section 6.2.2) and with fixed number of examples (Section 6.3). In the latter case,
BERT-base and FastText models are also considered (sometimes with multiple runs).
As a rough estimate, all the experiments took over 1,500 hours on a Tesla K80 GPU.
These experiments do not include the experiments run in the standard benchmarks
(Section 3.4) and all the extra analyses and prior experimental tests that did not make it
into the article.

5.2 Results

Word-specific results for different configurations of BERT and ALBERT as well as the
FastText baseline are shown in Table 5. In general, results are high for all Transformer-
based models, over 90% in most cases. This reinforces the potential of language models
for WSD, both in its light-weight 1NN and in the fine-tuning settings. Although
BERT-Large slightly improves over BERT-Base, the performance of the former is very
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Table 5
Micro-F1 (top) and macro-F1 (bottom) performance on the full CoarseWSD-20 data set for eight
different models: FastText-Base (FTX-B) and -Crawl (FTX-C), 1NN and fine-tuned BERT-Base
(BRT-B), -Large (BRT-L), and ALBERT-XXL (ALBRT). An estimation of the human performance
(see Section 4.2 for more details) and the most frequent sense (MFS) baseline are also reported
for each word. Rows in each table are sorted by the entropy of sense distribution (see Table 3),
in descending order. Table cells are highlighted (from red to green) for better interpretability.

Word Human MFS Static emb. 1NN Fine-tune

FTX-B FTX-C BRT-B BRT-L ALBRT BRT-B BRT-L ALBRT

Micro-F1 (Accuracy)

crane 98.0 51.6 91.7 94.9 93.6 96.8 98.1 97.5 98.1 96.8
java 100.0 61.2 98.8 99.4 99.6 99.6 99.6 99.7 99.7 99.5
apple 100 61.4 96.5 98.4 99.0 99.2 99.4 99.6 99.6 99.3
mole 98.0 37.4 87.4 93.2 97.1 98.5 98.1 98.9 98.9 98.5
spring 100 51.6 91.9 94.5 97.4 97.8 99.3 98.0 98.3 98.2
chair 98.0 67.7 81.5 88.5 96.2 96.2 95.4 96.7 96.2 94.1
hood 98.0 57.3 80.5 89.0 98.8 100 98.8 98.0 99.6 98.8
seal 100 36.1 88.7 95.0 96.4 98.1 97.5 99.0 99.0 98.3
bow 98.0 54.4 89.8 95.8 96.3 95.3 96.7 97.5 98.5 97.7
club 86.0 53.5 79.2 80.7 81.2 85.1 82.7 85.2 84.7 84.3
trunk 100 61.0 84.4 90.9 96.1 98.7 98.7 97.8 98.3 99.1
square 96.0 49.8 87.0 90.3 95.2 96.1 94.2 95.8 95.7 96.5
arm 100 73.8 94.5 98.2 99.4 99.4 99.4 99.4 99.4 99.6
digit 100 78.6 92.9 100.0 100.0 100.0 100.0 99.2 100.0 100.0
bass 90.0 72.3 93.9 94.2 80.7 84.5 85.5 95.5 95.8 95.7
yard 100 84.7 86.1 94.4 76.4 88.9 93.1 98.6 99.5 99.5
pound 100 89.7 87.6 87.6 86.6 89.7 95.9 94.9 94.9 96.6
deck 96.0 92.9 91.9 93.9 89.9 91.9 94.9 96.6 95.3 97.0
bank 98.0 95.2 96.9 98.0 99.6 99.8 99.8 99.6 99.3 99.3
pitcher 100 99.5 99.6 99.7 99.9 99.9 100.0 100.0 100.0 99.8

AVG 66.5 90.0 93.8 94.0 95.8 96.4 97.4 97.5 97.4

Macro-F1

crane – 34.0 91.7 94.8 93.5 96.7 98.1 97.5 98.1 96.8
java – 38.0 98.7 99.4 99.7 99.6 99.6 99.7 99.7 99.5
apple – 38.1 96.2 98.1 99.0 99.1 99.3 99.6 99.6 99.3
mole – 10.9 84.4 91.0 97.6 99.0 98.4 98.9 99.2 98.8
spring – 22.7 91.1 94.9 97.4 97.8 99.2 97.8 98.1 98.2
chair – 40.4 79.5 86.5 94.7 94.7 94.7 96.1 95.5 93.3
hood – 24.3 70.5 83.2 98.5 100.0 98.5 97.8 99.6 98.3
seal – 13.3 72.7 92.6 97.3 98.5 98.1 98.9 98.6 97.9
bow – 23.5 83.3 93.7 97.0 95.7 97.3 97.5 98.6 96.8
club – 23.2 73.2 80.5 84.6 88.7 87.1 84.3 84.1 84.0
trunk – 25.3 76.0 85.9 97.9 99.3 99.3 97.6 98.0 99.0
square – 16.6 67.7 76.3 92.5 94.7 89.7 92.2 91.4 93.5
arm – 42.5 92.5 98.0 99.6 99.6 99.6 99.2 99.2 99.5
digit – 44.0 83.3 100.0 100.0 100.0 100.0 98.8 100.0 100.0
bass – 28.0 80.2 81.3 79.1 84.0 87.1 87.5 87.6 86.9
yard – 45.9 54.5 81.8 86.1 93.4 95.9 97.2 99.1 99.1
pound – 47.3 48.9 53.3 92.5 94.3 97.7 84.4 83.9 90.4
deck – 48.2 56.1 57.1 88.0 95.7 84.1 83.4 78.0 85.2
bank – 48.8 68.2 79.5 95.5 97.7 97.7 97.9 95.6 96.3
pitcher – 49.9 61.5 69.2 99.9 100.0 100.0 97.3 97.3 89.2

AVG – 33.2 76.5 84.9 94.5 96.4 96.1 95.2 95.1 95.1
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similar to that of ALBERT-XXL across different configurations, despite having differ-
ent architectures, number of parameters, and training objectives. Overall, performance
variations in different models are similar to those for the human baseline. For instance,
words such as java and digit seem easy for both humans and models to disambiguate,
whereas words such as bass and club are challenging perhaps because of their more fine-
grained distinctions.20 As a perhaps surprising result, having more training instances
does not necessarily lead to better performance, indicated by the very low Pearson
correlation (0.2 or lower) of the number of training instances with results in all BERT
configurations. Also, higher polysemy is not a strong indicator of lower performance
(see Table 4.3 for statistics of the 20 words, including polysemy), as one would expect
from a classification task with a higher number of classes (near zero average correlation
across settings). In the following we also discuss other relevant points with respect to
Most Frequent Sense (MFS) bias and fine-tuning.

MFS Bias. As expected, macro-F1 results degrade for the purely supervised classification
models (FastText and fine-tuned BERT), indicating the inherent sense biases captured
by the model that lead to lowered performance for the obscure senses (see the work by
Postma et al. (2016) for a more thorough analysis on this issue). However, BERT proves
to be much more robust with this respect whereas FastText suffers heavily (highlighted
in the macro setting).

