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accurately than previous data-driven parsers. We conduct a suite of tests for different linguistic
phenomena to analyze the grammatical competence of different parsers, where we show that,
despite comparable performance overall, knowledge- and data-intensive models produce different
types of errors, in a way that can be explained by their theoretical properties. This analysis is
beneficial to in-depth evaluation of several representative parsing techniques and leads to new
directions for parser development.

1. Introduction

Recent work in task-independent semantic parsing shifts from the knowledge-intensive
approach to the data-intensive approach. Early attempts in semantic parsing leverage
explicitly expressed symbolic rules in a deep grammar formalism, for example, Com-
binatory Categorial Grammar (CCG; Steedman 1996, 2000) and Head-driven Phrase
Structure Grammar (HPSG; Pollard and Sag 1994), to model the syntactico-semantic
composition process (Bos et al. 2004; Callmeier 2000). Then, statistical machine learning
technologies, especially structured prediction models, are utilized to enhance deep
grammar-driven parsers (Clark and Curran 2007; Zhang, Oepen, and Carroll 2007;
Miyao and Tsujii 2008). Recently, various deep learning models together with vector-
based embeddings induced from large-scale raw texts have been making considerable
advances (Chen, Sun, and Wan 2018; Dozat and Manning 2018).

This article is concerned with comparing knowledge-intensive and data-intensive
parsing models for English Resource Semantics (ERS; Flickinger, Bender, and
Oepen 2014b,2014a), a comprehensive framework for in-depth linguistic analysis.
Figures 1 and 2 are two examples illustrating the ERS representations. Our comparison
is based not only on the general evaluation metrics for semantic parsing, but also a fine-
grained construction-focused evaluation that sheds light on the kinds of strengths each
type of parser exhibits. Characterizing such models may benefit parser development
for not only ERS but also other frameworks, for example, Groningen Meaning Bank
(GMB; Basile et al. 2012; Bos et al. 2017) and Abstract Meaning Representation (AMR;
Banarescu et al. 2013).

To reflect the state-of-the-art deep learning technologies that are already available
for data-intensive parsing, we design and implement a new factorization-based system
for string-to-conceptual graph parsing (Kuhlmann and Oepen 2016). This parser learns
to produce conceptual graphs for sentences from an annotated corpus and does not
assume the existence of a grammar that explicitly defines syntactico-semantic patterns.
The core engine is scoring functions that use contextualized word and concept em-
beddings to discriminate good parses from bad for a given sentence, regardless of its
semantic composition process.

To evaluate the effectiveness of the new parser, we conduct experiments on Deep-
Bank (Flickinger, Zhang, and Kordoni 2012). Our parser achieves an accuracy of 95.051

for Elementary Dependency Structure (EDS; Oepen and Lønning 2006) in terms of
SMATCH, which shows 8.05-point improvement over the best transition-based model
(Buys and Blunsom 2017) and 4.19-point improvement over the composition-based
parser (Chen, Sun, and Wan 2018). We take it as a reflection that the models induced
from large-scale data by neural networks have a strong coherence with linguistic
knowledge. Our parser has been re-implemented or extended by two best-performing

1 The results are obtained based on gold-standard tokenization.
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the q<0:1>

parg d<3:4>

drug n 1<1:2>

introduce v to<3:4>

in p<4:5> proper q<6:7>

named<6:7>

compound<5:7>

named<5:6>

proper q<6:7>

loc nonsp<7:9>

year n 1<8:9>

this q dem<7:8>

BV

ARG2

ARG1

ARG2

ARG1

ARG1

ARG2 BV ARG1 ARG2

BV

ARG2 BV

0 The 1 drug 2 was 3 introduced 4 in 5 West 6 Germany 7 this 8 year 9 . 10

Figure 1
An example of EDS graph. Some concepts are surface relations, meaning that they are related to
a single lexical unit, e.g., the q or introduce v to, while others are abstract relations
representing grammatical meanings, e.g., compound (multiword expression), parg d (passive),
and loc nonsp (temporal). ERS corpus provides alignment between concept nodes and surface
strings, e.g., <0:1> that is associated to the q indicates that this concept is signaled by the first
word.

pron q<0:1>

manage v 1<1:2>

pron<0:1>

and c<4:5>

house v 1<3:4> feed v 1<5:6>

poor n 1<7:8>

the q<6:7>BV

ARG1

ARG2

ARG1
ARG2

ARG1

ARG2

BV

L-HNDL
L-INDEX

R-HNDL

R-INDEX

0 They 1 managed 2 to 3 house 4 and 5 feed 6 the 7 poor 8 . 9

Figure 2
An example of EDS graph to represent complicated phenomena like right node raising and
raising/control constructions.

systems (Zhang et al. 2019; Chen, Ye, and Sun 2019) in the CoNLL 2019 Shared Task on
Cross-Framework Meaning Representation Parsing (Oepen et al. 2019).

Despite the numerical improvements brought by neural networks, they have typi-
cally come at the cost of our understanding of the systems, that is, it is still unclear to
what extent we can expect supervised training or pretrained embeddings to induce the
implicit linguistic knowledge and thus help semantic parsing. To answer this question,
we utilize linguistically informed data sets based on previous work (Bender et al. 2011)
and create an extensive suite of other widely discussed linguistic phenomena, covering
a rich set of linguistic phenomena related to various lexical, phrasal, and non-local
dependency constructions. Based on the probing study, we find several non-obvious
facts:

1. The data-intensive parser is good at capturing local information at the
lexical level even when the training data set is rather small.
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2. The data-intensive parser performs better on some peripheral phenomena
but may suffer from data sparsity.

3. The knowledge-intensive parser produces more coherent semantic
structures, which may have a great impact on advanced natural language
understanding tasks, such as textual inference.

4. It is difficult for both parsers to find long-distance dependencies, and their
performance varies across phenomena.

There is no a priori restriction that a data-intensive approach must remove all explicitly
defined grammatical rules, or a knowledge-intensive approach cannot be augmented
by data-based technologies. Our comparative analysis appears highly relevant, in that
these insights may be explored further to design new computational models with
improved performance.2

2. Background

2.1 Graph-Based Meaning Representations

Considerable NLP research has been devoted to the transformation of natural language
utterances into a desired linguistically motivated semantic representation. Such a rep-
resentation can be understood as a class of discrete structures that describe lexical,
syntactic, semantic, pragmatic, as well as many other aspects of the phenomenon of
human language. In this domain, graph-based representations provide a light-weight
yet effective way to encode rich semantic information of natural language sentences
and have been receiving heightened attention in recent years (Kuhlmann and Oepen
2016). Popular frameworks under this umbrella includes Bi-lexical Semantic Depen-
dency Graphs (SDG; Clark, Hockenmaier, and Steedman 2002; Ivanova et al. 2012;
Oepen et al. 2014, 2015), AMR (Banarescu et al. 2013), Graph-based Representations for
ERS (Oepen and Lønning 2006; Copestake 2009), and Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport 2013).

