
Depth-Bounded Statistical PCFG Induction
as a Model of Human Grammar Acquisition

Lifeng Jin
The Ohio State University
Department of Linguistics
jin.544@osu.edu

Lane Schwartz
University of Illinois at
Urbana-Champaign
Department of Linguistics
lanes@illinois.edu

Finale Doshi-Velez
Harvard University
Department of Computer Science
finale@seas.harvard.edu

Timothy Miller
Boston Children’s Hospital
& Harvard Medical School
Computational Health
Informatics Program
timothy.miller@childrens.harvard.edu

William Schuler∗
The Ohio State University
Department of Linguistics
schuler@ling.osu.edu

This article describes a simple PCFG induction model with a fixed category domain that predicts
a large majority of attested constituent boundaries, and predicts labels consistent with nearly
half of attested constituent labels on a standard evaluation data set of child-directed speech.
The article then explores the idea that the difference between simple grammars exhibited by
child learners and fully recursive grammars exhibited by adult learners may be an effect of
increasing working memory capacity, where the shallow grammars are constrained images of the
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recursive grammars. An implementation of these memory bounds as limits on center embedding
in a depth-specific transform of a recursive grammar yields a significant improvement over
an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a
learning advantage.

1. Introduction

Chomsky (1965) postulates that as human children are naturally exposed to a language,
the quantity and nature of the linguistic examples to which they are exposed is in-
sufficient to fully explain the children’s successful acquisition of the grammar of the
language; Chomsky (1980) dubs this claim the poverty of the stimulus. Chomsky (1965)
asserts that the space of possible human languages must therefore be constrained by a
set of linguistic universals with which children’s brains are innately primed, and that
this biological fact is a necessary precondition for human language learning. Chomsky
(1986) uses the term Universal Grammar to describe this proposed innate mental model
that underlies human language acquisition.

The argument from the poverty of the stimulus and the associated claim of an
innate Universal Grammar gained wide acceptance within the Chomskyan generative
tradition. The specific details of exactly what aspects of language cannot be learned
without Universal Grammar has not always been well defined; similarly, the nature of
exactly what proposed linguistic universals constitute Universal Grammar have been
widely debated. In striving to identify empirical mechanisms by which poverty of the
stimulus claims might be rigorously tested, Pullum and Scholz (2002) conclude that
although such claims could potentially be true, the linguistic examples most widely
cited in support fail to hold up to close scrutiny.

Pullum and Scholz argue that mathematical learning theory and corpus linguistics
have a key role to play in empirically testing poverty of the stimulus claims. Preliminary
work along these lines using manually constructed grammars of child-directed speech
was performed by Perfors, Tenenbaum, and Regier (2006), who demonstrate empirically
that a basic learner, when presented with a corpus of child-directed speech, can learn
to prefer a hierarchical grammar (a probabilistic context-free grammar) over linear and
regular grammars using a simple Bayesian probabilistic measure of the complexity of a
grammar.

However, full induction of probabilistic context-free grammars (PCFGs) has long
been considered a difficult problem (Solomonoff 1964; Fu and Booth 1975; Carroll and
Charniak 1992; Johnson, Griffiths, and Goldwater 2007; Liang et al. 2007; Tu 2012). Lack
of success for direct estimation was attributed either to a lack of correlation between the
linguistic accuracy and the optimization objective (Johnson, Griffiths, and Goldwater
2007), or the likelihood function or the posterior being filled with weak local optima
(Smith 2006; Liang et al. 2007). The first contribution of this article is to describe a simple
PCFG induction model with a fixed category domain that predicts a large majority
of attested constituent boundaries, and predicts labels consistent with nearly half of
attested constituent labels on the Eve corpus, a standard evaluation data set of child-
directed speech.

But evidence suggests that children learn very constrained grammars (Lieven, Pine,
and Baldwin 1997; Tomasello 2003, and more). These non-nativist models (Bannard,
Lieven, and Tomasello 2009) usually assume that the grammar children first acquire is
linear and templatic, consisting of multiword frames with slots to be filled in or just
n-grams. The grammar may also include various kinds of rule-like probabilities for the
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frames or transition probabilities for the words or n-grams. Much work (Redington,
Chater, and Finch 1998; Mintz 2003; Freudenthal et al. 2007; Thompson and Newport
2007) shows that syntactic categories and surface word order may be captured with
these simple statistics without hypothesizing hierarchical structures. However, the tran-
sition between those linear or very shallow grammars and fully recursive grammars is
never explicitly modeled; therefore, there is no empirical evidence from computational
modeling about how easy this transition may be. The second contribution of this article
is to explore the idea that this difference between shallow and fully recursive gram-
mars is determined by working memory, so the shallow and recursive grammars are
unified into different performance grammars sharing the same underlying competence
grammar.

There has long been a distinction within the linguistic discipline of theoretical syn-
tax between a hypothesized model of language that is posited to exist within in the
brain of each speaker of that language and the phenomenon of language as it is actually
spoken and encountered in the real world. The concept of a mental model of lan-
guage has been described in terms of langue (de Saussure 1916), linguistic competence
(Chomsky 1965), or simply as the grammar of the language, while the details of how
language is actually spoken and used have been described as parole (de Saussure 1916),
linguistic performance (Chomsky 1965), or sometimes as usage.

Chomsky (1965) argues that models of linguistic performance should be informed
by models of linguistic competence, but that models of competence should not take per-
formance into account: “Linguistic theory is concerned primarily with an ideal speaker-
listener, in a completely homogeneous speech-community, who knows its language
perfectly and is unaffected by such grammatically irrelevant conditions as memory
limitations, distractions, shifts of attention and interest, and errors” (page 3). Within the
Chomskyan generative tradition, this idea that syntactic theory should model an ideal-
ized grammar of linguistic competence (rather than one that incorporates performance)
has remained dominant in the decades since (see Newmeyer 2003, for example). Others
outside this tradition have criticized the Chomskyan position in part for its failure to
connect idealized theories of competence to actual language usage (for example, see
Pylyshyn 1973; Miller 1975; Kates 1976).

The framework for unsupervised grammar induction presented in this article is
significant in that it represents a concrete discovery procedure that can produce both
a competence grammar G (a PCFG in Chomsky normal form) and a corresponding
formally defined performance grammar GD (another PCFG defined to be sensitive to
center-embedding depth). Although PCFGs in principle allow for unlimited recursion
in the form of center-embedding (Chomsky and Miller 1963), evidence from corpus
studies of spoken and written language use strongly indicates that such recursion essen-
tially never extends beyond the limits of human cognitive memory constraints (Schuler
et al. 2010; Noji, Miyao, and Johnson 2016). Given a cognitively motivated recursive
depth bound D, performance grammar GD can be viewed as a specific instantiation of
competence grammar G that is guaranteed to never violate the depth bound. In this
analysis of model behavior and depth-bounding (§8) we observe that by utilizing a
depth bound, the grammar induction procedure is more consistent in discovering a
highly accurate grammar than it is when inducing an unbounded grammar over the
same corpus. This fact argues against Chomsky’s assertion that memory limitations are
an irrelevant consideration in the search for a grammar of a language.

This article is an extended presentation of Jin et al. (2018a) with additional eval-
uation and analyses of PCFG induction prior to depth bounding. These additional
evaluations and analyses include quantitative analyses of effects of manipulation of
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hyperparameters, and quantitative and qualitative linguistic analyses of categories and
rules in generated grammars for several languages. Code used in this work can be found
at https://github.com/lifengjin/pcfg induction.

The remainder of this article is organized as follows: Section 2 describes related
work in unsupervised grammar induction. Section 3 describes an unbounded PCFG
induction model based on Gibbs sampling. Section 4 describes a depth-bounded version
of this model. Section 5 describes a method for evaluating labeled parsing accuracy
for unsupervised grammar induction. Section 6 describes experiments to evaluate the
unbounded PCFG induction model on synthetic data with a known solution. Section 7
describes experiments to evaluate the unbounded PCFG induction model on child-
directed speech. Section 8 describes experiments to evaluate the depth-bounded PCFG
induction model on child-directed speech. Section 9 describes experiments to explore
the phenomena of natural bounding in induction on child-directed and adult lan-
guage data. Section 10 describes replication of these results on newswire data. Finally,
Section 11 provides some concluding remarks.

2. Related work

Unsupervised grammar inducers hypothesize hierarchical structures for strings of
words. Using context-free grammars (CFGs) to define these structures with labels,
previous attempts at either CFG parameter estimation (Carroll and Charniak 1992;
Pereira and Schabes 1992; Johnson, Griffiths, and Goldwater 2007) or directly inducing a
CFG as well as its probabilities (Liang et al. 2007; Tu 2012) have not achieved as much
success as experiments with other kinds of formalisms that produce unlabeled con-
stituents (Klein and Manning 2004; Seginer 2007a; Ponvert, Baldridge, and Erk 2011).
The assumption has been made that the space of grammars is so big that constraints
must be applied to the learning process to reduce the burden of the learner (Gold 1967;
Cramer 2007; Liang et al. 2007).