Impact of Fine-Tuning. On average, fine-tuning improves the performance for BERT-
Large by 1.6 points in terms of micro-F1 (from 95.8% to 97.5%) but decreases on macro-
F1 (from 96.4% to 95.1%). While BERT-Base significantly correlates with BERT-Large
in the 1NN setting (Pearson correlation above 0.9 for both micro and macro), it has a
relatively low correlation with the fine-tuned BERT-Base (0.60 on micro-F1 and 0.75 on
macro-F1). The same trend is observed for BERT-Large, where the correlation between
fine-tuning and 1NN is 0.71 and 0.63 on micro-F1 and macro-F1, respectively. The
operating principles behind both approaches are significantly different, which may
explain this relatively low correlation. While fine-tuning is optimizing a loss function
during training, the 1NN approach is simply memorizing states. By optimizing losses,
fine-tuning is more susceptible to overfit on the MFS. In contrast, by memorizing states,
1NN models sense independently and disregard sense distributions entirely. These dif-
ferences can explain the main discrepancies between the two strategies, reflected for
both micro and macro scores (macro-F1 penalizes models that are not as good for less
frequent senses). The differences between 1NN and fine-tuned models will be analyzed
in more detail in our analysis section (Section 6).

In our error analysis we will show, among other things, that there are some cases
that are difficult even for humans to disambiguate, for example, the intended meaning
of apple (fruit vs. company) or club (nightclub vs. association) in the following contexts
taken from the test set: “it also likes apple” and “she was discovered in a club by the
record producer peter harris.”

20 Given that the human performance is estimated based on a small subset of the test set, and given the
skewed distribution of sense frequencies, macro-F1 values can be highly sensitive to less-frequent senses
(which might even have no instance in the subset); hence, we do not report macro-F1 for human
performance.
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5.3 Out of Domain

To verify the robustness of BERT and to see if the conclusions can be extended to
other settings, we carried out a set of cross-domain evaluations in which the same
BERT models (trained on CoarseWSD-20) were evaluated on the out-of-domain data
set described in Section 4.4.

Table 6 shows the results. The performance trend is largely in line with that pre-
sented in Table 5, with some cases even having higher performance in this out-of-
domain test set. Despite the relatively limited size of this test set, these results seem to
corroborate previous findings and highlight the generalization capability of language
models to perform WSD in different contexts. The fine-tuned version of BERT clearly
achieves the highest micro-F1 scores, in line with previous experiments. Perhaps more
surprisingly, BERT-Base 1NN achieves the best macro-F1 performance, also highlighting
its competitiveness with respect to BERT-Large in this setting. As explained before, the
1NN strategy seems less prone to biases than the fine-tuned model, and this experiment
shows the same conclusion extends to domain specificity as well, therefore the higher
figures according to the macro metric. Interestingly, BERT-Base produces better results
according to macro-F1 in the 1NN setting, despite lagging behind according to micro-
F1. This suggests that data-intensive methods (e.g., fine-tuning) do not generally lead
to significantly better results. Indeed, the results in Table 5 also confirm that the gains
using a larger BERT model are not massive.

6. Analysis

In this section we perform an analysis on different aspects relevant to WSD on the
CoarseWSD-20 data set. In particular, we first present a qualitative analysis on the
type of contextualized embeddings learned by BERT (Section 6.1) and then analyze
the impact of sense distribution of the training data (Section 6.2.1) as well as its size
(Section 6.3) on WSD performance. Finally, we carry out an analysis on the inherent
sense biases present in the pretrained BERT models (Section 6.4).

Table 6
Out-of-domain WSD results: Models trained on the CoarseWSD-20 training set and tested on the
out-of-domain test set.

Micro F1 Macro F1

1NN F-Tune 1NN F-Tune

BRT-B BRT-L BRT-B BRT-L BRT-B BRT-L BRT-B BRT-L
bank 97.9 100.0 92.4 93.1 96.4 100.0 89.8 90.5
chair 100.0 100.0 98.3 99.2 100.0 100.0 94.8 97.4
pitcher 82.4 100.0 100.0 100.0 90.0 100.0 100.0 100.0
pound 89.1 87.0 96.4 94.9 94.0 81.5 85.5 77.5
spring 100.0 96.8 94.6 96.8 100.0 91.7 91.2 90.5
square 73.1 73.1 93.6 96.2 89.4 89.4 83.2 92.6
club 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AVG 91.8 93.8 96.5 97.2 95.7 94.7 92.1 92.6
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6.1 Contextualized Embeddings

The strong performance of the BERT-based 1NN WSD method reported for both fine
and coarse-grained WSD proves that the representations produced by BERT are
sufficiently precise to allow for effective disambiguation. Figures 2 and 3 illustrate
the 2-D semantic space for contextualized representations of two target words (square
and spring) in the test set. For each case, we applied the dimensionality technique that
produced the most interpretable visualization, considering UMAP (McInnes et al. 2018)
and Principal Component Analysis (PCA), although similar observations could be made
using either of these two techniques. BERT is able to correctly distinguish and place
most occurrences in distinct clusters. Few challenging exceptions exist, for example,
two geometric senses of square are misclassified as public-square, highlighted in the
figure (“... small square park located in ...” and “ ... the narrator is a square ...”). Another
interesting observation is for the season meaning of spring. BERT not only places all
the contextualized representations for this sense in the same proximity in the space,
it also makes a fine-grained distinction for the spring season of a specific year (e.g., “...
in spring 2005 ...”).

Beyond simply checking whether the nearest neighbor corresponds to the correct
sense, there is still the question of the extent to which these representations are differen-
tiated. In order to quantitatively analyze this, we plotted the distribution of cosine sim-
ilarities between the contextual embeddings of the target word (to be disambiguated)
from the test set and the closest predicted sense embedding learned from the training
set. In Figure 4 we grouped these similarities by correct and incorrect predictions,

Figure 2
2-D visualizations of contextualized representations for different occurrences of square in the
test set. While the company and public-square senses are grouped into distinct clusters, the
numerical and geometrical meanings mostly overlap. Using UMAP for dimensionality
reduction.
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Figure 3
2-D visualizations of contextualized representations for different occurrences of spring. A
fine-grained distinction can be observed for the season meaning of spring, with a distinct cluster
(on the right) denoting the spring of a specific year. Using PCA for dimensionality reduction.

Figure 4
Distribution of cosine similarities between contextual embeddings (BERT-Large) of words to be
disambiguated (in test set) and their corresponding closest sense embeddings learned from
training data, for each word in the CoarseWSD-20 data set, grouped by correct and incorrect
prediction.
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revealing substantially different distributions. While incorrect prediction spans across
the 0.5–0.9 interval, correct predictions are in the main higher than 0.75 for most words
(over 97% of all predictions using BERT-Large with similarity higher than 0.75 are
correct, for example). Consequently, this analysis also shows that a simple threshold
could be used for effectively discarding false matches, increasing the precision of 1NN
methods.

6.2 Role of Training Data

In order to gain insights on the role of training data, we perform two types of analysis:
(1) distribution of training data—in particular, a comparison between skewed and
balanced training sets (Section 6.2.1), and (2) the size of the training set (Section 6.2.2).

6.2.1 Distribution. To verify the impact of the distribution of the training data, we created
a balanced training data set for each word by randomly removing instances for the
more frequent senses in order to have a balanced distribution over all senses. Note that
the original CoarseWSD-20 data set has a skewed sense distribution, given that it is
constructed based on naturally occurring texts.