2.2 Parsing to Semantic Graphs: Knowledge-intensive vs. Data-intensive

Parsing to the graph-based representations has been extensively studied recently
(Flanigan et al. 2014; Artzi, Lee, and Zettlemoyer 2015; Du, Sun, and Wan 2015; Peng,
Song, and Gildea 2015; Zhang et al. 2016; Buys and Blunsom 2017; Cao et al. 2017;
Hershcovich, Abend, and Rappoport 2017; Konstas et al. 2017; Peng, Thomson, and
Smith 2017; Chen, Sun, and Wan 2018). Work in this area can be divided into different
types, according to how information about the mapping between natural language
utterances and target graphs is formalized, acquired, and utilized. In this article, we
are concerned with two dominant types of approaches in ERS parsing, which won the
DM and EDS sections of the CoNLL 2019 shared task (Oepen et al. 2019).

In the first type of approach, a semantic graph is derived according to a set
of lexical and syntactico-semantic rules, which extensively encode explicit linguistic
knowledge. Usually, such rules are governed by a well-defined grammar formalism, for

2 The code of our semantic parser, the test sets of linguistic phenomena, as well as the evaluation tool can
be found at https://github.com/zi-lin/feds-parser for research purposes.
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example, CCG, HPSG, and Hyperedge Replacement Grammar, and exploit composition-
ality (Callmeier 2000; Bos et al. 2004; Artzi, Lee, and Zettlemoyer 2015; Peng, Song, and
Gildea 2015; Chen, Sun, and Wan 2018; Groschwitz et al. 2018). In this article, we call
this the knowledge-intensive approach.

The second type of approach explicitly models the target semantic structures. It may
associate each basic part with a target graph score, and casts parsing as the search for
the graphs with the highest sum of partial scores (Flanigan et al. 2014; Kuhlmann and
Jonsson 2015; Peng, Thomson, and Smith 2017). The essential computational module
in this architecture is the score function, which is usually induced based on moderate-
sized annotated sentences. Various deep learning models, together with vector-based
encodings induced from large-scale raw texts, have been making considerable advances
in shaping a score function (Dozat and Manning 2018). This type of approach is also
referred to as graph-based or factorization-based in the context of bi-lexical dependency
parsing. In this article, we call this the data-intensive approach.

2.3 DELPH-IN English Resource Semantics

In this article, we take the representations from ERS (Flickinger, Bender, and Oepen
2014b)3 as our case study. Compared to other meaning representations, ERS exhibits
at least the following features: (1) ERS has a relatively high coverage for English
text (Adolphs et al. 2008; Flickinger, Oepen, and Ytrestøl 2010; Flickinger, Zhang, and
Kordoni 2012); (2) ERS has a strong transferability across difference domains (Copestake
and Flickinger 2000; Ivanova et al. 2013); and (3) ERS has comparable and relatively high
performance in terms of knowledge-intensive and data-intensive parsing technologies
(Callmeier 2000; Zhang, Oepen, and Carroll 2007; Chen, Sun, and Wan 2018).

ERS is the semantic annotation associated with ERG (Flickinger 2000), an open-
source, domain-independent, linguistically precise and broad-coverage grammar of
English, which encapsulates the linguistic knowledge required to produce many of the
types of compositional meaning annotations. The ERG is an implementation of the
grammatical theory of Head-driven Phrase Structure Grammar (HPSG; Pollard and Sag
1994). ERG is a resource grammar that can be used for both parsing and generation. De-
velopment of the ERG began in 1993, and after continuously evolving through a series
of projects, it allows the grammatical analysis of most running text across domains and
genres.

In the most recent stable release (version 1214), the ERG contains 225 syntactic rules
and 70 lexical rules for derivation and inflection. The hand-built lexicon of the ERG con-
tains 39,000 lemmata, instantiating 975 leaf lexical types providing part-of-speech and
valence constraints, which aims at providing complete coverage of function words and
open-class words with “non-standard” syntactic properties (e.g., argument structure).
The ERG also supports light-weight named entity recognition and an unknown word
mechanism, allowing the grammar to derive full syntactico-semantic analyses for 85–
95% of all utterances in real corpora such as newspaper text, the English Wikipedia,
or bio-medical academic papers (Adolphs et al. 2008; Flickinger, Oepen, and Ytrestøl
2010; Flickinger, Zhang, and Kordoni 2012). For more than 20 years of development,
ERS has shown its advantages of explicit formalization and large scalability (Copestake
and Flickinger 2000).

3 http://moin.delph-in.net/ErgSemantics.
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The drug was introduced in West Germany this year .

BV
ARG2

ARG1

loc

ARG2
compound BV

Figure 3
The standard SDG that is converted from the EDS in Figure 1.

The Minimal Recursion Semantics (MRS; Copestake et al. 2005) is the associated
semantic representation used by the ERG. MRS is based on the first-order language
family with generalized quantifiers. ERS can also be expressed as other semantic graphs,
including SDG (Ivanova et al. 2012), EDS (Oepen and Lønning 2006), and Dependency-
based Minimal Recursion Semantics (DMRS; Copestake 2009). In this article, we illus-
trate our models using the EDS format.4

The graphs in Figures 1 and 2 are examples of an EDS graph. Figure 2 further shows
that EDS does have the ability to represent more complicated linguistic phenomena
such as the right node raising and raising/control constructions.5 The semantic structure
is a directed graph where nodes labeled with semantic predicates/relations are related
to a constituent of the sentence, and arcs are labeled with semantic arguments roles. By
linking concepts with lexical units, this EDS graph can be reduced to an SDG, as shown
in Figure 3. In these forms, relation is the predicate name of an Elementary Predication
from the MRS, and role is an argument label such as ARG1.

2.4 Analyzing Neural Networks for NLP

What are the representations that the neural network learns and how can we explore
that? Concerns of this question have led to the interpretability of the system being an
active area of research. Related work tries to answer these questions by: (1) investigating
specific components of the architectures (Karpathy, Johnson, and Fei-Fei 2015; Qian,
Qiu, and Huang 2016; Bau et al. 2019), (2) testing models on specific tasks, including
part-of-speech tagging (Shi, Padhi, and Knight 2016; Belinkov et al. 2017; Blevins,
Levy, and Zettlemoyer 2018), semantic role labeling (Tenney et al. 2019), word sense
disambiguation (Peters et al. 2018a), coreference (Peters et al. 2018b), and so forth, and
(3) building a linguistically informed data set for evaluation (Linzen, Dupoux, and
Goldberg 2016; Burchardt et al. 2017; Isabelle, Cherry, and Foster 2017; Sennrich 2017;
Wang et al. 2018; Warstadt, Singh, and Bowman 2019).