Much of this grammar induction work used strong linguistically motivated con-
straints or direct linguistic annotation to help the inducer eliminate some local optima.
Pereira and Schabes (1992) use bracketed corpora to provide extra structural informa-
tion to the inducer. Use of part-of-speech (POS) sequences in place of word strings is
popular in the dependency grammar induction literature (Klein and Manning 2002,
2004; Berg-Kirkpatrick et al. 2010; Jiang, Han, and Tu 2016; Noji, Miyao, and Johnson
2016). Combinatory Categorial Grammar (CCG) induction also relies on a limited
number POS tags to assign basic categories to words (Bisk and Hockenmaier 2012;
Bisk, Christodoulopoulos, and Hockenmaier 2015), among other constraints such as
CCG combinators, to induce labeled dependencies. Other linguistic constraints and
heuristics such as constraints of root nodes (Noji, Miyao, and Johnson 2016), attachment
rules (Naseem et al. 2010), acoustic cues (Pate and Goldwater 2013), and punctuation
as phrasal boundaries (Seginer 2007a; Ponvert, Baldridge, and Erk 2011) have also
been used in induction. More recently, neural PCFG induction systems (Jin et al. 2019;
Kim et al. 2019; Kim, Dyer, and Rush 2019) and unsupervised parsing models (Shen
et al. 2018, 2019; Drozdov et al. 2019) have been shown to predict accurate syntac-
tic structures. These more complex neural network models may not contain explicit
biases, but may contain implicit confounding factors implemented during develop-
ment on English or other natural languages, which may function like linguistic uni-
versals in constraining the search over possible grammars. Experiments described in
this article use only Bayesian PCFG induction in order to eliminate these possible
confounds and evaluate the hypothesis that grammar may be acquired using only event
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Figure 1
Stack elements after the word the in a left-corner parse of the sentence For parts the plant built to
fail was awful.

categorization and decomposition into categorized sub-events using mathematically
transparent parameters.1

Depth-like constraints have been applied in work by Seginer (2007a) and Ponvert,
Baldridge, and Erk (2011) to help constrain the search over possible structures. Both
of these systems are successful in inducing phrase structure trees from only words,
but only generate unlabeled constituents. Center-embedding constraints on recursion
depth have also been applied to parsing (Schuler et al. 2010; Ponvert, Baldridge, and
Erk 2011; Shain et al. 2016; Noji, Miyao, and Johnson 2016; Jin et al. 2018b), moti-
vated by human cognitive constraints on memory capacity (Chomsky and Miller 1963).
Center-embedding recursion depth can be defined in a left-corner parsing paradigm
(Rosenkrantz and Lewis 1970; Johnson-Laird 1983; Abney and Johnson 1991) as the
number of left children of right children that occur on the path from a word to the root
of a parse tree. Left-corner parsers require only minimal stack memory to process left-
branching and right-branching structures, but require an extra stack element to process
each center embedding in a structure. For example, a left-corner parser must add a stack
element for each of the first three words in the sentence, For parts the plant built to fail
was awful, shown in Figure 1. These kinds of depth bounds in sentence processing have
been used to explain the relative difficulty of center-embedded sentences compared
with more right-branching paraphrases like It was awful for the plant’s parts to fail. How-
ever, depth-bounded grammar induction has never been compared against unbounded
induction in the same system, in part because most previous depth-bounding models
are built around sequence models, the complexity of which grows exponentially with
the maximum allowed depth.

In order to compare the effects of depth-bounding more directly, this work extends
a chart-based Bayesian PCFG induction model (Johnson, Griffiths, and Goldwater 2007)
to include depth bounding, which allows both bounded and unbounded PCFGs to
be induced from unannotated text. Experiments reported in this article confirm that

1 It is also not straightforward to augment neural network models to test the contribution of depth bounds.
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depth-bounding does empirically have the effect of significantly limiting the search
space of the inducer. This work also shows that it is possible to induce an accurate
unbounded PCFG from raw text with no strong linguistic constraints.

3. Unbounded Statistical Grammar Induction Model

Experiments described in this article evaluate the extent to which natural language
grammars learned by humans may simply be those grammars with the highest pos-
terior probability given the sentence data to which they are exposed. These posterior
probabilities P(grammar | sentences) are equivalent to the product of the probability
of a grammar, multiplied by the probability of a set of trees given that (probabilistic)
grammar, multiplied by the probability of the sentence data given those trees, summed
over all possible trees, then divided by the probability of those sentences:

P(grammar | sentences) =
∑

trees P(grammar, trees, sentences)
P(sentences)

=

∑
trees P(grammar) · P(trees | grammar) · P(sentences | trees)

P(sentences)
(1)

This factoring suggests that a maximum over probabilistic grammars may be estimated
by a process of randomly generating a large set of grammars and a large set of trees
given each grammar, then calculating the fraction of generated trees whose words
match the observed sentences.

More specifically, the generative induction model used in these experiments as-
sumes a PCFG in Chomsky normal form (allowing only unary expansions at preter-
minals and binary expansions at non-preterminals) with a set C of category labels. This
grammar is implemented as a matrix G of rule probabilities P(c � a b | c) or P(c � w | c)
with one row for each of C parent symbols c and one column for each of |C|2+|W|
combinations of left and right child symbols a and b, which can be pairs of nonterminals
or observed words from vocabulary W followed by null symbols ⊥. For example, a
grammar consisting of the probabilistic rules shown in Figure 2a can be represented by
the matrix in Figure 2b. This grammar matrix can be defined using a Kronecker delta
column vector δc (a vector with ones at index c and zeros elsewhere) to index parent
categories as rows, and Kronecker product δ>a ⊗ δ>b of Kronecker delta row vectors δ>a
and δ>b to index every combination of left child a and right child b categories in a single
large vector, as columns (see Figure 3). Each vector of combinations of left and right

Figure 2
Example matrix representation (b) of a probabilistic context-free grammar (a).
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Figure 3
Indexing using a Kronecker delta (a), and a Kronecker product of Kronecker deltas (b).

child categories is then concatenated with a vector of probabilities over words w indexed
by a Kronecker delta row vector δ>w , to compose each row of G:2

G =
∑

c

δc

∑
a,b

P(c � a b | c) δ>a ⊗ δ>b

 (∑
w

P(c � w | c) δ>w

) (2)

The P(grammar) term in Equation (1) is defined to be a Dirichlet distribution over
expansions P(c→ a b | c) of each category c, with symmetric parameter β, and this is the
distribution from which grammars are randomly sampled in a generative process:

P(grammar G) = Dirichlet(G;β) G ∼ Dirichlet(β) (3)

A Dirichlet distribution multiplies in a likelihood term for β− 1 hypothetical instances
of each categorical outcome, and renormalizes over the size of the probability simplex
(the space of well-formed categorical distributions). The symmetric parameter therefore
biases the inducer to prefer (if high) more uniform distributions or (if low) distributions
with a small number of high-probability expansions for each parent category.

Probabilities and random sampling processes for trees are defined recursively over
expansions from each parent category to its left and right child category. Each tree τ
is accounted here as a set {τε, τ1, τ2, τ11, τ12, τ21, ...} of category labels τη, where η ∈
{1, 2}∗ is a Gorn address specifying a path of left (1) or right (2) branches from the
root. The distribution over trees P(trees | grammar) in Equation (1) is then defined to
be a product of probabilities of all grammar rule expansions in each tree, so trees are
randomly sampled from the top down in our generative process, using a categorical
distribution over pairs of left and right child category labels τη1 and τη2 (drawn from
the union of C× C and W × {⊥}) given each parent category label τη in each tree τ:

P(trees τ1..N | grammar G) =
∏

τ∈τ1..N

∏
τη∈τ

δτη
>G (δτη1

⊗ δτη2
) τη1, τη2 ∼ Categorical(δτη

>G)

(4)
where τη in W or {⊥} are taken to be terminal and not expanded.

Finally, because each tree contains the words of a sentence, the probability of sen-
tences given trees P(sentences | trees) in Equation (1) is simply one if the words in all
the trees match the sentences in the corpus, and zero otherwise.

2 A Kronecker product multiplies two matrices of dimension m× n and o× p (or vectors in case n and p
equal one) into a matrix of dimension mo× np consisting of a copy of the first matrix with each element
replaced by a copy of the second matrix multiplied by that element.
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With unlimited resources, it would be possible to make claims about the posterior
probabilities of CFGs given sentences in some training corpus by randomly gener-
ating a sufficiently large set of grammars and a sufficiently large set of trees using
this sampling process, then calculating the fraction of generated trees that match the
training corpus. Grammars that generate the corpus more frequently could then be
said to have greater statistical support from the corpus, and thus be natural candidates
for induction. However, because the space of probabilistic grammars and corpora is
vast and resources are limited, a Gibbs sampling approach (Goodman 1998; Johnson,
Griffiths, and Goldwater 2007) is instead used to estimate the posterior distribution
over grammars given a corpus by randomly walking through this space, starting from
some random probabilistic grammar and a random set of trees, then making a series
of random changes to that grammar’s rule probabilities in a way that is proportional
to the posterior distribution over grammars given a corpus. This is done by randomly
generating a new grammar at each step t given the observations of rules used in the
previous set of trees:

G(t) ∼ Dirichlet

β+
∑

τ∈τ(t−1)
1..N

∑
τη∈τ

δτη (δτη1 ⊗ δτη2 )>

 (5)

then randomly generating a new set of trees τ(t)
1..N for the corpus sentences given the

current grammar. Each tree τ(t) is sampled from the top down, for each span τ(t)
η from

word i to word j, by first choosing a split point ki,j such that i < ki,j < j, then sampling
a pair of category labels ci,ki,j (for τ(t)

η1) and cki,j,j (for τ(t)
η2) adjacent at this split point, both

using vectors of likelihoods vi,j for words i through j given each possible category label:

ki,j ∼ Categorical

 ∑
k∈{i+1..j−1}

δk δ
>
ci,j

G(t) (vi,k ⊗ vk,j)

 (6a)

ci,k, ck,j ∼ Categorical
(
δ>ci,j

G(t) diag(vi,k ⊗ vk,j)
)

(6b)

where diag(v) defines a matrix with elements of vector v along its diagonal and zeros
elsewhere. The vector of likelihoods vi,j for each span of words is defined recursively
in terms of likelihood vectors for each possible left and right child span (if the span
contains multiple words), concatenated with a Kronecker delta vector concentrated at
the current word (if the span contains just one word):

vi,j = G(t)
[∑

k∈{i+1..j−1} vi,k ⊗ vk,j
Ji + 1 = jK δwi

]
(7)

where JφK is one if φ is true and zero otherwise. Figure 4 shows the Gibbs sampling
process for unbounded grammars.
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β Equation (3) G

Equation (6a)–(6b)

τ1..N

Equation (5)

Figure 4
Process diagram of Gibbs sampler for unbounded grammars.

4. Bounded Statistical Grammar Induction Model

Experiments described in this article also evaluate the effect of constraints related to
center-embedding depth on grammar induction. These constraints are implemented by
defining a depth- and side-specific category set CD = {1..D} × {1, 2} × C for the con-
strained grammar, with indicators of depth d ∈ {1..D} and side s ∈ {1, 2} (where side 1
indicates a left sibling and side 2 indicates a right sibling). A bounded grammar GD
with this category set is then tiled together from depth- and side-specific grammars Gd,s
using matrices Dd,s and Ed,s to map categories of parents and combinations of children
to their depth- and side-specific counterparts in CD:

GD =
∑

d∈{1..D}

∑
s∈{1,2}

Dd,s Gd,s Ed,s
> (8)

This depth-bounded grammar GD is substituted for G in Equations (6a) and (6b) in
a depth-bounded version of the Gibbs sampler. An example depth- and side-specific
grammar matrix G2, based on the grammar in Figure 2 is shown in Figure 5.