Table 7 shows the performance drop or increase when using a fully balanced
training set instead of the original CoarseWSD-20 skewed training set (tested on the
original skewed test set). Performance is generally similar across the two settings for
the less entropic words (on top) that tend to have more uniform distributions. For
the more entropic words (e.g., deck, bank, or pitcher), even though balancing the data

Table 7
Performance drop or increase when using a fully balanced training set instead of the original
CoarseWSD-20 skewed training set.

Micro F1 Macro F1

Static emb. 1NN F-Tune Static emb. 1NN F-Tune

FTX-B FTX-C BRT-B BRT-L BRT-B BRT-L FTX-B FTX-C BRT-B BRT-L BRT-B BRT-L
crane −3.8 0.0 0.6 0.0 0.0 0.0 −3.7 0.0 0.6 0.0 0.0 0.0
java −0.1 0.1 0.0 0.0 0.0 −0.1 −30.3 −15.1 0.1 0.0 0.0 −0.1
apple −0.2 −0.6 0.0 0.0 0.0 −0.1 0.4 −0.4 0.0 0.0 0.0 −0.1
mole −11.2 −1.5 0.0 0.0 −0.7 −0.7 −0.9 2.0 0.0 0.0 −0.5 −0.7
spring −5.0 −2.0 0.0 0.2 −1.1 −0.9 −12.3 1.5 −0.2 0.1 −1.0 −0.7
chair −6.2 −3.1 0.0 0.0 −1.0 0.3 −4.5 −2.3 0.0 0.0 −1.2 0.3
hood −7.3 −1.2 0.0 −1.2 −0.4 0.0 12.2 4.4 −0.8 −1.5 −0.9 −0.3
seal −23.1 −7.2 0.3 0.0 −2.9 −0.7 −9.0 −11.5 0.2 0.0 −7.3 −2.4
bow −9.3 −3.7 0.0 0.0 −1.4 −0.8 −2.3 −2.0 0.0 0.0 −1.8 −1.5
club −16.8 −5.9 0.0 −1.5 −0.8 −3.0 −8.6 −0.6 −0.3 −1.5 −0.4 −2.4
trunk −13.0 −9.1 −3.9 0.0 −0.9 −1.7 −6.4 −4.3 −2.1 0.0 −0.9 −1.7
square −23.7 −8.2 −6.8 −7.7 −4.7 −1.3 1.4 9.6 −3.4 −3.9 −4.8 1.1
bfarm −2.4 −1.2 0.0 0.0 0.0 0.0 0.6 −0.8 0.0 0.0 0.0 0.0
digit −16.7 −7.1 0.0 0.0 0.8 0.0 1.5 −4.5 0.0 0.0 1.2 0.0
bass −9.1 −8.2 0.4 0.8 −5.1 −4.4 6.8 6.5 0.5 0.9 −5.6 −4.0
yard −12.5 −5.6 −2.8 −4.2 −6.0 −2.3 18.2 11.6 −1.6 −2.5 −8.9 −3.9
pound −34.0 −24.7 0.0 −1.0 −8.9 −1.4 18.5 36.7 7.5 −0.6 −8.8 2.0
deck −26.3 −9.1 −2.0 −1.0 −5.7 −3.7 12.3 28.1 −1.1 −0.5 −5.0 2.1
bank −17.4 −10.3 0.2 0.0 −2.6 −1.9 10.3 9.7 2.3 0.0 −10.6 −6.5
pitcher −13.0 −6.4 −0.1 0.0 −1.3 −0.4 16.8 22.4 0.0 0.0 −26.7 −12.7

AVG −12.6 −5.8 −0.7 −0.8 −2.1 −1.1 1.0 4.6 0.1 −0.5 −4.2 −1.6
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inevitably reduces the overall number of training instances to a large extent, it can result
in improved macro results for FastText, and even improved macro-recall results for fine-
tuning, as we will see in Table 8.

This can be attributed to the better encoding of the least frequent senses, which
corroborates the findings of Postma, Izquierdo Bevia, and Vossen (2016) for conven-
tional supervised WSD models, such as IMS or, in this case, FastText. In contrast, the
micro-averaged results clearly depend on accurately knowing the original distribution
in both the supervised and fine-tuning settings, as was also discussed in previous works
(Bennett et al. 2016; Pasini and Navigli 2018). Moreover, the feature extraction procedure
(1NN in this case) is much more robust to training distribution changes. Indeed, being
solely based on vector similarities, the 1NN strategy is not directly influenced by the
number of occurrences of each sense in the CoarseWSD-20 training set.

To complement these results, Table 8 shows the performance difference on the
MFS (Most Frequent Class) and LFS (Least Frequent Class) classes when using the
balanced training set. The most interesting takeaway from this experiment is the marked
difference between precision and recall for the LFS in entropic words (bottom). While
the recall of the BERT-Large fine-tuned model increases significantly (up to 52.4 points
in the case of deck), the precision decreases (e.g., −27.1 points for deck). This means that
the model is clearly less biased toward the MFS with a balanced training set, as we could
expect. However, the precision for LFS is also lower, due to the model’s lower sensi-
tivity for higher-frequency senses. In general, these results suggest that the fine-tuned

Table 8
Precision and recall drop or increase on the Most Frequent Sense (MFS) and Least Frequent
Sense (LFS) classes when using a fully balanced training set.

F-Tune (BRT-L) 1NN (BRT-L)

Precision Recall Precision Recall

MFS LFS MFS LFS MFS LFS MFS LFS

crane 0.4 −0.4 −0.4 0.4 0.0 0.0 0.0 0.0
java 0.0 −0.3 −0.2 0.0 0.0 0.0 0.0 0.0
apple −0.1 −0.1 −0.1 −0.2 0.0 0.0 0.0 0.0
mole −0.9 −0.8 −0.9 −1.5 0.0 0.0 0.0 0.0
spring −0.6 −1.0 −1.3 −1.4 0.0 0.6 0.0 0.0
chair 0.0 0.9 0.4 0.0 0.0 0.0 0.0 0.0
hood 0.7 0.0 0.0 −2.6 −2.1 0.0 0.0 0.0
seal −0.3 0.0 −0.5 0.0 0.0 0.0 0.0 0.0
bow 0.8 −1.0 −0.6 −1.4 0.0 0.0 0.0 0.0
club −3.4 −1.6 −2.2 −6.9 −3.9 0.0 0.9 −5.5
trunk 0.7 −7.4 −3.6 0.0 0.0 0.0 0.0 0.0
square 6.5 −0.5 −9.4 0.0 −0.4 0.0 −15.5 0.0
arm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
digit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bass 2.5 −0.4 −8.6 −0.8 −0.7 1.8 0.7 1.1
yard 0.5 −14.0 −3.3 3.0 0.0 −7.9 −4.9 0.0
pound 4.0 −23.4 −5.8 36.7 −2.4 0.0 0.0 −1.1
deck 3.9 −27.1 −8.0 52.4 −2.9 0.0 0.0 −1.1
bank 0.8 −32.5 −2.8 15.2 0.0 0.0 0.0 0.0
pitcher 0.1 −46.0 −0.4 10.3 0.0 0.0 0.0 0.0

AVG 0.8 −7.8 −2.4 5.2 −0.6 −0.3 −0.9 −0.3
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Table 9
Macro- and micro-F1 % performance for the two BERT-Large models. The last two rows indicate
the F1 performance on the Most Frequent Sense (MFS) and Least Frequent Sense (LFS) classes.