In this article, we try to probe this question by applying the models built on the
state-of-the-art technologies to the string-to-conceptual graph parsing task, and utiliz-
ing linguistically informed data sets based on previous work (Bender et al. 2011) and
our own creation.

4 http://moin.delph-in.net/EdsTop.
5 Right node raising often involves coordination where they share the same component (e.g., the subject they

here for the predicates house and feed); the raising/control construction refers to raising and control verbs
that select for an infinitival VP complement and stipulate that another of their arguments (subject or
direct object in the example) is identified with the unrealized subject position of the infinitival VP. For
further details, see Bender et al. (2011).
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3. A Knowledge-Intensive Parser

There are two main existing knowledge-intensive parsers with unification-based gram-
mars for the ERG: the PET system6 (Callmeier 2000; Zhang, Oepen, and Carroll 2007)
and the ACE system.7 PET is an efficient open-source parser for unification grammars.
Coupled with ERG, it can produce HPSG-style syntactico-semantic derivations and
MRS-style semantic representations in logic forms. Similar to PET, ACE is another in-
dustrial strength implementation of the typed feature structure formalism. Note that the
key algorithms implemented by PET and ACE are the same. We choose to use ACE in
this work given the fact that, compared with PET’s parsing performance, ACE is faster
in certain common configurations. Coupled with ERG, it serves as a valid companion
to study our problem: comparing knowledge- and data-intensive approaches.

4. A Data-Intensive Parser

To empirically analyze data-intensive parsing technologies, we design, implement, and
evaluate a new target structure–centric parser for ERS graphs, trained on (string, graph)
pairs without explicitly incorporating linguistic knowledge. The string-to-graph pars-
ing is formulated as a problem of finding the Maximum Subgraph for a graph class G of
a sentence s = l1, . . . , lm: Given a graph G = (V, A) related to s, the goal is to search for
a subset A′ ⊆ A with maximum total score such that the induced subgraph G′ = (V, A′)
belongs to G. Formally, we have the following optimization problem:

arg max
G∗∈G(s,G)

∑
p∈FACTORIZE(G∗ )

SCOREpart(s, p)

where G(s, G) denotes the set of all graphs belonging to G and compatible with s and G.
This view matches a classic solution to the structured prediction that captures elemental
and structural information through part-wise factorization. To evaluate the goodness of
a semantic graph is to calculate the sum of local scores assigned to those parts.

In the literature of bi-lexical dependency parsing, the above architecture is also
widely referred to as factorization-based, as such a parser factors all valid structures
for a given sentence into smaller units, which can be scored somewhat independently.

For string-to-graph parsing, we consider two basic factors, namely, single concepts
and single dependencies. Formally, we use the following objective function:∑

n∈NODE(G)

SCn(s, n) +
∑

(p,a)∈ARC(G)

SCa(s, p, a)

Our parser adopts a two-step architecture to produce EDS graphs: (1) it identifies
the concept nodes based on contextualized word embeddings by solving a simplified
optimization problem, viz. max

∑
n∈NODE(G) SCn(s, n); and (2) it identifies the depen-

dencies between concepts based on concept embeddings by solving another optimiza-
tion problem, namely, max

∑
(p,a)∈ARC(G) SCa(s, p, a). Particularly, our architecture is a

pipeline: Single-best prediction of the first step is utilized as the input for the second
step.

6 http://moin.delph-in.net/PetTop.
7 http://sweaglesw.org/linguistics/ace/.
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4.1 Concept Identification

Usually, the nodes in a conceptual graph have a strong correspondence to surface
lexical units, namely, tokens, in a sentence. Take the graph in Figure 1 for example; the
generalized quantifier the q corresponds to the and the property concept drug n 1

corresponds to drug. Because the concepts are highly lexicalized, it is reasonable to use a
sequence labeler to predict concepts triggered by tokens.

Nodes may be aligned with arbitrary parts of the sentence, including sub-token or
multi-token sequences, which affords more flexibility in the representation of meaning
contributed by derivational morphemes (e.g., parg d that indicates a passive construc-
tion) or phrasal constructions (e.g., compound name that indicates a multiword expres-
sion). To handle these types of concepts by a word-based sequence labeler, we align
them to words based on their span information and a small set of heuristic rules.
Take Figure 4 for example—we align parg d to the word where -ed is attached to, and
compound name to the first word of the compound.

The concept predicate may contain the lexical part aligning to the surface predicate,
which leads to a serious data sparseness problem for training. To deal with this problem,
we delexicalize lexical predicates as described in Buys and Blunsom (2017): Replacing the
lemma part by a placeholder “*”. Figure 4 shows a complete example. In summary, the
concept identification problem is formulated as a word tagging problem:∑

n∈NODE(G)

SCn(s, n) ≈
∑

1≤i≤m

max
sti∈ST

SCst(s, i, sti)

Our parser applies a neural sequence labeling model to predict concepts. In par-
ticular, a BiLSTM model is utilized to capture words’ contextual information and an-
other softmax layer for classification. Usually, words and POS tags are needed to be
transformed into continuous and dense representation in neural models. Inspired by
Costa-jussà and Fonollosa (2016), we use word embedding of two granularities in our
model: character-based and word-based, for low frequency and high-frequency words
(the words appear more than k times in the training data), respectively. A character-
based model can capture rich affix information of low-frequency words for better word
representations. The word-based embedding uses a common lookup-table mechanism.
The character-based word embedding wi is implemented by extracting features with
bidirectional LSTM from character embeddings c1, . . . , cn:

Contextualized representation models such as CoVe (McCann et al. 2017), ELMo
(Peters et al. 2018a), OpenAI GPT (Radford et al. 2018), and BERT (Devlin et al. 2019)

The drug was introduced in West Germany this year

N
the q drug n 1 ∅ introduce v to in p named named this q dem year n 1

parg d compound name proper q loc nonsp

proper q

S
* q * n 1 ∅ * v to * p named named * q dem * n 1

parg d compound name proper q loc nonsp

proper q

Figure 4
An example for illustrating concept identification. The “N” row presents the results of
lexicalization. The “S” row presents the gold tags assigned to tokens that are utilized to train a
sequence labeling based concept identifier.
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have recently achieved the state-of-the-art results on downstream NLP models across
many domains. In this article, we use pretrained ELMo model and learn a weighted av-
erage of all ELMo layers for our embedding ei to capture richer contextual information.
The concatenation of word embedding wi, ELMo embedding, and POS-tag embedding
ti of each word in a specific sentence is used as the input of BiLSTMs to extract context-
related feature vectors ri for each position i. Finally we use ri as input of a softmax layer
to get the probability SCst(s, i, sti).

ai = wi ⊕ ei ⊕ ti

r1 : rm = BiLSTM(a1 : am)

SCst(s, i, sti) = softmax(ri)

4.2 Dependency Identification

Given a set of concept nodes N that are predicted by our concept identifier, the se-
mantic dependency identification problem is formalized as the following optimization
problem:

Ĝ = arg max
G∈G(N)

∑
(p,a)∈ARC(G)

SCa(s, N, p, a)

where G(N) denotes the set of all possible graphs that take N as their vertex set.
Following the factorization principle, we measure a graph using a sum of local scores.