Center embedding, which requires an additional embedding depth in a left-corner
parser, is defined to occur at left children of right children, so left-sibling categories at
depth d are defined to expand to left and right children at depth d, and right-sibling
categories at depth d are defined to expand to a left child at depth d + 1 and a right
child at depth d. The depth- and side-specific mapping matrices Dd,s and Ed,s therefore
respect this division:

Dd,s = δd ⊗ δs ⊗ I (9a)

Ed,1 = δd ⊗ δ1 ⊗ I⊗ δd ⊗ δ2 ⊗ I (9b)

Ed,2 = δd+1 ⊗ δ1 ⊗ I⊗ δd ⊗ δ2 ⊗ I (9c)

where I is the identity matrix.
Using this definition of center embedding, when a depth constraint of D is applied,

it excludes (eliminates the probability of) trees with non-terminal left siblings at depths
deeper than D from the generative model’s distribution over trees, so this distribution
must be renormalized to account for these missing trees in a consistent probability dis-
tribution. The depth- and side-specific grammars Gd,s are therefore defined to reweight
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Figure 5
Example depth- and side-specific grammar matrix G2, based on the grammar in Figure 2.

and renormalize the original grammar G by a containment likelihood h(I)
d,s, which is

a vector with one element for each category in C containing the probability of that
category generating a complete yield within depth d as an s-side sibling:

Gd,1 = 1
h(I)

d,1

G diag
[

h(I)
d,1 ⊗ h(I)

d,2
1

]
(10a)

Gd,2 = 1
h(I)

d,2

G diag
[

h(I)
d+1,1 ⊗ h(I)

d,2
1

]
(10b)

Following van Schijndel, Exley, and Schuler (2013) and Jin et al. (2018b), the containment
likelihood h(I)

d,s is estimated iteratively over paths of length i ∈ {0..I} as the probability
of a randomly generated tree of height i with each category as its root fitting within
center-embedding depth d:

h(0)
d,s = 0 (11a)

h(i)
d,1 = Jd ≤ D + 1K G

[
h(i−1)

d,1 ⊗ h(i−1)
d,2

1

]
(11b)

h(i)
d,2 = Jd ≤ DK G

[
h(i−1)

d+1,1 ⊗ h(i−1)
d,2

1

]
(11c)

Following previous work, experiments described in this paper use I = 20.
Equations (8)–(11c) define a depth- and side-specific grammar GD from a depth-

and side-independent grammar G, which is used in place of G in Equations (6a)–
(6b) to generate depth- and side-specific trees τ1..N. A depth- and side-independent
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grammar G can then be sampled by aggregating over depth- and side-specific rule
frequencies-FD in these trees, to complete the cycle:

G ∼ Dirichlet

(
β+

∑
d

∑
s

Dd,s
>FD Ed,s

)
(12)

These depth- and side-specific frequencies are calculated from sampled trees as in
Equation (5):

FD =
∑

τ∈τ1..N

∑
τη∈τ

δτη (δτη1 ⊗ δτη2 )> (13)

Figure 6 shows the complete Gibbs sampling process for bounded grammars.

5. Labeled Parsing Evaluation

Experiments described in this article evaluate the accuracy of parse trees τ1..N hypoth-
esized by induced grammars against attested trees τ̃1..N in annotated corpora. In these
evaluations it is straightforward to match the yields of constituents in hypothesized
trees (the sequences of words from the first word position i to the last word position j
of each constituent) against those of constituents in attested trees, but comparisons of
category labels are complicated by the fact that labels τ̃n,i,j and τn,i,j of attested and
hypothesized constituents are drawn from different sets: The former from symbols like
‘S’ and ‘NP,’ and the latter from integers 1..|C|. Fortunately, an induced grammar can
still be considered successful to the degree that it produces trees whose constituents
match in yield and whose labels predict the attested labels of constituents with corre-
sponding yields (for example, if 1 usually corresponds to ‘S,’ 2 usually corresponds
to ‘NP,’ etc.). This predictability can be quantified as category homogeneity, which is
the relative increase in the log of the expected probability of the attested categories in

β Equation (3) G

Equation (8) GD Equation (6a)–(6b)

τ1..NEquation (12)

Figure 6
Process diagram of Gibbs sampler for bounded grammars.
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the corpus due to conditioning each attested category τ̃n,i,j on the category τn,i,j of the
constituent with the same yield in the hypothesized tree:3

Hom(τ̃1..N, τ1..N ) = 1−
∑

c̃∈C̃
∑

c∈C P(c̃, c) log P(c̃ | c)∑
c̃∈C̃ P(c̃) log P(c̃)

(14a)

= 1−

∑
n∈1..N

∑
i,j s.t. τ̃n,i,j∈C̃,τn,i,j∈C log P(τ̃n,i,j | τn,i,j)∑

n∈1..N
∑

i,j s.t. τ̃n,i,j∈C̃,τn,i,j∈C log P(τ̃n,i,j)
(14b)

where P(c̃, c) =
∑

n
∑

i,jJτ̃n,i,j = c̃, τn,i,j = cK/
∑

n
∑

i,jJτ̃n,i,j ∈ C̃, τn,i,j ∈ CK is the proba-
bility of a span that is a constituent in both τ1..N and τ̃1..N being attested
with category c̃ and assigned category c by the induced grammar, and P(c̃) =∑

n
∑

i,jJτ̃n,i,j = c̃, τn,i,j ∈ CK/
∑

n
∑

i,jJτ̃n,i,j ∈ C̃, τn,i,j ∈ CK is the probability of a span that
is a constituent in both τ1..N and τ̃1..N being attested with category c̃ but assigned any
category by the induced grammar. This category homogeneity can then be weighted by
unlabeled constituent recall, which is the fraction of constituents in attested trees that
also appear in the hypothesized tree, to give a recall homogeneity (RH) measure:

RH(τ̃1..N, τ1..N ) =

∑
n∈1..N

∑
i,j Jτn,i,j ∈ C, τ̃n,i,j ∈ C̃K∑

n∈1..N
∑

i,j Jτ̃n,i,j ∈ C̃K
· Hom(τ̃1..N, τ1..N ) (15)

Both recall and the subtracted term of homogeneity can be allocated to individual
sentences (using the term inside the sum

∑
n over sentences) for significance testing

via permutation sampling.
Note that this use of recall and homogeneity is distinct from commonly used F-

score and V-measure for hypothesized constituents and category labels, respectively.
F-score is the harmonic mean of recall and precision (which has the same form as recall
but with τ and τ̃ reversed), and V-measure is the harmonic mean of homogeneity and
completeness (which has the same form as homogeneity but with τ and τ̃ reversed).
These aggregated measures are usually used as checks on evaluated models that can
generate unlimited numbers of hypotheses or hypotheses of unlimited granularity.
However, in the present application, hypothesized constituents in parse trees are limited
by the number of words in each sentence, and hypothesized category labels are limited
to a constant set of categories of size C, so checks on the number and granularity of
hypotheses are not necessary. Moreover, the use of recall rather than F-score in these
evaluations assumes the decision to suppress annotation of constituents to make flatter
trees is motivated by expediency on the part of the annotators, rather than linguistic
theory, so extra constituents in binary-branching trees that are not present in attested
trees are not counted against induced grammars unless they interfere with the recall of
other attested constituents. Likewise, the use of homogeneity rather than V-measure in
these evaluations assumes the decision to suppress annotation of information about case
or subcategorization information in category labels is motivated by expediency rather
than linguistic theory, so the use of categories to make such additional distinctions is
not counted against induced grammars unless it interferes with the homogeneity of
predictions of other attested categories from hypothesized categories.

3 Here, τn,i,j 6∈ C if no constituent in τ yields words i to j, and τ̃n,i,j 6∈ C̃ if no constituent in τ̃ yields words
i to j.
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Experiments in Section 7.2 show that even without completeness as a check on the
size of the category label set, results peak at C = 45 and decline thereafter.

Notwithstanding this use of RH in tuning and internal evaluations, comparisons
of models proposed in this article to other existing models do use F-score, in order to
ensure a fair comparison using the same measure to which these other models have
been optimized.

Significance testing with the RH measure adopts the conventional permutation
testing in supervised parsing, where trees from two induced grammars are randomly
permuted in order to calculate the probability of the difference between the two candi-
date grammars in terms of the chosen evaluation metric. Scores for permuted samples
are calculated by summing per-sentence-recall (PSR) and per-sentence-heterogeneity
(the unit complement of homogeneity; PSH) scores for each sentence, then subtracting
the summed heterogeneity from one to get homogeneity, and multiplying by recall to
get RH:

RH(τ̃1..N, τ1..N ) =

( ∑
n∈1..N

PSR(n, τ̃1..N, τ1..N )

)
·

(
1−

∑
n∈1..N

PSH(n, τ̃1..N, τ1..N )

)
(16)

Per-sentence recall and heterogeneity are then calculated by pulling out these summa-
tions from the fractional terms in Equations (15) and (14b), respectively.

PSR(n, τ̃1..N, τ1..N ) =

∑
i,j Jτn,i,j ∈ C, τ̃n,i,j ∈ C̃K∑
n∈1..N

∑
i,j Jτ̃n,i,j ∈ C̃K

(17)

PSH(n, τ̃1..N, τ1..N ) =

∑
i,j s.t. τ̃n,i,j∈C̃,τn,i,j∈C log P(τ̃n,i,j | τn,i,j)∑

n∈1..N
∑

i,j s.t. τ̃n,i,j∈C̃,τn,i,j∈C log P(τ̃n,i,j)
(18)

6. Experiment 1: Evaluation of Unbounded PCFG Induction on Synthetic Data

The unbounded model described in Section 3 is evaluated first on synthetic data (Jin
et al. 2018b) to determine whether it can reliably learn a recursive grammar from
data with a known optimum solution. The symmetric concentration hyper-parameter
β is set to be 0.2, following Jin et al. (2018b). The corpus consists of 50 sentences each of
the form a b c; a b b c; a b a b c; and a b b a b b c, which has optimal tree structures as shown
in Figure 7.4 The (b) and (d) trees require the system to hypothesize depth 2 structures.
The system was able to recall all optimal tree structures with an equivalent category
allocation.

The accuracy of the unbounded model was also compared against that of existing
induction models by Seginer (2007a), 5 Ponvert, Baldridge, and Erk (2011), 6 Shain et al.
(2016), 7 as well as [Kim, Dyer, and Rush 2019]. 8 The two models from Kim, Dyer, and
Rush (2019) differ in that the model with z induces sentence-specific grammars, and

4 The tokens a, b, and c are randomly chosen uniformly from {a1, . . . , a50}, {b1, . . . , b50} and {c1, . . . , c50},
respectively.