Fine-Tuning (BRT-L) 1NN (BRT-L)

1% 5% 10% 25% 50% ALL% 1% 5% 10% 25% 50% ALL%

Macro 74.2 81.6 85.8 91.5 94.2 95.1 94.4 95.3 95.6 95.8 96.0 96.4
Micro 89.0 93.5 95.3 96.3 97.0 97.5 95.5 95.8 95.7 95.7 95.6 95.8

MFS 91.9 95.3 96.4 97.2 97.5 98.0 95.8 95.8 95.6 95.6 95.4 95.4
LFS 52.1 64.3 71.9 83.4 88.5 91.0 91.6 93.3 94.1 94.6 95.5 96.6

BERT model is overly sensitive to the distribution of the training data, while its feature
extraction counterpart suffers considerably less from this issue. In Section 6.4 we will
extend the analysis on the bias present in each of the models.

6.2.2 Size. We performed an additional experiment to investigate the impact of training
data size on the performance for the most and least frequent senses. To this end, we
shrank the training data set for all words, while preserving their original distribution.
Table 9 shows a summary of the aggregated micro-F1 and macro-F1 results, including
the performance on the most and least frequent senses.21 Clearly, the 1NN model per-
forms considerably better than fine-tuning in settings with low training data (e.g., 74.2%
to 94.4% macro-F1 with 1% of the training data). Interestingly, the 1NN’s performance
does not deteriorate with few training data, as the results with 1% and 100% of the
training data do not vary much (less than two absolute points decrease in performance
for micro-F1 and 0.3 in terms of micro-F1). Even for the LFS, the overall performance
with 1% of the training data is above 90 (i.e., 91.6). This is an encouraging behavior, as
in real settings sense-annotated data is generally scarce.

To obtain a more detailed picture for each word, Table 10 shows the macro-F1
results for each word and training size.22 Again, we can observe a large drop for the
most entropic words in the fine-tuning setting. Examples of words with a considerable
degrading performance are pitcher or bank, which decrease from macro-F1 scores higher
than 95% in both cases (97.3 and 95.6, respectively) to as low as 49.9 and 50.2 (almost
random chance) with 1% of the training data, and still lower than 75% with 10% of
the training data (63.9 and 74.9, respectively). This trend clearly highlights the need
for gathering reasonable amounts of training data for the obscure senses. Moreover, this
establishes a trade-off between balancing or preserving the original skewed distribution
depending on the end goal, as discussed in Section 6.2.1.

6.3 n-Shot Learning

Given the results of the previous section, one may wonder how many instances would
be enough for BERT to perform well in coarse-grained WSD. To verify this, we fine-
tuned BERT on limited amounts of training data, with uniform distribution over word
senses, each having between 1 (i.e., one-shot) and 30 instances. Figure 5 shows the

21 In the Appendix we include detailed results for each word and their MFS and LFS performance.
22 In the Appendix we include the same table for the micro-F1 results.
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Table 10
Macro-F1 results on the CoarseWSD-20 test set using training sets of different sizes sampled
from the original training set.

Fine-Tuning (BRT-L) 1NN (BRT-L)

1% 5% 10% 25% 50% ALL 1% 5% 10% 25% 50% ALL

crane 83.3 95.7 95.7 96.8 95.5 98.1 96.4 96.6 96.7 96.7 96.7 96.7
java 99.0 99.1 99.6 99.5 99.6 99.7 99.6 99.6 99.6 99.6 99.6 99.6
apple 99.3 99.4 99.4 99.4 99.5 99.6 99.1 99.1 99.1 99.1 99.1 99.1
mole 79.8 94.8 97.6 99.3 99.3 99.2 98.6 99.1 99.0 99.0 99.0 99.0
spring 94.8 97.6 96.8 96.9 97.8 98.1 97.9 97.9 97.9 97.9 97.9 97.8
chair 76.2 92.2 95.2 96.1 96.4 95.5 94.3 94.6 94.7 94.7 94.7 94.7
hood 57.2 89.3 92.3 96.6 97.7 99.6 94.7 98.6 99.2 99.5 100.0 100.0
seal 80.3 95.8 96.5 98.2 98.0 98.6 98.6 98.6 98.7 98.6 98.6 98.5
bow 49.3 86.8 95.7 96.0 97.5 98.6 93.5 96.0 96.2 95.9 95.7 95.7
club 70.1 77.4 77.0 80.0 83.0 84.1 85.6 86.5 87.4 87.6 88.0 88.7
trunk 77.9 84.6 97.5 98.6 98.6 98.0 97.7 98.3 98.7 99.3 99.3 99.3
square 68.4 69.6 73.5 76.6 79.4 91.4 86.7 88.0 87.8 88.1 91.1 94.7
arm 90.1 98.1 99.2 99.2 99.2 99.2 99.6 99.6 99.6 99.6 99.6 99.6
digit 92.4 79.7 92.1 98.8 100.0 100.0 99.1 100.0 100.0 100.0 100.0 100.0
bass 72.2 79.4 84.3 86.7 87.8 87.6 83.1 83.8 84.4 84.8 84.8 84.0
yard 82.7 85.7 88.3 94.3 99.1 99.1 93.4 93.4 92.8 92.6 92.2 93.4
pound 53.5 50.4 47.3 52.6 83.2 83.9 87.0 92.4 93.3 93.2 94.3 94.3
deck 56.7 48.2 48.2 70.2 77.2 78.0 85.5 85.1 88.9 91.1 92.1 95.7
bank 50.2 55.9 74.9 97.1 95.7 95.6 97.0 98.6 98.9 98.5 97.7 97.7
pitcher 49.9 52.3 63.9 96.5 99.3 97.3 100.0 100.0 100.0 100.0 100.0 100.0

Average 74.2 81.6 85.8 91.5 94.2 95.1 94.4 95.3 95.6 95.8 96.0 96.4

performance of both 1NN and fine-tuning strategies on this set of experiments. Perhaps
surprisingly, we can see how having only three instances per sense is enough for achiev-
ing a competitive result. Then, only small improvements can be obtained by adding
more instances. This is relevant in the context of WSD, as generally current sense-
annotated corpora follow Zipf’s law (Zipf 1949), and therefore contain many repeated
senses that are very frequent. Significant improvements may therefore be obtained by
simply getting a few sense annotations for less frequent instances. Figure 6 summarizes
Figure 5 by showing the distribution of words according to their performance in the
two strategies. In the case of fine-tuning, the performance is generally better in terms of
micro compared with macro F-score. This further corroborates the previous observation,
that there is a bias toward the most frequent sense (cf. Section 6.2.1). Additionally,
in contrast to 1NN, fine-tuning greatly benefits from the increase in the training-data
size, which also indicates the more robust behavior of 1NN strategy compared to its
counterpart (cf. Section 6.2.1).

6.4 Bias Analysis

Supervised classifiers are known to have label bias toward more frequent classes, that
is, those that are seen more frequently in the training data (Hardt et al. 2016), and this
is particularly noticeable in WSD (Postma, Izquierdo Bevia, and Vossen 2016; Blevins
and Zettlemoyer 2020). Label bias is a reasonable choice for maximizing performance
when the distribution of classes is skewed, particularly for classification tasks with a
small number of categories (which is often the case in WSD). For the same reason, many
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Figure 5
Micro and macro F-scores for different values of n in the n-shot setting, for all the words and for
the two WSD strategies. Results are averaged from three runs over three different samples.