In order to effectively learn a local score function, that is, SCa, we represent concepts
with the concatenation of two embeddings: textual and conceptual embeddings.

ci = ri ⊕ ni

To represent two concept nodes’ textual information, we use stacked BiLSTMs that
are similar to the proposed structure of our concept identifier to get ri.

Besides contextual information, we also need to transform a concept into a dense
vector ni. Similar to word embedding and POS-tag embedding, we also use a common
lookup-table mechanism and let our parser automatically induce conceptual embed-
dings from semantic annotations.

We calculate scores for all directional arcs between two concepts in the graph, which
can be scored with a non-linear transformation from the two feature vectors of each
concept pair:

SCa(s, N, p, a) = W2 · δ(W1 · (cp ⊕ ca) + b)

Similar to unlabeled arcs, we also use MLP to get each arc’s scores for all labels, and
select the max one as its label.

For training, we use a margin-based approach to compute loss from the gold graph
G∗ and the best prediction Ĝ under the current model and decoder. We define the loss
term as:

max(0, ∆(G∗, Ĝ)− SCORE(G∗) + SCORE(Ĝ))

51



Computational Linguistics Volume 47, Number 1

The margin objective ∆ measures the similarity between the gold graph G∗ and the
prediction Ĝ. Following Peng, Thomson, and Smith (2017)’s approach, we define ∆ as
weighted Hamming to trade off between precision and recall.

Inspired by the maximum spanning connected subgraph algorithm proposed by
Flanigan et al. (2014), we also consider using an additional constraint to restrict the
generated graph to be connected. The algorithm is simple and effective: generating
a maximum spanning tree (MST) firstly, and then adding all arcs with positive local
scores. During the training, our dependency identifier ignores this constraint.

4.3 Evaluation

We conduct experiments on DeepBank v1.1 that correspond to ERG version 1214,
and adopt the standard data split. The PyDelphin8 library and the jigsaw tool9 are
leveraged to extract EDS graphs and to separate punctuations from their attached
words respectively. The TensorFlow ELMo model10 is trained on the 1B Word Bench-
mark for pretrained feature, and we use the same pretrained word embedding intro-
duced in Kiperwasser and Goldberg (2016). DyNet2.011 is utilized to implement the
neural models. The automatic batch technique (Neubig, Goldberg, and Dyer 2017) in
DyNet is applied to perform mini-batch gradient descent training, where the batch size
equals 32.

Different models are tested to explore the contribution of BiLSTM and ELMo,
including (1) ELMo* using BiLSTM and ELMo features, (2) ELMo using only ELMo
features and softmax layer for classification, (3) W2V using BiLSTM and word2vec
features (Mikolov et al. 2013), and (4) Random using BiLSTM and random embedding
initialization. In all these experiments, we only learn a weighted average of all biLM
layers but froze other parameters in ELMo.

4.3.1 Results on Concept Identification. Because we predict concepts by composing them
together as a word tag, there are two strategies for evaluating concept identification:
the accuracy of tag (viz., concept set) prediction and concept (decomposed from tags)
prediction. For the former, we take “∅” as a unique tag and compare each word’s
predicted tag as a whole part; for the latter, we ignore the empty concepts, such as
was in Figure 1. We can see that the ELMo* model performs better than the others.
Empirically speaking, the numeric performance of concept prediction is better than the
tag prediction. The results are illustrated in Table 1.

4.3.2 Results on Dependency Identification. In the dependency identification step, we train
the parsing model on sentences with golden concepts and alignment. Both unlabeled
and labeled results are reported. Because golden concepts are used, the accuracy will
obviously be much higher than the total system with predicted concepts. Nevertheless,
the numbers here serve as a good reflection of the goodness of our models. We can see
that the ELMo* model still performs the best, but the ELMo model is much lower than
the others, indicating that BiLSTM layers are much more important for dependency
identification. Table 2 shows the results. The measure for comparing two dependency

8 www.github.com/delph-in/pydelphin.
9 www.coli.uni-saarland.de/∼yzhang/files/jigsaw.jar.

10 www.github.com/allenai/bilm-tf.
11 www.github.com/clab/dynet.
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Table 1
Accuracy of concept identification on development data.

Tag Concept

Accuracy Precision Recall F-Score

Random 92.74 95.13 94.60 94.87
W2V 94.51 96.68 96.11 96.39
ELMo 92.34 95.73 95.16 95.45
ELMo* 95.38 97.31 96.77 97.04

Table 2
Accuracy of dependency identification on development data.

Model UP UR UF LP LR LF

Random 94.47 95.95 95.21 94.25 95.57 94.98
W2V 94.91 96.30 95.60 94.72 96.12 95.42
ELMo 88.97 92.95 90.92 88.44 92.40 90.38
ELMo* 96.00 96.99 96.49 95.80 96.79 96.29

graphs is the precision/recall of concept tokens that are defined as 〈ch, cd, l〉 tuples,
where ch is the functor concept, cd is the dependent concept, and l is their dependency
relation. Labeled precision/recall (LP/LR) is the ratio of tuples correctly identified
by the automatic generator, whereas unlabeled precision/recall (UP/UR) is the ratio
regardless of l. F-score (LF/UF) is a harmonic mean of precision and recall.

4.3.3 Results for Graph Identification. As for the overall evaluation, we report parsing
accuracy in terms of SMATCH (Cai and Knight 2013), which considers both nodes and
relations, and was initially used for evaluating AMR parsers. The Smatch metric (Cai
and Knight 2013), proposed for evaluating AMR graphs, also measures graph overlap,
but does not rely on sentence alignments to determine the correspondences between
graph nodes. SMATCH is computed by performing inference over graph alignments
to estimate the maximum F-score obtainable from a one-to-one matching between the
predicted and gold graph nodes. Different from EDM (Dridan and Oepen 2011), we
only use each node’s predicate but ignore the span information while aligning the two
nodes. But the results of these two evaluations are positively related.

Considering the difference between the AMR graph and the EDS graph, we imple-
ment our own tool for the disconnected graph, and calculate the scores in Table 3. The
ELMo*’s concept and arc score are obviously higher than the others, while ELMo’s arc
prediction yields the lowest SMATCH score.

We compare our system with the ERG-guided ACE parser, the data-driven parser
introduced in Buys and Blunsom (2017), and the composition-based parser in Chen,
Sun, and Wan (2018) on the test data (Table 4). As the ACE parser fails to parse some
sentences (more than 1%),12 the outputs of the whole data and the successfully parsed
part are evaluated separately. For the other parsers, the results on the whole data and

12 Note that the DeepBank data already removes a considerable portion (ca. 11%) of sentences.
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Table 3
Accuracy of the whole graphs on the development data. Concept and Arc in the table header are
the F-Score of concept and arc mapping for the highest SMATCH score. Smatch is the Smatch score
of each model.