5 https://github.com/DrDub/cclparser.
6 https://github.com/eponvert/upparse.
7 https://github.com/tmills/uhhmm/tree/coling16.
8 https://github.com/harvardnlp/compound-pcfg.
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Figure 7
Synthetic center-embedding structure. Note that tree structures (b) and (d) have depth 2 because
they have complex sub-trees spanning a b and a b b, respectively, embedded in the center of the
yield of their roots.

the model without z induces one grammar for all sentences. The results are shown in
Table 1. No other system was able to recall all optimal tree structures.

7. Experiment 2: Evaluation of Unbounded PCFG Induction on Child-Directed Speech

Observing that the model is able to correctly identify known grammars from data,
we then evaluate the unbounded PCFG inducer on a corpus of child-directed speech
from the Adam and Eve sections of the Brown corpus (Brown 1973) of CHILDES
(Macwhinney 1992). The Adam data set consists of transcripts of interactions between
Adam and his caregivers recorded at ages ranging from 2 years 3 months to 5 years
2 months. Eve is similar, with interactions recorded between age 1 year 6 months
and 2 years 3 months. Penn Treebank–style syntactic annotation for the child-directed
utterances is provided by Pearl and Sprouse (2013) using an automatic parser (Charniak
and Johnson 2005) and human annotators. There are 28,779 sentences in the annotated

Table 1
The oracle best accuracy scores of unlabeled parse evaluation of different systems on synthetic
data.

System Recall Precision F1 RH

Seginer (2007a) 0.71 0.83 0.77 –
Ponvert, Baldridge, and Erk (2011) 0.81 0.91 0.86 –
Shain et al. (2016) 0.38 0.38 0.38 –
Kim, Dyer, and Rush (2019) without z 0.73 0.73 0.73 0.73
Kim, Dyer, and Rush (2019) with z 0.73 0.73 0.73 0.73

Unbounded PCFG §3 1.00 1.00 1.00 1.00
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Adam corpus, with average sentence length of 6 words. There are 67 unique syntactic
categories used in the data set. N-ary branching is not binarized in the human annota-
tion, but unary branching chains are collapsed and the topmost category in the chain is
used as the category for the constituent. The Eve section has 14,251 sentences, with 64
unique syntactic categories, and the average sentence length is 5.6 words. The number
of unique phrasal categories after unary chain collapse is 25 and 21, respectively.

Hyperparametersβ and C are set to optimize accuracy on the Adam section. Several
analyses are performed using grammars and trees induced using Adam. Finally held-
out evaluation is performed on the Eve section.

Following previous work, these experiments leave all punctuation in the input
for learning as a proxy for prosodic cues about phrasal boundaries (Seginer 2007b).
Punctuation is then removed in all evaluations on development and test data. All
results reported for each condition include induced grammars and trees from running
the system with 10 random seeds. Each run contains 700 sampling cycles, and the
final sampled grammar is used to generate the final parses of the corpus. Accuracy
is evaluated by comparing optimal (Viterbi) parses instead of sampled parses. These
evaluated parses are strictly binary-branching trees, although annotations may contain
flatter n-ary trees. Results include all runs for each condition, shown in plots as boxes
with boundaries at the first and the third quartiles, with medians as green lines inside,
and with upper and lower whiskers showing the minimum and maximum of each set
of data points. Circles are used for outliers, which are data points with values more
extreme than 1.5 times of the interquartile range, the distance between the first and the
third quartile.

7.1 Optimization of Concentration Parameter on Exploratory Partition

In Bayesian induction, the Dirichlet concentration hyperparameter β controls the prob-
ability of a sampled multinomial distribution, with high values yielding more uniform
distributions over expansion rules in the grammar and with low values concentrating
the probability mass on only a few expansions. Figure 8 shows RH scores for runs with

Figure 8
RH scores for various β values on exploratory partition (Adam).
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different β values on Adam with the number of syntactic categories C = 30. Results
show a peak at β = 0.1, indicating a preference for sparse, highly concentrated proba-
bilities over a few expansion rules.

Indeed, human grammars are generally sparse in this way (Johnson, Griffiths, and
Goldwater 2007; Goldwater and Griffiths 2007). For example, in the Penn Treebank
(Marcus, Santorini, and Marcinkiewicz 1993), there are 73 unique nonterminal cate-
gories. In theory, there can be more than 28 million possible unary, binary, and trinary
branching rules in the grammar. However, there are only 17,020 unique rules found
in the corpus, showing the high sparsity of attested rules in the grammar. In other
frameworks like CCG (Steedman 2002), where lexical categories can be in the thousands,
the number of attested lexical categories is still small compared to all possible lexical
categories.

The sparsity also shows up in POS assignments of words. Usually the number of
POS tags a word can have is very small. For words with low-frequency and hapax
legomena, β has a particularly strong influence on their posterior uniformity of POS
assignment, with natural language grammars clearly preferring low uniformity.

Constituency grammar induction is often measured using F1 scores over unlabeled
spans (Seginer 2007a; Ponvert, Baldridge, and Erk 2011, inter alia). Figure 9 shows
unlabeled F1 scores with different β values on Adam. Contrary to the prediction, gram-
mar accuracy peaks at high values for βwhen measured using unlabeled F1. However,
upon close inspection, these grammars with high unlabeled F1 are almost purely right-
branching grammars, which does indeed perform very well on English child-directed
speech in unlabeled parsing evaluation, but the right-branching grammars have phrasal
labels that do not correlate with human annotation when evaluated with RH. This
indicates that instead of capturing human intuitions about syntactic structure, such
grammars have only captured broad branching tendencies.

Figure 9
Unlabeled F1 scores for various β values on exploratory partition (Adam).

196



Jin et al. Depth-Bounded Statistical PCFG Induction

7.2 Optimization of Category Domain Size on Exploratory Partition

Previous work on PCFG induction usually has used fewer than 20 syntactic categories
(Shain et al. 2016; Jin et al. 2018b). This number is substantially smaller than the number
of categories in human annotations, but it may be expected because there may not be
enough statistical clues in the data for the inducer to distinguish some categories from
other ones. For example, determiners and cardinal numbers may appear to be very
similar distributionally, because they usually occur before bare nouns and bare noun
phrases. However, the labeled evaluation with the sparsity parameter in Section 7.1
indicates that unlabeled evaluation is not informative enough about the accuracy of
induced grammars, as it includes no measure of accuracy for induced constituent labels.
Figure 10 shows induction results on the Adam data set with several category domain
sizes given this optimal value of β. Results show a peak of RH at C = 45. This suggests
that the inducer may have insufficient categories to use at lower domain sizes, yielding
much lower RH values at C = 15. The accuracy at C = 45 is a well-formed peak with
the smallest variance among all experimental settings, but there is a secondary peak
at C = 75, with some induced grammars as accurate as induced grammars with 45
categories. This may indicate some statistical evidence in the data for further subcat-
egorization of the grammars with 45 categories, but such evidence may not be strong
enough to reduce posterior multimodality.

7.3 Correlation of Model Fit and Parsing Accuracy

Model fit, or data likelihood, has been reported not to be correlated or to be correlated
only weakly with parsing accuracy for some unsupervised grammar induction models
when the model has converged to a local maximum (Smith 2006; Johnson, Griffiths,
and Goldwater 2007; Liang et al. 2007). Figure 11 shows the correlation between data
likelihood and RH at convergence for all 70 runs with β = 0.1. There is a significant
(p < 0.001) positive correlation (Pearson’s r = 0.737) between data likelihood and RH
at convergence for our model. This indicates that although noisy and unreliable, the

Figure 10
RH scores for various C values and β = 0.1 on exploratory partition (Adam) (***: p < 0.001).
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Figure 11
The correlation between likelihood and RH on Adam over various C values for β = 0.1.

data likelihood can be used as a metric to do preliminary model selection. The figure
also shows that the distribution of likelihoods from various C values also indicates
the correlation between likelihood and model performance, with most of the induced
grammars with high performing C values such as 45 or 75 in the region of the highest
likelihoods, and most of the low performing C values such as 15 or 90 in the region
of the lowest likelihoods. The difference between this significant correlation of parsing
accuracy and data likelihood and previous results of weak or no correlation may be due
to the use here of labeled (RH) accuracy as a more natural measure of parsing accuracy
than unlabeled (F1) accuracy. It may also be due to the simpler language used in Adam
compared to that of newswire data sets used in previous work. Finally, the discrepancy
may be due to the use of Expectation Maximization in previous work, which may overfit
a grammar to a data set, and could give unrealistically high likelihood to grammars that
are too specific for a particular set of sentences.

Figure 12
Unbounded induction experiment on the held-out partition (Eve) with β = 0.1 and C = 45.
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Table 2
PARSEVAL scores on Eve data set with previously published induction systems.

System F1 RH

Seginer (2007a) 0.52 –
Ponvert, Baldridge, and Erk (2011) 0.56 –
Shain et al. (2016) 0.66 –
Kim, Dyer, and Rush (2019) without z 0.51 0.44
Kim, Dyer, and Rush (2019) with z 0.31 0.39

this work (D=∞, C=45) 0.62 0.44

Right-branching 0.76 0.00

7.4 Results for Unbounded Induction on Held-Out Partition

With the hyperparameters tuned on Adam, experiments are run on the held-out section
of Eve. Results are shown in Figure 12. The median unlabeled F1 score is around 0.6, and
the median RH score is 0.38. The RH of the highest-likelihood run is 0.44. Table 2 shows
the unlabeled F1 and labeled RH scores for published systems, using the induced gram-
mar for this work from the run with the highest likelihood on the whole section. The
inducer optimized for RH still achieves good unlabeled parsing accuracy, although the
unlabeled F1 score is still lower than that of a purely right-branching baseline. Figure 9
shows that β = 1.0 does help induce grammars that are mostly right-branching but still
retain some linguistically meaningful constituents, which push the unlabeled F1 score
above the right-branching baseline accuracy at 0.75 on the Adam section. It is reasonable
to assume that using β = 1.0 on Eve will also achieve the same result. However, the
deterioration of the quality of constituent labeling at high βs makes optimizing for
unlabeled F1 much less attractive. For some of the published systems, there is no way
to produce labeled trees, therefore the labeled evaluation is not applicable to them. For
the right-branching baseline, because there is no trivial and automatic way to assign
different category labels to constituents, its RH score is 0.0.