Figure 6
Distribution of performance scores for all 20 words according to micro and macro F1 in the
two WSD strategies (left: fine-tuning, right: 1NN) and for different values of n—i.e., 1, 3, 10, 30
(if available).

of the knowledge-based systems are coupled with the MFS back-off strategy: When the
system is not confident in its disambiguation, it backs off to the most frequent sense
(MFS) of the word (instead of resorting to the low-confidence decision).

We were interested in investigating the inherent sense biases in the two BERT-based
WSD strategies. We opted for the n-shot setting given that it provides a suitable setting
for evaluating the relationship between sense bias and training data size. Moreover,
given that the training data in the n-shot setting is uniformly distributed (balanced), the
impact of sense-annotated training data in introducing sense bias is minimized. This
analysis is mainly focused on two questions: (1) how do the two strategies (fine-tuning
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Table 11
Average sense bias values (B) for the two WSD strategies and for different values of n.

One-shot 3-shot 10-shot 30-shot

F-Tune 1NN F-Tune 1NN F-Tune 1NN F-Tune 1NN

0.232 0.137 0.111 0.078 0.050 0.052 0.021 0.025

and 1NN) compare in terms of sense bias?, and (2) what are the inherent sense biases (if
any) in the pretrained BERT language model?

6.4.1 Sense Bias Definition. We propose the following procedure for computing the disam-
biguation bias toward a specific sense.23 For a word with polysemy n, we are interested
in computing the disambiguation bias Bj toward its jth sense (sj). Let nij be the total
number of test instances with the gold label si that were mistakenly disambiguated as
sj (i 6= j). We first normalize nij by the total number of (gold-labeled) instances for si,
that is, Σjnij, to obtain bias bij, which is the bias from sense i to sense j. In other words,
bij denotes the ratio of si-labeled instances that were misclassified as sj. The total bias
toward a specific sense, Bj, is then computed as:

Bj =
n∑

i=1
i 6=j

(
nij

Σjnij
) (4)

The value of Bj denotes the tendency of the disambiguation system to disambiguate
a word with the intended sense of sk, k 6= j, incorrectly as sj. The higher the value of
Bj, the more the disambiguation model is biased towards sj. We finally compute the
sense bias B as the maximum Bj value toward different senses of a specific word, that
is, max(Bj), j ∈ [1, n]. Given fluctuations in the results, particularly for the case of small
training data, we take the median of three runs to compute Bj.

In our coarse-grained disambiguation setting, the bias B can be mostly attributed to
the case where the system did not have enough evidence to distinguish sj from other
senses and had pretraining bias towards sj. One intuitive explanation for this would be
that the language model is biased toward sj because it has seen the target word more
often with this intended sense than other sk,j6=k senses.

6.4.2 Results. Table 11 reports the average sense bias values (B) for the two WSD
strategies and for different values of n (training data size) in the n-shot setting. We also
illustrate using radar charts in Figure 7 the sense bias for a few representative cases.
The numbers reported in the figure (in parentheses) represent the bias value B for the
corresponding setting (word, WSD strategy, and n’s value).

Based on our observations, we draw the following general conclusions.

Bias and Training Size. There is a consistent pattern across all words and for both the
strategies: Sense bias rapidly reduces with increase in the training data. Specifically, the

23 The procedure can presumably be used for quantifying bias in other similar classification settings.
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Figure 7
Sense bias for a few representative cases from each polysemy class for the two WSD strategies
(left: fine-tuning, right: 1NN) and for different values of n, i.e., 1, 3, 10, 30 (if available).

average bias B approximately reduces by half with each step of increase in the training
size. This is supported by the radar charts in Figure 7 (see, for instance, apple, yard, and
bow). The WSD system tends to be heavily biased in the one-shot setting (particularly in
the fine-tuning setting), but the bias often improves significantly with just 3 instances in
the training data (3-shot).

Disambiguation Strategy: 1NN vs. Fine-Tuning. Among the two WSD strategies, the 1NN
approach proves to be more robust with respect to sense biases. This is particularly
highlighted in the one-shot setting where the average sense bias value is 0.137 for 1NN
in comparison to 0.232 for fine-tuning. The trend is also clearly visible for almost all
words in the radar charts in Figure 7. This corroborates our findings in Section 6.3
that the 1NN strategy is the preferable choice particularly with limited data. For higher
values of n (larger training sizes) the difference between the two strategies diminishes,
with both settings proving robust with respect to sense bias.

It is also notable that the two strategies, despite being usually similar in behavior,
might not necessarily have matching biases toward the same senses. For instance, the
fine-tuning setting shows bias only toward the arrow sense of bow, whereas 1NN is
instead (slightly) biased toward its music sense. Another example is for the word digit
for which with the same set of training instances in the one-shot setting (one sentence
for each of the two senses), all the mistakes (5 in total) of the fine-tuning model are
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numerical digits incorrectly tagged as anatomical, whereas all the mistakes in the 1NN
setting (5 in total) are the reverse.

Finally, we also observed that for cases with subtle disambiguation, both the strate-
gies failed consistently in the one-shot setting. For instance, a common mistake shared
by the two strategies was for cases where the context contained semantic cues for
multiple senses, for example, “the English word digit as well as its translation in many
languages is also the anatomical term for fingers and toes.” in which the intended
meaning of digit is the numerical one (both strategies failed on disambiguation for this).
This observation is in line with the analysis of Reif et al. (2019), which highlighted the
failure of BERT in identifying semantic boundaries of words.

Pretraining Label Bias. In most of the conventional supervised WSD classifiers (such as
IMS), which rely on sense-annotated training data as their main source of information,
the source of sense bias is usually the skewed distribution of instances for different
senses of a word (Pilehvar and Navigli 2014). For instance, the word digit would appear
much more frequently with its numerical meaning than the finger meaning in an open-
domain text. Therefore, a sense-annotated corpus that is sampled from open-domain
texts shows a similar sense distribution, resulting in a bias toward more frequent senses
in the classification.

Given that in the n-shot setting we restrict the training data sets to have a uniform
distribution of instances, sense bias in this scenario can be indicative of inherent sense
biases in BERT’s pretraining. We observed that the pretrained BERT indeed exhibits
sense biases, often consistently across the two WSD strategies. For instance, we ob-
served the following biases toward (often) more frequent senses of words: java toward
its programming sense (rather than island), deck toward ship deck (rather than building
deck), yard toward its sailing meaning (rather than measure unit), and digit and square
toward their numerical meanings. We also observed some contextual cues that misled
the WSD system, especially in the one-shot setting. For instance, we observed that
our BERT-based WSD system had a tendency to classify square as its digit meaning
whenever there was a number in its context, for example, “marafor is a roman square
with two temples attached” or “it has 4 trapezoid and 2 square faces.” Not surprisingly,
the source of most bias toward the digit sense of square is from its geometrical sense
(which has domain relatedness). Also, classification for digit was often biased toward its
numerical meaning. Similarly to the case of square, the existence of a number in context
seems to bias the model toward numerical meanings, for example, “There were five digit
on each hand and four on each foot.”