Model Concept Arc SMATCH

Random 94.69 91.25 92.95
W2V 96.07 92.41 94.22
ELMo 95.06 86.75 90.82
ELMo* 96.71 93.86 95.27

Table 4
Accuracy (SMATCH) on the test data. ACE1 is evaluated on the whole data set: sentences that do
not receive results are taken as empty graphs. ACE2 is evaluated on the successfully parsed data
only.

Model Node Arc SMATCH

ACE1 95.51 91.90 93.69
ACE2 96.42 92.84 94.61
Buys and Blunsom (2017) 89.06 84.96 87.00

Chen, Sun, and Wan (2018) 94.47 88.44 91.42

W2V 95.65 91.97 93.78
ELMo 94.74 86.64 90.60
ELMo* 96.42 93.73 95.05

those ACE parsed data are very similar (less than 0.05% lower), so we show the results
on the whole data for brevity. The numbers of ACE and Buys and Blunsom’s (2017)
are different from the results they reported due to the different SMATCH evaluation
tools. Our ELMo* model achieves an accuracy of 95.05, which is significantly better than
existing parsers, demonstrating the effectiveness of this parsing architecture.

5. Linguistic Phenomena in Question

Most benchmark data sets in NLP are drawn from text corpora, reflecting a natural
frequency distribution of language phenomena. Such data sets are usually insufficient
for evaluating and analyzing neural models in many advanced NLP tasks, because they
may fail to capture a wide range of complex and low-frequency phenomena (Kuhnle
and Copestake 2018; Belinkov and Glass 2019). Therefore, an extensive suite of unit-tests
should be considered to evaluate models on their ability to handle specific linguistic
phenomena (Lin and Xue 2019).

In this section, we discuss several important linguistic phenomena for evaluat-
ing semantic parsers, including lexical constructions, predicate–argument structures,
phrase constructions, and non-local dependencies (Fillmore, Kay, and O’connor 1988;
Kay and Fillmore 1999; Michaelis and Lambrecht 1996; Hilpert 2014), which diverge
from the common average-case evaluation but are critical for understanding natural
language (Goldberg 2003). The phenomena and the corresponding examples are sum-
marized in Table 5.
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Table 5
Definitions and examples of the linguistic phenomena for evaluation.
Definition Head Examples

comp: compound/
named entity

head word in compound
or last name Donald Trump withdrew his $7.54 billion offer.

compound compound

as: basic predicate-
argument structures core predicate Mike gave them to a new bureaucracy.

ARG1 ARG2
ARG3

ditr: ditransitive
construction core predicate Sally baked her sister a cake.

ARG1
ARG2

ARG3

causemo: cause
motion construction core predicate The audience laughed Bob off the stage.

ARG1 ARG2
ARG3

way: way construction core predicate Frank dug his way out of prison.
ARG1 ARG2

ARG3

passive: passive
verb construction Passive verb The paper was accepted by the reviewer.

ARG2 ARG1

vpart: verb-particle
constructions (B) verb+particle The pass helped set up Donny’s two companies.

ARG2

itexpl: expletive it it-subject taking verb It is suggested that the flight was canceled.
ARG2

ned: adj/Noun2+
Noun1-ed

(A) head noun
(B) Noun1-ed The light colored glazes have softening effects.

MOD(A) MOD(B)

argadj: interleaved
arg/adj

(A) selecting verb
(B) selecting verb The story shows, through flashbacks, the different histories.

MOD(A)
ARG2(B)

barerel: bare
relatives (that-less)

(B) grapped predicate
in relative They took over the lead (that) brooklyn has held.

ARG2

tough: tough
adjectives

(A) tough adjective
(B) grapped predicate
in to-VP

Original copies are very hard to find.

ARG2(B)
ARG1(A)

rnr: right node
raising

(A) verb/prep2
(B) verb/prep1 Humboldt supported and worked with other scientists.

ARG2(B)
ARG2(A)

absol: absolutives (A) absolutive predicate
(B) main clause predicate It consisted of 4 games each team facing other teams twice.

ARG1(A)
MOD(B)

vger: verbal gerunds (A) selecting head
(B) gerund Asking for the help from the school prompts an announcement.

ARG1(A)
ARG2(B)

control: raising/
control constructions

(A) “upstairs” verb
(B) “downstairs” verb They managed to house and feed the poor.

ARG1(B) ARG2(A)
ARG2(A)

5.1 Lexical Constructions: Multiword Expression

Multiword Expressions (MWEs) are lexical items made up of multiple lexemes that
undergo idiosyncratic constraints and therefore offer a certain degree of idiomaticity.
MWEs cover a wide range of linguistic phenomena, including fixed and semi-fixed
expressions, phrasal verbs, and named entities.

Although MWEs can lead to various categorization schemes and its definitions
observed in the literature tend to stress different aspects, in this article we mainly
focus on compound and multiword named entity. Roughly speaking, a compound is a
lexeme formed by the juxtaposition of adjacent lexemes. Compounds can be subdivided
according to their syntactic function. Thus, nominal compounds are headed by a noun
(e.g., bank robbery) or a nominalized verb (e.g., cigarette smoking) and verbal compounds
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are headed by a verb (e.g., London-based). Multiword named entity is a multiword
linguistic expression that rigidly designates an entity in the world, typically including
persons, organizations, and locations (e.g., International Business Machines).

5.2 Basic Argument Structure

The term “argument structure” refers to a relationship that holds between a predicate
denoting an activity, state, or event and the respective participants, which are called
arguments. Argument structure is often referred to as valency (Tesnière 2018). A verb
can attract a certain number of arguments, just as an atom’s valency determines the
number of bonds it can engage in (Ágel and Fischer 2009).

Valency is first and foremost a characteristic of verbs, but the concept can also be
applied to adjectives and nouns. For instance, the adjective certain can form a bond with
a that-clause in the sentence I am certain that he left or an infinitival clause (John is certain
to win the election). Nouns such as fact can bond to a that-clause as well: the fact that he
left. We view all these valency relations as basic argument structures.

5.3 Phrasal Constructions

In the past two decades, the constructivist perspective to syntax is more and more
popular. For example, Goldberg (1995) argued that argument structure could not be
wholly explained in terms of lexical entries alone, and syntactic constructions also lead
hearers to understand some meanings. Though this perspective is very controversial,
we think the related phenomena are relevant to computational semantics. To test a
parser’s adaptation ability to handle peripheral phenomena, we evaluate the performance
on several valency-increasing and decreasing constructions, including the ditransitive
construction, cause motion construction, way construction, and passive.