7.5 Analysis of Learned Syntactic Categories and Grammatical Rules

We are interested in examining the learned categories and rules and compare them
to annotation. Many of the most common induced rules look linguistically sensible.
The twenty most frequent rules generated by the run of the unbounded inducer with
the highest likelihood probability using optimal β = 0.1 and C = 45 parameters on the
Adam data set are shown in Table 3. Each rule is followed by the most common attested
rule for the same decomposition (on the upper line), and some randomly sampled
examples (on the lower line, with a vertical bar showing the split point between left and
right child spans).9 The recall homogeneity for this run is 0.57. Of these twenty most
frequent rules, only six (the first, seventh, eighth, ninth, nineteenth, and twentieth) do
not seem to correspond to any linguistically recognizable syntactic analysis. Those that
do are the following:

9 Question marks (‘??’) for parent, left child, or right child indicate no constituent was attested at that
location.
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Table 3
The most frequent rules induced in Adam (β = 0.1, C = 45) and their correspondences in the
attested trees. The examples are randomly sampled from the induced trees. Question marks (‘??’)
for parent, left child, or right child indicate no constituent was attested at that location.

Rank Rule Corresponding gold rules, counts and examples
1. 4→ 37 30 ?? → NP COP (0.53); ?? → NP AUX (0.09); ?? → NP VBZ (0.08); ?? → VB NP (0.05)

(5,229) dirt | is ; he | ’s ; it | ’s ; he | ’s
2. 24→ 5 25 ?? → ?? ?? (0.57); VP →MD VP (0.18); ?? →MD ?? (0.07); ?? → ?? VB (0.04)

(4,613) will n’t | step on your candy ; do n’t | know ; ’m | afraid you ’ll forget ; do n’t |want to play
3. 42→ 33 25 ?? → NP VP (0.53); ?? → NP ?? (0.25); S → NP VP (0.10); ?? → NP VB (0.06)

(4,294) you | do ; you | show him ; you | do in the kitchen ; these | things to ride on
4. 36→ 11 8 ?? → VB NP (0.53); VP → VB NP (0.13); ?? → VB ?? (0.08); ?? → VBP NP (0.05)

(4,155) ask | ursula ; have | a bump ; put | the pillows ; see | that
5. 23→ 38 27 ROOT →WHNP SQ (0.47); ROOT →WHADVP SQ (0.19); ?? → ?? ?? (0.04)

(4,126) that ’s a train part | is n’t it ; who | ’s there ; what | for ; you got your fingers in it | did n’t you
6. 25→ 36 13 ?? → ?? ?? (0.49); VP → VB PP (0.10); ?? → VP ?? (0.05); VP → VB ADVP (0.03)

(3,642) eat yourself | up ; do |when you go to school ; draw | on it ; play |with the record
7. 23→ 34 17 ?? → ?? ?? (0.71); ?? → ?? PP (0.06); ?? → ?? SBAR (0.04); ?? → S ?? (0.04)

(3,514) paul stay away | away away from there ; no i do n’t know |what delfc means
8. 34→ 4 43 ?? → ?? ?? (0.57); ?? → ?? NP (0.17); ?? → ?? VBG (0.04); ?? → ?? JJ (0.03)

(3,227) they ’re | in your box ; they ’re just | playing ; those are | stamps you use ; it says | here
9. 23→ 4 43 ?? → ?? ?? (0.85); ?? → ?? NP (0.02); ?? → ?? VP (0.01); ROOT → VB NP (0.01)

(3,087) just like | adam ; you told | the carpenter you had a big burp ; they are | taking baths
10.23→ 6 34 ROOT → INTJ S (0.28); ?? → ?? ?? (0.19); ?? → INTJ ?? (0.19); ROOT → INTJ FRAG (0.06)

(3,005) because | you ’ll break it ; because | you ’re still there ; oh | hurry up
11. 8→ 0 32 NP → DT NN (0.50); ?? → ?? ?? (0.14); NP → PRP$ NN (0.10); NP → DT NNS (0.07)

(2,931) any | noise ; the little | boy ; any |more ; the | policeman
12. 7→ 0 10 NP → DT NN (0.55); NP → PRP$ NN (0.17); ?? → ?? ?? (0.10); ?? → DT NN (0.03)

(2,899) your |wrist ; our | rug ; the | toy ; the other | side
13.43→ 0 32 NP → DT NN (0.45); ?? → ?? ?? (0.23); NP → PRP$ NN (0.07); ?? → DT NN (0.06)

(2,776) any |more ; cowboy | hat ; morning or | afternoon ; a | lobster
14.27→ 35 42 ?? → ?? ?? (0.64); ?? → AUX ?? (0.24); ?? →MD ?? (0.06); SQ → COP NP (0.02)

(2,631) are | you going to do ; do | n’t you tell ursula what you have ; did | you hurt yourself
15.25→ 11 8 VP → VB NP (0.60); ?? → VB NP (0.07); VP → VBP NP (0.05); ?? → VB ?? (0.05)

(2,461) close | it ; want | some more paper ; seen | everything ; like | it
16. 5→ 35 31 ?? → AUX NOT (0.80); ?? →MD NOT (0.17); ?? → COP NOT (0.01); VP → AUX NOT (0.01)

(2,387) do | n’t ; did | n’t ; do | n’t ; does | n’t
17.27→ 30 37 SQ → COP NP (0.51); ?? → COP NP (0.24); ?? → AUX NP (0.05); ?? → COP ?? (0.03)

(2,278) about | the treasure house ; is | it ; is | that ; is | it
18.13→ 40 7 PP → IN NP (0.67); ?? → IN ?? (0.08); ADVP → RB RB (0.07); ?? → IN NP (0.04)

(2,236) in | yours ; of | those ; around | here ; at | paul
19.23→ 12 9 ?? → ?? ?? (0.78); ?? → SBARQ ?? (0.05); ?? → SQ ?? (0.03); ?? → ?? PP (0.03)

(2,228) is she dancing | on the horse ’s back ; what kind | of paper ; what happens |when you press it
20. 0→ 0 1 ?? → DT JJ (0.56); ?? → DT NN (0.15); ?? → ?? JJ (0.04); ?? → PRP$ JJ (0.03)

(1,844) a | nice ; a | dozen ; one | half ; a | few

• The second most frequent and the sixteenth most frequent rules seem to
simply undo the programmatic tokenization of contractions of modals and
negation adverbs (e.g., is — n’t) which is common in Penn Treebank
annotations (Marcus, Santorini, and Marcinkiewicz 1993).

• The third rule, the fourth and fifteenth rules, and the eighteenth rule fairly
selectively attach subjects to verb phrases, direct objects to transitive verbs,
and complements to prepositions, respectively.

• The fifth rule decomposes content questions into question words followed
by sentences containing gaps (but also conflates these with sentences
followed by echo questions).
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• The sixth most common rule right-adjoins particles and adverbial
modifiers onto verb phrases.

• The tenth rule left-adjoins interjections onto sentences.

• Rules eleven through thirteen decompose noun phrases into determiners
followed by common nouns. It is also interesting to note that the model
reliably distinguishes subjects (category 33 in this run) from direct objects,
(category 8) and complements of prepositions (category 7).10 This suggests
that case systems, which treat subjects, direct objects, and oblique objects
as different categories, might naturally arise from distributions of words in
sentences, rather than from a biological bias. Rules eleven and thirteen
have the same children categories but different parent categories. Further
inspection of the rules using the parent categories shows that these two
types of noun phrases are distinguished by whether the main verb needs
further complements or adjuncts.

• Rules fourteen and seventeen perform subject-auxiliary inversion by
attaching subjects to auxiliaries below the complements. This kind of
structure is unusual in movement-based analyses, but is a common feature
of categorial grammar analyses because it allows both the subject and the
complement to be adjacent to the auxiliary as its arguments.

Figure 13a shows a confusion matrix for this same highest-likelihood run on Adam
with β = 0.1, C = 45, showing percentages of several common attested non-preterminal
categories that are hypothesized as one of the ten most common induced categories.
Preterminal categories are not included because their boundaries as single words are
trivially induced. This run correctly recalled most noun phrases and prepositional
phrases, but missed a large proportion of clauses and a majority of verb phrases.
Figure 13b shows the same confusion matrix with percentages of hypothesized cat-
egories that correspond to each attested category. This shows that the hypothesized
categories that correspond to noun phrases, verb phrases and prepositional phrases
mostly exclusively represent these categories.

Table 4 shows the 20 most frequent induced syntactic categories at the preterminal
positions and the corresponding human annotated POS tags, showing the percentage
of each induced category attested with each tag. Attested POS tags that have fewer than
100 word tokens or fewer than 5% of the induced category instances are not included in
the table. This time all but two induced categories (the eighteenth and twentieth) seem
linguistically meaningful:

• 93% of the most common induced preterminal category correspond to
attested determiners or possessive pronouns.

• 99% of the second and twelfth most common induced preterminal
categories (categories 33 and 28) and 86% and 89% of the sixth and tenth
most common categories (categories 37 and 8) correspond to attested
pronouns and other single-word noun phrases. Table 5 lists examples for
these four induced categories found in the Viterbi parses. Category 37 is

10 Category 43 is used for complements of merged contractions. This analysis appears to be consistent, but
is not a linguistically familiar analysis.
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Figure 13
Categories induced on Adam with β = 0.1 and C = 45.

usually a third-person singular subject (that, it, he), category 33 is almost
always a plural or second-person subject (you, they, we), category 8’s most
common instances are accusative pronouns (it, them, me), and category 28
is mostly the nominative first person pronoun (I) occurring in the subject
position. Word order information and subject–verb agreement seem to
drive this subcategorization, which resembles a combination of case and
number. Because the inducer has no sub-word phonological information,
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Table 4
Recall of gold POS tags in the top 20 most frequent induced syntactic categories at the
preterminal positions. Note that because of unary chain collapse, phrasal tags like NP can
appear at preterminal positions.