Sensitivity to Initialization. We observed a high variation in the results, especially for the
one-shot setting, suggesting the high sensitivity of the model with little evidence from
training to the initialization point. For instance, in the one-shot experiment for the fine-
tuning model and the word bank, in three runs, 1%, 60%, and 70% of the test instances
for the financial bank are incorrectly classified as river bank. Similarly, for crane, 12%,
25%, and 72% of the machine instances are misclassified as bird in three runs. The 1NN
strategy, in addition to being less prone to sense biases, is generally more robust across
multiple runs. For these two examples, the figures are 2%, 0%, and 0% for bank and 15%,
0%, and 27% for crane. Other than the extent of bias, we observed that the direction can
also change dramatically from run to run. For example, in the one-shot 1NN setting and
for the word apple, almost all the mistakes in the first two runs (37 of 38 and 12 of 14)
were incorporation for fruit, whereas in the third run, almost all (6 of 7) were fruit for
incorporation.
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7. Discussion

In the previous sections we have run an extensive set of experiments to investigate
various properties of language models when adapted to the task of WSD. In the fol-
lowing we discuss some of the general conclusions and open questions arising from
our analysis.

Fine-Grained vs. Coarse-Grained. A well-known issue of WordNet is the fine granularity of
its sense distinctions (Navigli 2009). For example, the noun star has 8 senses in WordNet,
two of which refer to a “celestial body,” only differing in if they are visible from the Earth
or not. Both meanings translate to estrella in Spanish and therefore this sense distinction
serves no advantage in MT, for example. In fact, it has been shown that coarse-grained
distinctions are generally more suited to downstream applications (Rüd et al. 2011;
Severyn, Nicosia, and Moschitti 2013; Flekova and Gurevych 2016; Pilehvar et al. 2017).
However, the coarsening of sense inventories is certainly not a solved task. Whereas
in this article we relied either on experts for selecting senses from Wikipedia (given
the reduced number of selected words) or domain labels from lexical resources for
WordNet (Lacerra et al. 2020), there are other strategies for coarsening sense inventories
(McCarthy, Apidianaki, and Erk 2016; Hauer and Kondrak 2020)—for instance, based
on translations or parallel corpora (Resnik and Yarowsky 1999; Apidianaki 2008; Bansal,
DeNero, and Lin 2012). This is generally an open problem, especially for verbs (Peterson
and Palmer 2018), which have not been analyzed in-depth in this article due to lack of
effective techniques for an interpretable coarsening. Indeed, while in this work we have
shown how contextualized embeddings encode meaning to a similar extent as humans
do, for fine-grained distinctions these have been shown to correlate to a much lesser
extent, an area that requires further exploration (Haber and Poesio 2020).

Fine-Tuning vs. Feature Extraction (1NN). The distinction between fine-tuning and feature
extraction has been already studied in the literature for different tasks (Peters, Ruder,
and Smith 2019). The general assumption is that fine-tuned models perform better when
reasonable amounts of training data are available. In the case of WSD, however, feature
extraction (specifically the 1NN strategy explained in this article) is the more solid
choice on general grounds, even when training data is available. The advantages of
feature extraction (1NN) with respect to fine-tuning are 3-fold:

1. It is significantly less expensive to train as it simply relies on extracting
contextualized embeddings from the training data. This is especially
relevant when the WSD model is to be used in an all-words setting.

2. It is more robust to changes in the training distribution (see Section 6.2.1).

3. It works reasonably well for limited amounts of training data
(see Section 6.2.2), even in few-shot settings (see Section 6.3).

Few-Shot Learning. An important limitation of supervised WSD models is their depen-
dence on sense-annotated corpora, which is expensive to construct, that is, the so-called
knowledge-acquisition bottleneck (Gale, Church, and Yarowsky 1992b; Pasini 2020).
Therefore, being able to learn from a limited set of examples is a desirable property
of WSD models. Encouragingly, as mentioned above, the simple 1NN method studied
in this article shows robust results even with as few as three training examples per word
sense. In the future it would be interesting to investigate models relying on knowledge
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from lexical resources that can perform WSD with no training instances available (i.e.,
zero-shot), in the line of Kumar et al. (2019) and Blevins and Zettlemoyer (2020).

8. Conclusions

In this article we have provided an extensive analysis on how pretrained language
models (particularly BERT) capture lexical ambiguity. Our aim was to inspect the
capability of BERT in predicting different usages of the same word depending on its
context, similarly as humans do (Rodd 2020). The general conclusion we draw is that
in the ideal setting of having access to enough amounts of training data and computing
power, BERT can approach human-level performance for coarse-grained noun WSD,
even in cross-domain scenarios. However, this ideal setting rarely occurs in practice,
and challenges remain to make these models more efficient and less reliant on sense-
annotated data. As an encouraging finding, feature extraction-based models (referred
to as 1NN throughout the article) show strong performance even with a handful of
examples per word sense. As future work it would be interesting to focus on the internal
representation of the Transformer architecture by, for example, carrying out an in-depth
study of layer distribution (Tenney, Das, and Pavlick 2019), investigating the importance
of each attention head (Clark et al. 2019), or analyzing the differences for modeling
concepts, entities, and other categories of words (e.g., verbs). Moreover, our analysis
could be extended to additional Transformer-based models, such as RoBERTa (Liu et al.
2019b) and T5 (Raffel et al. 2020).

To enable further analysis of this type, another contribution of the article is the
release of the CoarseWSD-20 data set (Section 4), which also includes the out-of-domain
test set (Section 4.4). This data set can be reliably used for quantitative and qualitative
analyses in coarse-grained WSD, as we performed. We hope that future research in
WSD will take inspiration on the types of analyses performed in this work, as they
help shed light on the advantages and limitations of each approach. In particular, few-
shot and bias analysis along with training distribution variations are key aspects to
understanding the versatility and robustness of any given approach.

Finally, WSD is clearly not a solved problem, even in the coarse-grained setting, due
to a few challenges: (1) it is an arduous process to manually create high-quality full-
coverage training data; therefore, future research should also focus on reliable ways
of automating this process (Taghipour and Ng 2015; Delli Bovi et al. 2017; Scarlini,
Pasini, and Navigli 2019; Pasini and Navigli 2020; Loureiro and Camacho-Collados
2020; Scarlini, Pasini, and Navigli 2020b) and/or leveraging specific knowledge from
lexical resources (Luo et al. 2018; Kumar et al. 2019; Huang et al. 2019); and (2) the
existing sense-coarsening approaches are mainly targeted at nouns, and verb sense
modeling remains an important open research challenge.

APPENDIX

Word-in-Context Evaluation

Word-in-Context (Pilehvar and Camacho-Collados 2019, WiC) is a binary classification
task from the SuperGLUE language understanding benchmark (Wang et al. 2019) aimed
at testing the ability of models to distinguish between different senses of the same
word without relying on a predefined sense inventory. In particular, given a target
word (either a verb or a noun) and two contexts where such target word occurs, the
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Table 12
Sample positive (T) and negative (F) pairs from the WiC data set (target word in italics).

F There’s a lot of trash on the bed of the river | I keep a glass of water next to my bed when I
sleep

F Justify the margins | The end justifies the means
T Air pollution | Open a window and let in some air
T The expanded window will give us time to catch the thieves | You have a two-hour window of

clear weather to finish working on the lawn

Table 13
Accuracy (%) performance of different models on the WiC data set.