Ditransitive Construction. The ditransitive construction links a verb with three arguments
— a subject and two objects. Whereas English verbs like give, send, offer conventionally
include two objects in their argument structure, the same cannot be said of other verbs
that occur with the ditransitive construction.

(1) Sally baked her sister a cake.

The above sentence means that Sally produced a cake so that her sister could willingly
receive it. We can posit the ditransitive construction as a symbolic unit that carries
meaning and that is responsible for the observed increase in the valency of bake. In
general, the ditransitive construction conveys, as its basic sense, the meaning of a
transfer between an intentional agent and a willing recipient (indirect object).

Caused-Motion Construction. The caused-motion construction can also change the num-
ber of arguments with which a verb combines and yield an additional meaning. For
example, in the sentence (2), the event structure of laugh specifies someone who is
laughing and the unusually added argument leads to a new motion event in which
both the agent and the goal are specified.

(2) The audience laughed Bob off the stage.
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Way Construction. This construction specifies the lexical element way and a possessive
determiner in its form. For example, in (3), the construction evokes a scenario in which
an agent moves along a path that is difficult to navigate, thus adds up two arguments
in the process — the way argument and a path/goal argument that is different from the
caused-motion construction.

(3) Frank dug his way out of prison.

Passive. The passive construction with be is most often discussed as the marked coun-
terpart of active sentences with transitive verbs. For example, in (4) the subject of the
active (the reviewer) appears in the corresponding passive sentences as an oblique object
marked with the preposition by, and it is possible to omit this argument in the passive.
It is this type of omission that justifies categorizing the passive as a valency-decreasing
construction.

(4) The paper was accepted (by the reviewer).

5.4 BFOZ’s Ten Constructions

Bender et al. (2011) proposed a selection of ten challenging linguistic phenom-
ena, each of which consists of 100 examples from English Wikipedia and occurs with
reasonably high frequency in running text. Their selection (hereafter BFOZ) considers
lexical (e.g., vpart), phrasal (e.g., ned), as well as non-local (e.g., rnr) constructions. The
definitions and examples of the linguistic phenomena are outlined in Table 5, which
considers representative local and non-local dependencies. Refer to their paper for more
information.

In some phenomena, there are subtypes A and B, corresponding to different arcs
in the structure. It is noted that the number of “A” and the number of “B” are not
necessarily equal, as illustrated in the example of control in the table. Some sentences
contain more than one instance of the phenomenon they illustrate and multiple sets of
dependencies are recorded. In total, the evaluation data consists of 2,127 dependency
triples for the 1,000 sentences.

6. Evaluation and Analysis

To investigate the type of representations manipulated by different parsers, in this
section, we evaluate the ACE parser and our parser regarding the linguistic phenomena
discussed in Section 5. In order to get the bilexical relationship, we use SMATCH to obtain
all alignments between the output and ground truth.

6.1 Lexical Construction

MRS uses the abstract predicate compound to denote compounds as well as light-weight
named entities. The edge labeled with ARG1 denotes the root of the compound struc-
ture and thus can help to distinguish the type of the compound (nominal or verbal
compounds), and the nodes in named entities are labeled as named-relation. The head
words of the compound in the test set can be other types such as adjectives, and due to
their data sparsity in the test data, we just omit this part. The results are illustrated in
Table 6.
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Table 6
Accuracy of lexical constructions.

Type Example # ACE W2V ELMo ELMo*

Compound - 2,266 80.58 87.56 84.33 89.67
Nominal w/ nominalization flag burning 22 85.71 90.91 81.82 90.91
Nominal w/ noun pilot union 1,044 85.28 89.27 88.51 90.04
Verbal state-owned 23 40.91 82.61 47.83 65.22
Named Entity Donald Trump 1,153 82.92 86.93 82.74 90.55

Table 7
Accuracies on basic argument structure over the 1,474 test data. The accuracies are based on
complete match, i.e., the predicates, arguments (nodes, edges, and the edge labels in the graph)
should all be correctly parsed to their gold standard graphs.

Type # ACE W2V ELMo ELMo*

Overall 7,108 86.98 81.44 74.56 84.70
Total verb 4,176 85.34 77.59 69.08 81.81
Basic verb 2,354 85.79 80.76 73.70 83.90

ARG1 1,683 90.25 87.17 80.45 89.07
ARG2 1,995 90.48 84.96 81.95 87.85
ARG3 195 82.63 58.46 55.90 72.31

Verb-particle 1,761 84.69 73.31 62.86 78.99
ARG1 1,545 89.57 80.45 75.15 84.72
ARG2 923 86.27 78.80 68.42 82.73
ARG3 122 81.88 58.44 47.40 73.38

Total noun 394 92.41 87.56 72.34 90.61
Total adjective 2,538 89.27 87.31 84.48 89.05

From the table, we find that ELMo* performs much better than ACE, especially
for the named entity recognition (the total number of verbal compounds in the test
set is rather small and does not affect the overall performance too much). It is noted
that even the pure ELMo alone can achieve fairly good results, indicating that those
pretrained embedding-based models are good at capturing local semantic information
such as compound constructions and named entities.

6.2 Basic Argument Structure

The detailed performances on the 1,474 test data in terms of basic argument structure
are shown in Table 7. In MRS, different senses of a predicate are distinguished by optional
sense labels. Usually, the verb with its basic sense will be assigned the sense label as v 1

(e.g., look v 1), while verb particle construction is handled semantically by having
the verb contribute a relation particular to the combination (e.g., look v up). In the
evaluation, we also categorize the verb into basic verbs and verb particle constructions
and show the detailed performance.

As can be observed from the table, the overall performance of ELMo* is relatively
worse than the one of ACE, and this is mainly due to the relatively low accuracy of
verb particle constructions and ARG3. As for the pure ELMo model, this issue will
be exacerbated. The verb particle construction emphasizes combinations, and ARG3

58



Cao et al. Knowledge-Intensive and Data-Intensive ERS Parsing

Table 8
Accuracies on phrasal construction, including the valency increasing evaluation over 300
selected sentences and the valency decreasing evaluation over the 1,474 test data.

Type # ACE W2V ELMo ELMo*

ditr 100 87.36 90.00 88.00 93.00
ARG1 98 97.65 95.92 94.90 96.94
ARG2 100 100.00 99.00 98.00 99.00
ARG3 100 87.36 94.00 93.00 95.00
causemo 100 41.11 27.00 32.00 55.00
ARG1 94 91.86 90.43 75.53 93.62
ARG2 100 100.00 99.00 97.00 99.00
ARG3 100 43.33 30.00 45.00 60.00
way 100 7.14 0.00 3.00 4.00
ARG1 94 81.25 86.46 79.17 88.54
ARG2 100 61.22 96.00 59.00 99.00
ARG3 100 9.18 1.00 4.00 7.00
passive 522 85.12 82.57 76.05 84.87

often denotes long-distance cross words within the sentence, while pure ELMo (without
LSTM) is weak in capturing such information.