Rank Induced Category Attested category and relative frequency
category count

1. 0 11,327 DT (0.77); PRP$ (0.16)
2. 33 9,983 NP (0.99)
3. 11 8,853 VB (0.71); VBP (0.12); VBD (0.07)
4. 30 8,031 COP (0.64); AUX (0.09); VBZ (0.07); VP (0.05)
5. 32 7,865 NN (0.81); NNS (0.10)
6. 37 7,402 NP (0.86)
7. 35 7,333 AUX (0.72); MD (0.17)
8. 38 6,900 WHNP (0.54); WHADVP (0.23); WP (0.07)
9. 40 6,712 IN (0.80); RB (0.05)
10. 8 6,013 NP (0.89)
11. 6 5,424 INTJ (0.60); ADVP (0.10); NP (0.09); CC (0.05)
12. 28 4,004 NP (0.99)
13. 10 3,880 NN (0.88); NNS (0.08)
14. 43 3,171 ADJP (0.27); NP (0.22); VP (0.13); JJ (0.10); VBG (0.07)
15. 31 3,086 NOT (0.99)
16. 36 3,043 VB (0.60); VP (0.18); VBP (0.05)
17. 13 2,705 PRT (0.32); ADVP (0.32); NP (0.12)
18. 1 2,483 JJ (0.66); NN (0.20)
19. 3 2,388 TO (0.80); IN (0.15)
20. 18 2,220 RB (0.20); NOT (0.19); VBG (0.13); IN (0.11)

Table 5
Recall of top 3 most frequent words in the four induced categories that correspond to noun
phrases.

Rank Induced category Category count Attested words and relative frequency

1. 33 9,983 you (0.86); they (0.05); we (0.02)
2. 37 7,402 that (0.38); it (0.27); he (0.07)
3. 8 6,013 it (0.36); them (0.06); me (0.06)
4. 28 4,004 I (0.70); he (0.10); it (0.06)

it relies solely on word order information to distinguish nominative and
accusative cases, which is especially important for pronouns like it and
common nouns in English when the two cases are syncretic.

• 100% of the third most common induced preterminal category (category
11) and 83% of the sixteenth most common category (category 36)
correspond to attested verbs. It is also interesting to note that at least half
of category 11 appear as the left child in the fourth and fifteenth most
common induced rules, generally in a transitive verb context (an attested
verb followed by a noun phrase), and many of category 36 appear as the
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left child in the sixth most common rule, often in a non-transitive verb
context (an attested verb followed by a particle or prepositional phrase).
This suggests that the inducer distinguishes transitive and intransitive
verbs. This is especially interesting because the inducer does not appear to
distinguish base, participial, and past-tense forms of verbs, presumably
deriving a higher overall posterior probability from subcategorization
distinctions.

• There are also common homogenous categories corresponding to
auxiliaries (73% of the fourth most common induced preterminal and 89%
of the seventh most common), common nouns (91% of the fifth most
common induced preterminal and 96% of the thirteenth most common),
interrogative pronouns (84% of the eighth most common preterminal),
prepositions (80% of the ninth most common preterminal), and others.

8. Experiment 3: Evaluation of Bounded PCFG Induction on Child-Directed Speech

The Adam and Eve sections from the Brown Corpus are then used to evaluate the depth-
bounded model defined in Section 4. Transcribed child-directed speech data in Chinese
Mandarin (Tong; Deng et al. 2018) and German (Leo; Behrens 2006) are also collected
from the CHILDES corpus with reference trees automatically generated using the state-
of-the-art Kitaev and Klein (2018) supervised parser trained with the Chinese (Xia et al.
2000; The Chinese Treebank) and German (Skut et al. 1998; NEGRA) treebanks. They
are used as held-out data sets for the bounded grammar induction experiments, using
cross-linguistic hyperparameters tuned on English. There are 19,541 sentences in the
Tong data set being recorded between age 1 year 0 months and 4 years 5 months,
with an average sentence length of 5.7 and 55 unique syntactic categories. The Leo
data set contains 20,000 child-directed utterances randomly sampled from the original
Leo corpus, as the original corpus contains records of interactions between Leo and the
caregivers between age 1 year 11 months and 4 years 11 months with high frequency.
There are 72 unique syntactic categories in the parsed data set with an average sentence
length of 6.7 words. Disfluencies in all corpora are removed, and only sentences spoken
by caregivers are kept in the data.

The hyperparameter β = 0.1 is used for all experiments as it is found to be optimal
in experiments described in Section 7. The optimal C was found to be 45 with Adam,
but all depth-bounding experiments described here use C = 30 because the memory of
available graphics processing units is not sufficient to contain depth-specific grammars
at higher values of C. All the other settings follow the unbounded experiments: 10
randomly seeded runs for each experimental setting with results reported using box
and whisker plots, induction with punctuation and evaluation without punctuation,
and labeled evaluation with Viterbi parses.

8.1 Optimization of Depth on Exploratory Partition

The exploratory partition (Adam) is first used to determine an optimal depth bound D.
Figure 14 shows the interaction between depth and RH scores on Adam at β = 0.1
and C = 30. The RH peaks at D = 3, which is consistent with previous results showing
that three levels of nested center-embeddings appear to be the maximum in natural
language text in many languages (Karlsson 2007, 2010; Schuler et al. 2010), which is
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Figure 14
Depth-bounding on Adam with β = 0.1 and C = 30.

in turn caused by limited amount of working memory. Induced grammars at D = 1
appear to be inadequate for capturing child-directed speech. D =∞ grammars show
great variance in accuracy, with induced grammars among the most accurate and least
accurate. This shows the value of depth-bounding: The process of depth-bounding acts
as an inductive bias, removing possible grammars as posterior modes with low accuracy
such that the inducer is more likely to find grammars that are high in data likelihood
and also consistent with human memory constraints.

Significance testing with the labeled evaluation metric RH, described in Section 5,
is used in all experiments reporting significance levels. The parses from all 10 runs for
each experiment condition are concatenated, and random permutations between parses
from the two experimental conditions are carried out to calculate the probability of
the observed accuracy difference between these two conditions. Results show that the
difference between D = 3 and D =∞ is highly significant (p < 0.001) on Adam, show-
ing that depth-bounding significantly improves the chance of inducing more accurate
grammars.

Figure 15 shows two trees from the two runs with D =∞ and D = 3 with the
highest likelihood on Adam. The analysis of the unbounded grammar (a) has a depth
of 5, shown by the deeply nested center embedding analysis of the span scratch or cut
you can clean it with a ball of cotton, which does not resemble any kind of linguistic
analysis. Using depth-bounding, such analyses will never be entertained by the inducer,
even when in this case the unbounded grammar may have a higher likelihood than
the bounded grammar. The analysis of the bounded grammar (b) is closer to linguistic
annotation, where the if clause is separated from the main clause. Some of the noun and
prepositional, phrases are also clearly identified, and the depth of the tree is 3.

8.2 Results for Bounded Induction on Held-Out Partition

The bounded induction model with β = 0.1, C = 30, and D = 3 is then evaluated on
held-out data sets in three languages: Eve in English, Tong in Mandarin Chinese, and
Leo in German. Figure 16 shows that the models bounded at depth 3 are more accurate
than unbounded models with both unlabeled and labeled evaluation metrics for all
data sets, similar to what has been observed in Adam. Significance testing with item-
level permutation with unlabeled F1 shows the accuracy differences across three data
sets are all highly significant (p < 0.001).
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Figure 15
Example syntactic analyses from D =∞ and D = 3 runs on Adam with the highest likelihood.

Figure 16
Comparison of labeled and unlabeled evaluation of grammars bounded at depth 3 and
unbounded grammars on English (Eve), Chinese Mandarin (Tong), and German (Leo) data sets
from CHILDES (β = 0.1, C = 30).

8.3 Analysis of Learned Syntactic Categories and Grammatical Rules on Chinese

Table 6 shows the top 20 most frequent induced rules and annotated rules found in
the automatically parsed data. Induced rules that capture linguistic phenomena that are
different from English are described below.
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Table 6
The most frequent rules induced in Tong and their correspondences in the gold annotation.
The examples are randomly sampled from the bounded induced trees.

Rank Rule Corresponding gold rules, counts and examples
1. 17→3 12 ??→?? ?? (0.40); IP→NP VP (0.37); IP→ADVP VP (0.06); IP→INTJ VP (0.05)

(7,593) 来 |给你吧 ;你 |怎么认识龙的 ;他 |今天过生日啦 ;哎 |游泳
2. 12→6 12 ??→?? ?? (0.24); VP→ADVP VP (0.17); ??→ADVP ?? (0.14); ??→VV ?? (0.06)

(7,056) 才 |能配起来 ;还 |得火车头拉着这个车厢才会走啊 ;会 |说成语了 ;问你 |你喝不喝
3. 8→11 24 VP→VV NP (0.23); ??→?? ?? (0.22); IP→VV NP (0.05); VP→VV VV (0.05)

(4,217) 写 |着 ;涂 |到外头去 ;坐 |在上边 ;涂 |完
4. 17→13 26 CP→IP SP (0.52); ??→?? ?? (0.29); CP→NP SP (0.03); IP→IP VP (0.02)

(4,010) 起床了 |就放学啦 ;同同你还记得你上次这画的 |是什么吗 ;你又到我屋里去干吗 |呀
5. 13→3 12 IP→NP VP (0.29); ??→?? ?? (0.17); ??→NP VP (0.16); ??→NP ?? (0.14)

(3,892) 这 |故事你都很熟悉了 ;哦这 |像一朵花 ;看小羊 |在画什么 ;小朋友 |就把这个蜡烛吹灭了
6. 12→8 14 ??→VP SP (0.37); ??→?? ?? (0.20); VP→VV AS (0.09); VP→VRD AS (0.06)

(3,673) 找不着2 |了 ;填那个亲子阅读手册 |呢 ;救同同 |了 ;脏 |不脏
7. 12→21 15 VP→VC NP (0.26); VP→VV NP (0.14); ??→?? ?? (0.13); VP→VE NP (0.11)

(3,407) 有 |几个海豚 ;学 |熊大熊二说话 ;是 |胜利 ;有 |谁
8. 6→4 3 PP→P NP (0.26); ??→VV NP (0.24); ??→BA NP (0.12); ??→ADVP NP (0.07)

(2,366) 离 |爸爸 ;给 |爸爸 ;刚才 |这下两个脚 ;穿 |你
9. 12→6 8 VP→ADVP VP (0.23); VP→VV VP (0.20); ??→?? ?? (0.12); ??→ADVP VP (0.09)

(2,173) 给同同 |看一看 ;可以 |做个桥 ;都 |坐好嘞 ;用手 |画画
10. 0→2 1 QP→CD CLP (0.41); DP→DT CLP (0.37); ??→NT NT (0.02); ??→CD CD (0.02)

(1,828) 这 |个 ;还有 |半 ;两 |个 ;六 |月
11. 8→6 8 ??→?? ?? (0.21); VP→VV VP (0.13); VP→ADVP VP (0.08); IP→ADVP VP (0.07)