Type Model Accuracy

Hybrid
KnowBERT (Peters et al. 2019) 70.9
SenseBERT (Levine et al. 2020) 72.1
LMMS-LR (Loureiro and Jorge 2019b) 68.1

Fine-tuned/Supervised

BERT-Base 69.6
BERT-Large 69.6
FastText-B 52.3
FastText-C 54.7

Lowerbound Most Frequent Class 50.0
Upperbound Human performance 80.0

task consists of deciding whether the two target words in context refer to the same
sense or not. Even though no sense inventory is explicitly given, this data set was also
constructed based on WordNet. Table 12 shows a few examples from the data set.

BERT-Based Model. Given that the task in WiC is a binary classification, the 1NN model
is not applicable because a training to learn sense margins is necessary. Therefore, we
experimented with the BERT model fine-tuned on WiC’s training data. We followed
Wang et al. (2019) and fused the two sentences and fed them as input to BERT. A classi-
fier was then trained on the concatenation of the resulting BERT contextual embeddings.

Baselines. In addition to our BERT-based model, we include results for two Fast-
Text supervised classifiers (Joulin et al. 2017) as baselines: a basic one with random
initialization (FastText-B) and another initialized with FastText embeddings trained on
the Common Crawl (FastText-C). As other indicative reference points, we added two
language models that are enriched with WordNet (Levine et al. 2020; Loureiro and Jorge
2019b) and another with WordNet and Wikipedia (Peters et al. 2019).

Results. Table 13 shows the result of BERT models and the other baselines on the WiC
benchmark.24 We can see that BERT significantly outperforms the FastText static word
embedding. The two versions of BERT (Base and Large) perform equally well on this
task, achieving results close to the state of the art. As with fine-grained all-words WSD,

24 Data and results from comparison systems taken from https://pilehvar.github.io/wic/.
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the additional knowledge drawn from WordNet proves to be beneficial, as shown by
the results for KnowBERT and SenseBERT.

CoarseWSD-20: Sense Information

Table 17 shows for each sense their ID (as per their Wikipedia page title), definition, and
example usage from the data set.

Complementary Results in CoarseWSD-20

1. Table 14 shows micro-F1 results for the experiment with different training
data sizes sampled from the original CoarseWSD-20 training set (cf.
Section 6.2.2 of the article).

2. Table 15 shows the micro-F1 performance for fine-tuning and 1NN and for
varying sizes of the training data (with similar skewed distributions) for
both Most Frequent Sense (MFS) and Least Frequent Sense (LFS) classes
(cf. Section 6.2.2 of the article).

3. Table 16 includes the complete results for the n-shot experiment, including
the FastText baselines (cf. Section 6.3 of the article).

Table 14
Micro-F1 results on the CoarseWSD-20 test set using training sets of different sizes sampled from
the original training set.

Fine-Tuning (BRT-L) 1NN (BRT-L)

1% 5% 10% 25% 50% ALL 1% 5% 10% 25% 50% ALL

crane 84.1 95.8 95.8 96.8 95.5 98.1 96.5 96.7 96.8 96.8 96.8 96.8
java 99.1 99.1 99.6 99.5 99.6 99.7 99.6 99.6 99.6 99.6 99.6 99.6
apple 99.4 99.4 99.5 99.5 99.5 99.6 99.2 99.2 99.2 99.2 99.2 99.2
mole 80.1 96.0 97.7 99.0 99.0 98.9 97.7 98.6 98.5 98.5 98.5 98.5
spring 95.0 97.5 96.9 96.8 97.8 98.3 98.0 98.0 98.0 98.0 97.9 97.8
chair 82.8 93.6 95.9 96.7 96.9 96.2 95.1 95.8 96.2 96.2 96.2 96.2
hood 77.6 90.7 93.5 97.2 97.6 99.6 97.2 99.0 99.4 99.6 100.0 100.0
seal 92.4 97.6 98.1 98.8 98.5 99.0 98.1 98.2 98.3 98.2 98.2 98.1
bow 74.1 92.4 96.1 96.7 97.5 98.5 94.9 95.9 95.8 95.5 95.3 95.3
club 72.8 78.7 78.7 80.4 83.5 84.7 82.0 82.9 83.8 84.0 84.4 85.1
trunk 86.2 88.7 97.8 98.7 98.7 98.3 97.8 98.2 98.4 98.7 98.7 98.7
square 88.4 87.3 92.6 92.4 92.9 95.7 93.9 94.2 94.1 95.2 95.7 96.1
arm 93.1 98.6 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
digit 95.2 89.7 95.2 99.2 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0
bass 92.0 93.4 94.4 95.1 95.6 95.8 86.6 86.1 85.8 85.5 85.2 84.5
yard 90.7 94.0 95.4 97.2 99.5 99.5 89.8 88.9 87.8 87.5 86.8 88.9
pound 88.3 90.0 89.7 89.0 94.9 94.9 92.6 92.8 92.0 90.4 89.7 89.7
deck 93.6 92.9 92.9 93.9 95.0 95.3 91.4 91.9 91.7 91.6 91.4 91.9
bank 95.2 95.5 97.1 99.5 99.3 99.3 99.7 99.9 99.9 99.9 99.8 99.8
pitcher 99.5 99.6 99.6 99.9 100.0 100.0 100.0 100.0 99.9 100.0 99.9 99.9

Average 89.0 93.5 95.3 96.3 97.0 97.5 95.5 95.8 95.7 95.7 95.6 95.8
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Table 15
Micro-F1 performance for the two WSD strategies and for varying sizes of the training data
(with similar skewed distributions) for the MFS (top) and LFS (bottom).

Most Frequent Sense (MFS)

Fine-Tuning (BRT-L) 1NN (BRT-L)

1% 5% 10% 25% 50% ALL 1% 5% 10% 25% 50% ALL

crane 86.9 96.1 96.0 97.0 95.9 98.2 100.0 100.0 100.0 100.0 100.0 100.0
java 99.2 99.3 99.7 99.6 99.7 99.8 99.4 99.4 99.4 99.4 99.4 99.4
apple 99.5 99.5 99.6 99.6 99.6 99.7 99.5 99.5 99.5 99.5 99.5 99.5
mole 75.4 96.2 97.1 98.7 98.7 98.5 95.2 97.7 97.4 97.4 97.4 97.4
spring 96.0 97.7 97.2 97.0 98.0 98.8 97.7 97.8 97.8 97.7 97.7 97.5
chair 88.8 95.5 97.0 97.6 97.8 97.2 96.6 98.2 98.9 98.9 98.9 98.9
hood 91.6 93.4 95.6 98.3 97.9 99.7 100.0 100.0 100.0 100.0 100.0 100.0
seal 90.9 97.0 97.5 98.7 98.4 98.9 98.6 98.5 98.5 98.2 98.5 98.5
bow 85.5 97.7 97.2 98.2 98.2 98.7 97.6 98.1 98.3 98.3 98.3 98.3
club 74.6 80.4 80.6 81.9 84.1 85.2 79.5 78.5 78.5 78.4 78.2 77.8
trunk 90.6 91.4 98.2 98.9 98.9 98.6 97.9 97.9 97.9 97.9 97.9 97.9
square 89.6 88.5 93.0 92.8 93.2 95.7 93.7 93.6 93.4 95.8 95.1 94.2
arm 95.5 99.1 99.6 99.6 99.6 99.6 99.2 99.2 99.2 99.2 99.2 99.2
digit 97.0 93.9 97.1 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
bass 95.2 96.0 96.8 96.7 97.1 97.2 86.0 85.2 84.6 84.1 83.7 82.9
yard 94.4 96.6 97.4 98.4 99.7 99.7 88.3 86.9 85.7 85.2 84.4 86.9
pound 93.7 94.7 94.6 94.1 97.2 97.2 94.1 92.9 91.7 89.7 88.5 88.5
deck 96.7 96.3 96.3 96.8 97.3 97.5 92.4 93.0 92.1 91.7 91.3 91.3
bank 97.6 97.7 98.5 99.7 99.6 99.6 100.0 100.0 100.0 100.0 100.0 100.0
pitcher 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9 99.9