6.3 Phrasal Construction

For each valency increasing construction (ditransitive construction, caused-motion con-
struction, and way construction) introduced in Section 5.3, based on some prede-
fined patterns, we first automatically obtained a large set of candidate sentences from
Linguee,13 a Web service that provides access to large amounts of appropriate bilingual
sentence pairs found online. The paired sentences identified undergo automatic quality
evaluation by a human-trained machine learning algorithm that estimates the quality of
those sentences. We manually select 100 sentences for each type of linguistic phenomena
to guarantee the quality of pattern-based selection in terms of correctness and diversity.
In order to form the gold standard for the subsequent evaluation, we then ask a senior
linguistic student who is familiar with ERG to annotate the argument structure of those
sentences. The annotation format is based on dependency triples, identifying the head
words and dependents by the surface form of the head words in the sentence suffixed
with a number indicating the word position.

As for the valency decreasing construction, namely, the passive construction, MRS
gives special treatment to passive verbs, identified by the abstract node parg d. Similar
to the previous evaluation, we test the parsing accuracy on parg d over the 1,474 test
data. The results of phrasal constructions are shown in Table 8.

The results are shown in Table 8, from which we find that all the parsers perform
worse on the way construction, while on the other valency increasing constructions,
ELMo* yields the best results. The performances on the three constructions are mainly
affected by the performances on ARG3, where ELMo* performs relatively better on
ditransitive and caused-motion constructions. Interestingly, it is a contrast to the results
on ARG3 in basic argument constructions.

13 https://www.linguee.com/.
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The parsers may run across a variety of cases where a predicate appeared to be in
an atypical context: None of the senses listed in the lexicon provided the appropriate
role label choices for novel arguments encountered. The issue can be addressed by
either adding many individual senses for every predicate compatible with a particular
construction, as what the rule-based parser has done, or learning the construction
pattern from the training data, as what the data-driven parser has done.

The latter option clearly had a practical advantage of requiring far less time-
consuming manual expansion of the lexicon although it may also suffer from data
sparsity. The annotated MRS data provides considerably wide coverage for the most
frequent and predictably patterned linguistic phenomena, although it sometimes fails
to include some of the rarer structures found in the long tail of language. According to
our statistics, the cause motion and way constructions are very sparse in the training
data — appearing 12 and 0 times, respectively, in the 35,314 sentences, severely limiting
the prediction on these constructions.

6.4 BFOZ’s Ten Constructions

Although the annotated style for those 10 linguistic phenomena introduced in Bender
et al. (2011) is not the same as the one for MRS, we were able to associate our parser-
specific results with the manually annotated target non-local dependencies, and Table 9
shows the results.

All the parsers perform markedly worse on the dependencies of rnr(B), absol(B),
and argadj(B), which have very long average distances of dependencies. Each of the
parsers attempt with some success to analyze each of these phenomena, but they vary
across phenomena:

1. Comparing pure ELMO and ELMO*, we can observe that in most cases,
ELMO* outperforms pure ELMO especially for long-distance dependencies

Table 9
Recall of individual dependencies on Bender et al.’s ten constructions. Arc refers to the average
distance between the two nodes; ∆+x refers to the improvement of performance when add
feature x, compared with Random.

Phenomena Arc ACE1 AEC2 Rand W2V ELMo ELMo* ∆+W2V ∆+ELMo ∆+LSTM

vpart 3.8 79 81 71 69 46 85 −2 +14 +39

itexpl - 91 91 52 48 63 74 −4 +23 +11
ned(A) 2.7 63 72 78 83 79 88 +5 +10 +9
ned(B) 1.0 81 93 75 79 47 83 +4 +7 +35
argadj(A) 1.6 78 84 74 75 69 76 +1 +3 +8
argadj(B) 6.3 50 53 39 47 43 56 +8 +17 +13

barerel 3.4 60 67 70 72 73 75 +2 +6 +3
tough(A) 2.2 88 90 91 90 90 86 −1 −5 −4
tough(B) 6.4 83 85 68 70 47 83 +2 +16 +37
rnr(A) 2.8 69 76 75 72 77 73 −3 −2 −4
rnr(B) 6.2 43 47 17 17 10 32 +1 +16 +22
absol(A) 1.8 61 68 81 83 73 92 +3 +11 +18
absol(B) 9.5 6 7 3 3 3 3 0 0 0
vger(A) 1.9 56 62 69 62 61 69 −7 0 +8
vger(B) 2.4 80 88 88 89 79 84 +2 −4 +5
control(A) 3.0 90 91 83 87 82 92 +4 +8 +9
control(B) 4.8 87 89 89 88 63 91 −1 +2 +28
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such as tough(B), vpart, and control(B), indicating that LSTM features
help to capture distant information to some extent. For example, tough(B)
is a relatively long-distance relation, and the significant improvement
could be observed when we add ELMo and LSTM.

2. Similar to the conclusion drawn in Section 6.1, in general, compared with
ACE, ELMO is good at capturing relatively local dependencies that have
short distances, for example, absol(A), vger(A), and ned(A).

3. For some of the phenomena, such as itexpl, ACE works pretty well while
all the neural models fail to achieve competitive results, and this is because
itexpl could be completely covered by a predefined grammar whereas
it is very hard to learn the relation implicitly. On the other hand, the
knowledge-intensive parser will be confused when handling phenomena
that are not covered by a predefined grammar (e.g., barerel, absol(A)).

6.5 Down-Sampling Data Size

Our next experiment examines this effect in a more controlled environment by down-
sampling the training data and observing the performances on the development set. The
results are shown in Figures 5 and 6, where we test the overall performance for lexical
(compound and named entities), basic argument, and phrasal (valency-increasing and
passive) constructions.

As can be seen from Figure 5, adding training data cannot help the parser predict
valency-increasing constructions that much. When it comes to local constructions (lex-
ical construction), even rather small training data can lead to relatively high perfor-
mance, especially for the light-weight named entity recognition. The learning curve of
the basic argument structures also serves as another complementary reflection. From
Figure 6, we also find that due to the low frequency of the valency-increasing construc-
tions in the data, the performance will stay low as the training data grows.

7. Conclusion and Discussions

In this work, we proposed a new target structure-centric parser that can produce se-
mantic graphs (EDS here) much more accurately than previous data-driven parsers.
Specifically, we achieve an accuracy of 95.05 for EDS in terms of SMATCH, which yields
a significant improvement over previous data-driven parsing models. Comparing this
data-intensive parser with the knowledge-intensive ACE parser sheds light on comple-
mentary strengths the different types of parser exhibit.