(1,547) 能 |点歌 ;能 |逃跑 ;那你 |找一找 ;不 |能按
12. 3→0 29 NP→DP NP (0.22); NP→ADJP NP (0.18); NP→DNP NP (0.12); ??→?? ?? (0.11)

(1,454) 汽车 |书 ;哪些 |小动物 ; tom |猫 ;你的 |鞋子
13.15→0 29 NP→DP NP (0.17); NP→QP NP (0.17); ??→?? ?? (0.16); NP→ADJP NP (0.09)

(1,426) 高的 |楼 ;白色的 |呵 ;屋顶的 |话 ;三根 |蜡烛
14. 3→23 22 ??→INTJ NP (0.28); ??→ADVP NP (0.25); ??→IP NP (0.07); ??→NP NP (0.06)

(1,356) 哎呀 |那 ;哦 |同同 ;嗯 |我 ;同同 |这
15.17→8 14 CP→IP SP (0.38); ??→?? ?? (0.32); IP→VV AS (0.07); IP→VP SP (0.04)

(1,281) 在这儿 |呢 ;荡秋千 |咯 ;给你吃 |好吃的 ;就在那个厨房里 |啊
16.24→10 9 ??→VV VV (0.45); ??→VP VV (0.06); ??→VRD VV (0.05); ??→PP VP (0.05)

(1,074) 起 |来 ;过 |一加 ;进 |去 ;过 |鱼
17.17→6 8 ??→?? ?? (0.37); IP→ADVP VP (0.36); IP→VV VP (0.10); IP→PP VP (0.07)

(763) 快 |走 ;不 |让我坐在这儿 ;屋顶 |放在上面 ;要 |等一会
18. 3→2 1 DP→DT CLP (0.63); QP→CD CLP (0.13); NP→DP NP (0.05); DP→DT QP (0.03)

(693) 这 |个 ;一 |眼 ;这 |个 ;这 |个
19.18→20 18 LCP→NP LC (0.45); ??→?? ?? (0.10); ??→NN LC (0.09); NP→NN NN (0.06)

(626) 腿 |上 ;妈妈 |干净的枕头上 ;桶 |里 ;嘴 |底下
20.12→19 7 VP→ADVP VP (0.46); ??→VP DEC (0.08); ??→ADVP VP (0.08); ??→VP SP (0.05)

(595) 开 |的 ;好 |高 ;特别 |猛 ;这么 |远

• The first and fourth rule show two different ways to form sentences, with
the first rule used mainly for declarative sentences, and the fourth rule for
questions. The fourth rule splits a question into an ordinary sentence with
a sentence-final particle, which includes吗 (ma, the particle for a yes–no
question) and好不好 (good or not, a phrase to turn a declarative sentence
into a question). The fifteenth rule also splits a sentence into a sentence
and a particle, but the whole sentence is declarative. The sentence-final
punctuation helps the inducer to distinguish these two types of sentences,
but it must rely on statistics to split the particle off of the rest of the
sentence, because the particle in many cases is not present. It is worth
noting that the two most frequent rules are also the rules with the largest
number of unattested constituents, because these rules are for
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sentence-level constituents, and bracketing error at any nodes below may
cause the top level rule to have unattested constituents.

• Chinese Mandarin is a classifier language. A classifier is usually needed
when a determiner or a number occurs before a noun. The twelfth and
thirteenth rules are used for combining noun phrases with prenominal
modifiers like a determiner phrase or a quantifier phrase, which in turn is
formed by the eighteenth rule. The twelfth rule constructs noun phrases at
the subject position, and the thirteenth rule is for objects. Similar to
English, the nominative-accusative case distinction is still induced in the
grammar although there is no morphological marker or lexical distinction
for them.

• There appear to be statistical cues for semantics of nouns, too. Table 7
shows the four main induced categories in this grammar. The distinction is
clear, the first category is for personal pronouns and relative terms, the
second for general nouns, the third for location terms (they are annotated
as LC in Penn Chinese Treebank, but show up as NPs because of unary
chain removal) which are used as nouns in Chinese, and finally
wh-pronouns. These four classes of nouns seem to have distinct statistical
properties. For example, personal pronouns and relative terms almost
never appear with determiner phrases and quantifier phrases, but general
nouns almost always do. The location terms most of the time are modified
by noun phrases and wh-pronouns appear in questions.

• Ba in Chinese Mandarin takes the object of the verb and moves it to the
preverbal position, making a normally SVO sentence SOV. It can be
considered as a light verb (Ding 2001; Duan and Schuler 2015) or a
preposition and a case marker (Ye, Zhan, and Zhou 2007). Figure 17 shows
the automatic annotation is consistent with annotation guidelines for Penn
Chinese Treebank. The induced analysis seems to support ba as a
preposition: The ba phrase combines with the VP after it and the result is
also a VP.

9. Experiment 4: Natural Bounding in Child-Directed and Adult Language Data

It seems likely that children and adults have different working memory capabilities, and
therefore different capacities for center embedding. This section describes experiments

Table 7
Recall of the top 3 most frequent words in the four induced categories that correspond to nouns
in Tong.

Rank Induced
category

Category Attested words and relative frequencycount

1. 3 12,425 你(you, 0.28);我(I, 0.07);妈妈(mom, 0.06)
2. 29 4,073 车(car, 0.03);人(people, 0.02);东西(thing, 0.03)
3. 18 1,991 上(up, 0.16);这里(this place, 0.13);里(inside, 0.05)
4. 15 1,707 什么(what, 0.38);谁(who, 0.03);几(how many, 0.02)
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Figure 17
Example syntactic analyses for a ba construction in Tong:妈妈把这个脱了(Mom takes off this).

to measure the difference between adult and child-directed speech during statistical
grammar induction.

Following earlier work (Klein and Manning 2004; Seginer 2007a; Ponvert, Baldridge,
and Erk 2011; Shain et al. 2016), these experiments use the Wall Street Journal section of
the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993) as adult language data.
Sentences shorter than or equal to 20 words are used in the experiments, partitioned
into a development set, WSJ20Dev, and a held-out set, WSJ20Test, following Jin et al.
(2018a).

We are first interested in how the sparse preference related to the hyperparameter
β behaves on adult-directed newswire data. Figure 18 shows the interaction between
β values and the evaluation metrics. The right-branching bias contributed by high beta
can still be seen on this data set. The unlabeled F1 peaks at β = 0.2, but when labels
are taken into account, the evaluation metric RH peaks at a much lower β = 0.01,
indicating again the preference of sparse priors in labeled grammar induction. The
observation that the optimal β on WSJ20Dev is lower than on child-directed speech
may point at the possibility that the right-branching bias from high β on child-directed
speech provides an advantage to evaluation of structures in RH such that a certain
level of that right branching bias is favored. On WSJ20Dev, however, the advantage
from the right-branching bias is outweighed by the disadvantage it brings to labeling
accuracy, therefore the optimal β appears to be low. Experiments with WSJ20 data sets
use β = 0.01.

Because the sentences in both transcribed child-directed speech corpora and adult-
directed newswire corpora are produced by humans, several predictions can be made
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Figure 18
The effect of β on the WSJ20Dev data set.

for the distribution of tree depths, which is the proportion of sentences whose induced
tree has a certain maximum depth, from the induced trees on both kinds of data sets.
First, the distribution of tree depths at initialization should show a wide range, because
at this time the tree depths are only correlated to sentence length. Second, the distribu-
tion of tree depths for unbounded models should substantially narrow after training,
where the induced grammar implicitly learns the human memory limits from data, but
imperfect learning is also expected, shown by a small number of sentences with trees
with depth 4 or higher. Third, compared to child-directed data, adult-directed newswire
data have more complicated structure, so the expected tree depth on adult-directed
data should be higher than child-directed data. Note that the child-directed data are
still generated by adults; therefore the maximum memory depth is still expected to be
similar to other adult-generated data. However, the trees generated by the grammar
may reflect the fact that the sentences are relatively short and simple in structure in
child-directed data.

Figure 19 shows the distribution of tree depths on the development sets of child-
directed data, Adam, and adult-directed data, WSJ20dev. The three bars represent the
induced trees from initialized unbounded grammars (blue), unbounded grammars
after training (orange), and grammars bounded at depth 3 (green). The predictions
listed above bear out in the results. The expected tree depth on Adam is 1.59 for the
unbounded models, and 1.55 for the bounded models, which is a significant difference
(p < 0.001 using a permutation test). The expected tree depth on WSJ20Dev is 2.49 for
the unbounded models, and 2.28 for the bounded models, which is also a significant
difference (p < 0.001 using a permutation test), confirming that depth-bounding leads
to trees with lower usage of stack elements. Also notably, the percentage of trees with
depth 4 or higher from unbounded models on both Adam and WSJ20dev is very small,
indicating that the unbounded models are able to learn implicitly the human memory
constraints from data. However, the unbounded grammars face a larger search space
of possible grammars, and they may need to allocate rules, categories, or probability
mass for deep tree structures, which make them less accurate, as shown in previous
experiments.

This experiment points to a potential unsupervised method for determining the
optimal depth limit for a data set, although the number of potential candidate values
for the depth limit parameter is already very small. The optimal maximum depth on
Adam appears to be 3. On WSJ20Dev it appears to be 3 or 4, taking into account results
from psycholinguistic literature (Karlsson 2007, 2010; Schuler et al. 2010). The following
experiments choose depth 3 as the maximum allowed depth for the depth-bounding
model. We leave the empirical investigation of accuracy of grammars bounded at depth
4 for future work, because of its extensive requirements of resources and runtime.
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Figure 19
Distribution of tree depths on child-directed and adult-directed sentences. The difference of
expected tree depths of bounded and unbounded models is significant on both data sets.

10. Experiment 5: Replication of Depth Bound Effects in Newswire Corpora

Independent of its value for modeling child language acquisition, there may also be
engineering benefits to applying center-embedding depth bounds during grammar
induction on newswire corpora. The proposed bounded and unbounded models are run
with 10 random seeds, with the mean accuracy and standard deviation shown in Table 8.
Both models achieve similar unlabeled accuracy, but the significant difference between
labeled evaluation accuracy (p < 0.001) indicates depth-bounding facilitates discovery
of grammars with better labeling accuracy, leading to overall better accuracy when
labels are taken into consideration. This shows that depth-bounded grammar induction
models as a human language acquisition model also works with more syntactically
complex newswire text.