Average 91.9 95.3 96.4 97.2 97.5 98.0 95.8 95.8 95.6 95.6 95.4 95.4

Least Frequent Sense (LFS)

Fine-Tuning (BRT-L) 1NN (BRT-L)

1% 5% 10% 25% 50% ALL 1% 5% 10% 25% 50% ALL

crane 79.7 95.4 95.4 96.6 95.2 98.0 92.8 93.2 93.4 93.4 93.4 93.4
java 98.8 98.8 99.5 99.4 99.5 99.6 99.9 99.9 99.9 99.9 99.9 99.9
apple 99.2 99.2 99.3 99.3 99.4 99.5 98.7 98.7 98.7 98.7 98.7 98.7
mole 72.5 86.7 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
spring 95.0 98.2 97.0 97.9 97.9 97.5 97.3 97.3 97.3 97.3 97.3 97.3
chair 63.7 88.9 93.4 94.6 95.0 93.8 92.1 91.0 90.5 90.5 90.5 90.5
hood 65.7 82.5 89.2 95.2 95.2 99.2 97.0 97.3 97.7 98.5 100.0 100.0
seal 39.1 89.3 91.0 96.0 96.0 97.3 100.0 100.0 100.0 100.0 100.0 100.0
bow 0.0 73.2 95.3 94.6 98.0 99.4 91.0 98.5 100.0 100.0 100.0 100.0
club 63.5 74.4 73.3 80.0 81.6 82.5 95.2 95.2 95.2 95.2 95.2 95.2
trunk 49.7 66.6 95.2 100.0 100.0 96.5 95.2 97.1 98.2 100.0 100.0 100.0
square 9.5 21.4 4.8 20.5 30.3 76.0 53.8 58.5 57.7 56.4 69.2 84.6
arm 84.7 97.2 98.9 98.9 98.9 98.9 100.0 100.0 100.0 100.0 100.0 100.0
digit 87.7 65.5 87.2 98.0 100.0 100.0 98.1 100.0 100.0 100.0 100.0 100.0
bass 29.5 48.2 61.8 65.6 68.5 67.3 69.7 73.2 75.6 77.7 78.4 77.3
yard 70.9 74.8 79.2 90.3 98.4 98.4 98.5 100.0 100.0 100.0 100.0 100.0
pound 13.3 6.1 0.0 11.1 69.3 70.6 80.0 92.0 95.0 96.7 100.0 100.0
deck 16.7 0.0 0.0 43.6 57.1 58.6 78.6 77.1 85.7 90.5 92.9 100.0
bank 2.9 14.0 51.4 94.4 91.8 91.6 93.9 97.3 97.7 97.0 95.5 95.5
pitcher 0.0 4.8 28.0 93.0 98.7 94.6 100.0 100.0 100.0 100.0 100.0 100.0

Average 52.1 64.3 71.9 83.4 88.5 91.0 91.6 93.3 94.1 94.6 95.5 96.6
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E. Fox, and R. Garnett, editors. Advances in
Neural Information Processing Systems,
volume 32, Curran Associates, Inc.

Wang, Alex, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and
Samuel Bowman. 2018. GLUE: A
multi-task benchmark and analysis
platform for natural language
understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP,
pages 353–355, Brussels. https://www
.aclweb.org/anthology/W18-5446.

Wiedemann, Gregor, Steffen Remus, Avi
Chawla, and Chris Biemann. 2019. Does

442

https://doi.org/10.1162/tacl_a_00277
https://doi.org/10.18653/v1/K15-1037
https://doi.org/10.18653/v1/K15-1037
https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446


Loureiro et al. Analysis and Evaluation of Language Models for WSD

BERT make any sense? Interpretable word
sense disambiguation with contextualized
embeddings. In Proceedings of the 15th
Conference on Natural Language Processing
(KONVENS 2019).

Wolf, Thomas, Lysandre Debut, Victor Sanh,
Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault,
Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, and others. 2020.
Transformers: State-of-the-art natural
language processing. In Proceedings of the
2020 Conference on Empirical Methods in
Natural Language Processing: System
Demonstrations, pages 38–45,
Online.

Yaghoobzadeh, Yadollah, Katharina Kann,
T. J. Hazen, Eneko Agirre, and Hinrich
Schütze. 2019. Probing for semantic
classes: Diagnosing the meaning content of
word embeddings. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 5740–5753,
Florence. https://doi.org/10.18653
/v1/P19-1574

Yang, Zhilin, Zihang Dai, Yiming Yang,
Jaime Carbonell, Russ R. Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized
autoregressive pretraining for language
understanding. In Advances in Neural
Information Processing Systems, volume 32,

pages 5753–5763, Curran Associates,
Inc.

Yenicelik, David, Florian Schmidt, and
Yannic Kilcher. 2020. How does BERT
capture semantics? A closer look at
polysemous words. In Proceedings of
the Third BlackboxNLP Workshop on
Analyzing and Interpreting Neural
Networks for NLP, pages 156–162, Online.
https://doi.org/10.18653/v1/2020
.blackboxnlp-1.15

Yuan, Dayu, Julian Richardson, Ryan
Doherty, Colin Evans, and Eric Altendorf.
2016. Semi-supervised word sense
disambiguation with neural models. In
Proceedings of COLING 2016, the 26th
International Conference on Computational
Linguistics: Technical Papers,
pages 1374–1385, Osaka.

Zhong, Zhi and Hwee Tou Ng. 2010. It
makes sense: A wide-coverage word sense
disambiguation system for free text. In
Proceedings of the ACL System
Demonstrations, pages 78–83, Uppsala.

Zhou, Wangchunshu, Tao Ge, Ke Xu, Furu
Wei, and Ming Zhou. 2019. BERT-based
lexical substitution. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 3368–3373,
Florence. https://doi.org/10.18653/v1
/P19-1328

Zipf, George K. 1949. Human behavior and the
Principle of Least-Effort, Addison-Wesley,
Cambridge, MA.

443

https://doi.org/10.18653/v1/P19-1574
https://doi.org/10.18653/v1/P19-1574
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/P19-1328
https://doi.org/10.18653/v1/P19-1328


444


	Introduction
	Related Work
	Analysis of Pretrained Language Models
	Lexical Ambiguity and Language Models
	Evaluation Benchmarks

	Word Sense Disambiguation: An Overview
	Sense Inventories
	WSD Paradigms
	Language Models for WSD
	Evaluation in Standard Benchmarks

	CoarseWSD-20 Data Set
	Data Set Construction
	Human Performance Estimation*-3pt
	Statistics*-3pt
	Out of Domain Test Set

	Evaluation
	Experimental Setting
	Results
	Out of Domain

	Analysis
	Contextualized Embeddings
	Role of Training Data
	n-Shot Learning
	Bias Analysis

	Discussion
	Conclusions