To this end, we have presented a thorough study of the difference in errors made
between systems that leverage different methods to express the mapping between
string and meaning representation. To achieve that, we used a construction-focused
parser evaluation methodology as an alternative to the exclusive focus on incremental
improvements in overall accuracy measures such as SMATCH. We have shown that
knowledge- and data-intensive models make different types of errors and such dif-
ferences can be quantified concerning linguistic constructions. Our analysis provides
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insights that may lead to better semantic parsing models in the future. Below we sketch
some possible new directions:

• neural tagging for the knowledge-intensive parser,

• structural inference for the data-intensive parser,

• syntactic knowledge for the data-intensive parser, and

• parser ensemble.
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Figure 5
Performance of compound (compound), named entity (NER), and basic argument (ARG) on
development set when down-sampling the training data size.
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Figure 6
Performance of valency-increasing constructions (valency) and passive (passive) on the
development set when down-sampling the training data size.
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Sajjad, Nadir Durrani, Fahim Dalvi, and
James Glass. 2017. Evaluating layers of
representation in neural machine
translation on part-of-speech and semantic

63

https://doi.org/10.1093/oxfordhb/9780199544004.013.0010
https://doi.org/10.1093/oxfordhb/9780199544004.013.0010
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254


Computational Linguistics Volume 47, Number 1

tagging tasks. In Proceedings of the Eighth
International Joint Conference on Natural
Language Processing (Volume 1: Long
Papers), 1, pages 1–10, Taipei.

Bender, Emily M., Dan Flickinger, Stephan
Oepen, and Yi Zhang. 2011. Parser
evaluation over local and non-local deep
dependencies in a large corpus. In
Proceedings of the 2011 Conference on
Empirical Methods in Natural Language
Processing, pages 397–408, Edinburgh.

Blevins, Terra, Omer Levy, and Luke
Zettlemoyer. 2018. Deep RNNs encode soft
hierarchical syntax. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 14–19, Melbourne. DOI:
https://doi.org/10.18653/v1/P18-2003

Bos, Johan, Valerio Basile, Kilian Evang,
Noortje Venhuizen, and Johannes Bjerva.
2017. The Groningen Meaning Bank. In
Ide, Nancy and James Pustejovsky, editors,
Handbook of Linguistic Annotation,
volume 2. Springer, pages 463–496.
DOI: https://doi.org/10.1007/978-94
-024-0881-2 18, PMID: 29036840

Bos, Johan, Stephen Clark, Mark Steedman,
James R. Curran, and Julia Hockenmaier.
2004. Wide-coverage semantic
representations from a CCG parser.
In Proceedings of Coling 2004,
pages 1240–1246, Geneva. DOI: https://
doi.org/10.3115/1220355.1220535

Burchardt, Aljoscha, Vivien Macketanz, Jon
Dehdari, Georg Heigold, Jan-Thorsten
Peter, and Philip Williams. 2017. A
linguistic evaluation of rule-based,
phrase-based, and neural MT engines.
Prague Bulletin of Mathematical Linguistics,
108(1):159–170. DOI: https://doi.org
/10.1515/pralin-2017-0017

Buys, Jan and Phil Blunsom. 2017. Robust
incremental neural semantic graph
parsing. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1215–1226, Association for
Computational Linguistics, Vancouver.
DOI: https://doi.org/10.18653/v1
/P17-1112

Cai, Shu and Kevin Knight. 2013. Smatch: an
evaluation metric for semantic feature
structures. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers),
volume 2, pages 748–752, Sofia.

Callmeier, Ulrich. 2000. PET: A platform for
experimentation with efficient HPSG
processing techniques. Journal of Natural

Language Engineering, 6(1):99–108. DOI:
https://doi.org/10.1017/S13513249
00002369

Cao, Junjie, Sheng Huang, Weiwei Sun, and
Xiaojun Wan. 2017. Parsing to
1-endpoint-crossing, pagenumber-2
graphs. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 2110–2120, Association for
Computational Linguistics, Vancouver.
DOI: https://doi.org/10.18653/v1/P17
-1193, PMCID: PMC5666792

Chen, Yufei, Weiwei Sun, and Xiaojun Wan.
2018. Accurate SHRG-based semantic
parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 408–418, Melbourne. DOI: https://
doi.org/10.18653/v1/P18-1038

Chen, Yufei, Yajie Ye, and Weiwei Sun. 2019.
Peking at MRP 2019: Factorization- and
composition-based parsing for elementary
dependency structures. In Proceedings of the
Shared Task on Cross-Framework Meaning
Representation Parsing at the 2019
Conference on Natural Language Learning,
pages 166–176, Hong Kong. DOI:
https://doi.org/10.18653/v1/K19-2016

Clark, Stephen and James R. Curran. 2007.
Wide-coverage efficient statistical parsing
with CCG and log-linear models.
Computational Linguistics, 33(4):493–552.
DOI: https://doi.org/10.1162
/coli.2007.33.4.493

Clark, Stephen, Julia Hockenmaier, and Mark
Steedman. 2002. Building deep
dependency structures using a
wide-coverage CCG parser. In Proceedings
of the 40th Annual Meeting of the Association
for Computational Linguistics,
pages 327–334, Philadelphia, PA. DOI:
https://doi.org/10.3115/1073083
.1073138

Copestake, Ann. 2009. Invited Talk: slacker
semantics: Why superficiality, dependency
and avoidance of commitment can be the
right way to go. In Proceedings of the 12th
Conference of the European Chapter of the
ACL (EACL 2009), pages 1–9, Athens. DOI:
https://doi.org/10.1007/s11168-006
-6327-9

Copestake, Ann, Dan Flickinger, Carl
Pollard, and Ivan A. Sag. 2005. Minimal
Recursion Semantics: An introduction.
Research on Language and Computation,
3:281–332. DOI: https://doi.org/10
.1007/s11168-006-6327-9

Copestake, Ann A. and Dan Flickinger. 2000.
An open source grammar development

64

https://doi.org/10.18653/v1/P18-2003
https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1007/978-94-024-0881-2_18
https://europepmc.org/article/MED/29036840
https://doi.org/10.3115/1220355.1220535
https://doi.org/10.3115/1220355.1220535
https://doi.org/10.1515/pralin-2017-0017
https://doi.org/10.1515/pralin-2017-0017
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.1017/S1351324900002369
https://doi.org/10.1017/S1351324900002369
https://doi.org/10.18653/v1/P17-1193
https://doi.org/10.18653/v1/P17-1193
https://www.pubmed.ncbi.nlm.nih.gov/PMC5666792
https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/P18-1038
https://doi.org/10.18653/v1/K19-2016
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.3115/1073083.1073138
https://doi.org/10.3115/1073083.1073138
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.1007/s11168-006-6327-9
https://doi.org/10.1007/s11168-006-6327-9


Cao et al. Knowledge-Intensive and Data-Intensive ERS Parsing

environment and broad-coverage
English grammar using HPSG. In LREC,
pages 591–600, Athens.
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