Results of induced grammars with highest likelihoods from several induction
systems are presented in Table 9 for comparison. Neural induction systems achieve
higher accuracy than the pure statistical systems in this work, but are not as easy to
augment with depth bounds. The larger accuracy difference between statistical models
and neural models on WSJ compared with child-directed data may indicate that more
categories are required to capture relatively complex syntactic structures, of which the
neural models have 90 but the statistical models have 30. We therefore leave integration
of depth bounding into neural induction systems for future work.

11. Conclusion

This article describes unbounded and depth-bounded PCFG induction models, in-
tended to represent something akin to a competence grammar and a performance model

Table 8
Mean and standard deviation of scores on WSJ20Test data set with proposed models on 10 runs.
The difference of RH between the two models is significant (p < 0.001).

System F1 RH

this work (D=∞, C=30) 0.49 ± 0.02 0.28 ± 0.03
this work (D=3, C=30) 0.49 ± 0.02 0.31 ± 0.02
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Table 9
Accuracy scores on WSJ20Test data set with previously published induction systems.

System F1 RH

Seginer (2007a) 0.61 –
Ponvert, Baldridge, and Erk (2011) 0.44 –
Jin et al. (2018b) 0.61 –
Jin et al. (2019) 0.51 –
Kim, Dyer, and Rush (2019) without z 0.52 0.35
Kim, Dyer, and Rush (2019) with z 0.54 0.37
this work (D=∞, C=30) 0.51 0.28
this work (D=3, C=30) 0.51 0.32

that takes working memory and processing constraints into account, and evaluates
them on transcribed corpora of child-directed speech.

Results from Section 7 show that the model predicts 44%—nearly half—of labeled
attested constituents in the held-out partition, according to the RH measure. It is in-
teresting that so much linguistic structure can be predicted from words alone, without
semantics, and without universal linguistic constraints. It is anticipated that this assess-
ment will encourage future research to discover how the other half can be predicted.
Moreover, properties of the induced structures might be used to guide future linguistic
analysis—for example, incorporating readily induced properties of number, case, and
subcategorization into standard part-of-speech tag sets.

Results in Section 8 also show a statistically significant positive effect for depth
bounding on grammar induction. This suggests a natural explanation for simplified
grammatical behaviors observed in child production, as due to a basic memory-
bounding mechanism that facilitates acquisition.
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Bouchard-Côté, John DeNero, and Dan
Klein. 2010. Painless unsupervised
learning with features. In Human Language
Technologies: The 2010 Annual Conference of
the North American Chapter of the Association
for Computational Linguistics,
pages 582–590, Los Angeles, CA.

212

https://doi.org/10.1007/BF01067217
https://doi.org/10.1007/BF01067217
https://doi.org/10.1073/pnas.0905638106
https://doi.org/10.1073/pnas.0905638106
https://europepmc.org/article/MED/19805057
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765208
https://doi.org/10.1080/01690960400001721
https://doi.org/10.1080/01690960400001721
https://europepmc.org/article/MED/19805057
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765208


Jin et al. Depth-Bounded Statistical PCFG Induction

Bisk, Yonatan, Christos Christodoulopoulos,
and Julia Hockenmaier. 2015. Labeled
grammar induction with minimal
supervision. In Proceedings of the 53rd
Annual Meeting of the Association for
Computational Linguistics and the 7th
International Joint Conference on Natural
Language Processing (Volume 2: Short
Papers), pages 870–876, Beijing. DOI:
https://doi.org/10.3115/v1/P15-2143

Bisk, Yonatan and Julia Hockenmaier. 2012.
Simple robust grammar induction with
combinatory categorial grammars. In
Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence,
26(1):1643–1649.

Brown, Roger. 1973. A First Language: The
Early Stages, Harvard University Press,
Cambridge, MA.

Carroll, Glenn and Eugene Charniak. 1992.
Two experiments on learning probabilistic
dependency grammars from corpora.
Working Notes of the Workshop on
Statistically-Based NLP Techniques,
(March):1–13.

Charniak, Eugene and Mark Johnson. 2005.
Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. In Proceedings of
the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05),
pages 173–180, Ann Arbor, MI. DOI:
https://doi.org/10.3115/1219840.1219862

Chomsky, Noam. 1965. Aspects of the Theory of
Syntax, MIT Press, Cambridge, MA. DOI:
https://doi.org/10.21236/AD0616323,
PMID: 14125365

Chomsky, Noam. 1980. On cognitive
structures and their development: A reply
to Piaget, Piattelli-Palmarini, Massimo,
editor, Language and Learning: The Debate
Between Jean Piaget and Noam Chomsky,
Harvard University Press, pages 751–755,
Cambridge, MA.

Chomsky, Noam. 1986. Knowledge of
Language: Its Nature, Origin, and Use,
Praeger, New York.

Chomsky, Noam and George A. Miller. 1963.
Introduction to the formal analysis of
natural languages. In Handbook of
Mathematical Psychology. Wiley, New York,
NY, pages 269–321.

Cramer, Bart. 2007. Limitations of current
grammar induction algorithms. In
Proceedings of the ACL 2007 Student Research
Workshop, pages 43–48, Prague. DOI:
https://doi.org/10.3115/1557835
.1557845, PMID: 17194528

de Saussure, Ferdinand. 1916. Cours de
linguistique générale. Bally, Charles and
Sechehaye, Albert, editors.

Deng, Xiangjun, Virginia Yip, Brian
Macwhinney, Stephen Matthews, Mai
Ziyin, Zhong Jing, and Hannah Lam, 2018.
A multimedia corpus of child Mandarin:
The Tong corpus. Journal of Chinese
Linguistics 46(1):69–92. DOI: https://
doi.org/10.1353/jcl.2018.0002

Ding, Picus Sizhi. 2001. Semantic change
versus categorical change: A study of the
development Of BA in Mandarin. Journal
of Chinese Linguistics, 29(1):102–128.

Drozdov, Andrew, Patrick Verga, Mohit
Yadav, Mohit Iyyer, and Andrew
McCallum. 2019. Unsupervised latent tree
induction with deep inside-outside
recursive auto-encoders. In Proceedings of
the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers),
pages 1129–1141, Minneapolis, MN. DOI:
https://doi.org/10.18653/v1/N19-1116

Duan, Manjuan and William Schuler. 2015.
Parsing Chinese with a generalized
categorial grammar. In Proceedings of the
Grammar Engineering Across Frameworks
(GEAF) 2015 Workshop, pages 25–32,
Beijing. DOI: https://doi.org/10.18653
/v1/W15-3304

Freudenthal, Daniel, Julian M. Pine, Javier
Aguado-Orea, and Fernand Gobet. 2007.
Modeling the developmental patterning of
finiteness marking in English, Dutch,
German, and Spanish using MOSAIC.
Cognitive Science, 31(2):311–341.

Fu, King Sun and Taylor L. Booth. 1975.
Grammatical inference: Introduction and
survey. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-5(1,4):
95–111,409–423. DOI: https://doi
.org/10.1109/TSMC.1975.5408432

Gold, Mark E. 1967. Language identification
in the limit. Information and Control,
(10):447–474. DOI: https://doi.org
/10.1016/S0019-9958(67)91165-5

Goldwater, Sharon and Tom Griffiths. 2007.
A fully Bayesian approach to
unsupervised part-of-speech tagging. In
Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics,
pages 744–751, Prague.

Goodman, Joshua. 1998. Parsing Inside-Out.
arXiv preprint cmp-lg/9805007.

Jiang, Yong, Wenjuan Han, and Kewei Tu.
2016. Unsupervised neural dependency
parsing. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing, pages 763–771,
Austin, TX.

213

https://doi.org/10.3115/v1/P15-2143
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.21236/AD0616323
https://europepmc.org/article/MED/14125365
https://doi.org/10.3115/1557835.1557845
https://doi.org/10.3115/1557835.1557845
https://europepmc.org/article/MED/17194528
https://doi.org/10.1353/jcl.2018.0002
https://doi.org/10.1353/jcl.2018.0002
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/W15-3304
https://doi.org/10.18653/v1/W15-3304
https://doi.org/10.1109/TSMC.1975.5408432
https://doi.org/10.1109/TSMC.1975.5408432
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5


Computational Linguistics Volume 47, Number 1

Jin, Lifeng, Finale Doshi-Velez, Timothy
Miller, William Schuler, and Lane
Schwartz. 2018a. Depth-bounding is
effective: Improvements and evaluation of
unsupervised PCFG induction. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2721–2731, Brussels. DOI:
https://doi.org/10.18653/v1/D18-1292

Jin, Lifeng, Finale Doshi-Velez, Timothy
Miller, William Schuler, and Lane
Schwartz. 2018b. Unsupervised grammar
induction with depth-bounded PCFG.
Transactions of the Association for
Computational Linguistics, 6:211–224. DOI:
https://doi.org/10.1162/tacl a 00016

Jin, Lifeng, Finale Doshi-Velez, Timothy
Miller, Lane Schwartz, and William
Schuler. 2019. Unsupervised learning of
PCFGs with normalizing flow. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics,
pages 2442–2452, Florence. DOI: https://
doi.org/10.18653/v1/P19-1234, PMID:
30482428

Johnson, Mark, Thomas Griffiths, and Sharon
Goldwater. 2007. Bayesian inference for
PCFGs via Markov chain Monte Carlo. In
Human Language Technologies 2007: The
Conference of the North American Chapter of
the Association for Computational Linguistics;
Proceedings of the Main Conference,
pages 139–146, Rochester, NY.

Johnson-Laird, Philip N. 1983. Mental Models:
Towards a Cognitive Science of Language,
Inference, and Consciousness. Harvard
University Press, Cambridge, MA.

Karlsson, Fred. 2007. Constraints on multiple
center-embedding of clauses. Journal of
Linguistics, 43:365–392. DOI: https://doi
.org/10.1017/S0022226707004616

Karlsson, Fred. 2010. Working memory
constraints on multiple center-embedding.
In Proceedings from the 32nd Annual Meeting
of the Cognitive Science Society,
pages 2045–2050, Portland, OR.

Kates, Carol. 1976. A critique of Chomsky’s
theory of grammatical competence, Forum
Linguisticum, 1(1):15–24.

Kim, Yoon, Chris Dyer, and Alexander Rush.
2019. Compound probabilistic context-free
grammars for grammar induction. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics,
pages 2369–2385, Florence. DOI:
https://doi.org/10.18653/v1
/P19-1228, PMID: 31697821

Kim, Yoon, Alexander Rush, Lei Yu,
Adhiguna Kuncoro, Chris Dyer, and
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