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Abstract

Scarcity of annotated causal texts leads to
poor robustness when training state-of-the-art
language models for causal sentence classi-
fication. In particular, we found that mod-
els misclassify on augmented sentences that
have been negated or strengthened with re-
spect to its causal meaning. This is worry-
ing since minor linguistic differences in causal
sentences can have disparate meanings. There-
fore, we propose the generation of counter-
factual causal sentences by creating contrast
sets (Gardner et al., 2020) to be included dur-
ing model training. We experimented on two
model architectures and predicted on two out-
of-domain corpora. While our strengthening
schemes proved useful in improving model
performance, for negation, regular edits were
insufficient. Thus, we also introduce heuris-
tics like shortening or multiplying root words
of a sentence. By including a mixture of edits
when training, we achieved performance im-
provements beyond the baseline across both
models, and within and out of corpus’ do-
main, suggesting that our proposed augmenta-
tion can also help models generalize.

1 Introduction

Causality is an important concept for knowledge
discovery as it conveys the idea of cause and effect.
In the simplest sense, a causal relation exists be-
tween entities A and B through the statement “A
causes B" or “B is caused by A". In recent years,
causal relation extraction from text has garnered
significant interest in Natural Language Processing
(NLP) (Asghar, 2016; Xu et al., 2020; Yang et al.,
2021).

Causal sentence classification (CSC) is the task
of identifying sentences that contain causal mean-
ing (Yu et al., 2019; Sumner et al., 2014; Mariko
et al., 2020). Identification of causal sentences is
often the first step in tasks like generating plot struc-
tures (Mirza and Tonelli, 2016a; Caselli and Vossen,
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Example (Scientific) Claims: Causal Category

(Strength)
Dietary advice by a dietitian and use of
; y . No Causal
potentially helpful dietary supplements is —* X X
P Relationship
indicated.

GTF is well tolerated and helps with
catch-up growth and puberty.

—| Direct Causal

The 3M barrier film may be helpful against
dermatitis associated pruritus.

Independent prognostic factors for MSS
were SN status, Breslow thickness and — Correlational
ulceration.

Conditional
Causal

Figure 1: Causal sentence classification classifies tex-
tual claims into various categories of causal strengths.

2017a) or constructing causal knowledge graphs
(Heindorf et al., 2020) for further downstream Nat-
ural Language Understanding applications, like
Question Answering (Dalal et al., 2021). Figure 1
demonstrates examples where similar claims are
categorized by their causal strengths. CSC is chal-
lenging because the syntax of causality varies in
context. Thus, it is difficult to exhaustively capture
causal expressions, especially for implicit occur-
rences (Asghar, 2016). Negations and the absence
of causality further complicate automatic causality
identification (Heindorf et al., 2020).

Furthermore, there is a lack of good quality CSC
datasets (Asghar, 2016; Xu et al., 2020). Most NLP
datasets typically treat causal relation extraction
as a subtask of relation extraction, where “Cause-
Effect" is one of the many relation labels. However,
we think that causality is a complex relation best
learned using dedicated causal relation datasets.
Such corpora that exist are mostly small in size
(< 5000 sentences), except for AltLex (Hidey and
McKeown, 2016) that has over 40000 sentences.
Datasets also tend to label causal relations in an
overly simplistic binary level (as ‘causal’ or ‘not
causal’). Only some works classify text by causal
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strengths (Girju and Moldovan, 2002; Yu et al.,
2019; Sumner et al., 2014).

Data augmentation is a natural avenue for han-
dling small-sized datasets. Augments created must
be meaningful to explain representation gaps in
the current datasets. In causality, both the causal
direction and strength matter. As such, we believe
that models should be sensitive towards negations
and semantics of words to avoid misclassification.
For example, in Figure 1, the first three sentences
include words related to “help”. However, the con-
text of its usage and inclusion of modal words like
“may” easily alters the intended causal strength of
the sentence. This observation motivates us to arti-
ficially construct meaningful counterfactuals that
would reflect the model’s decision boundaries. We
do so by applying rule-based schemes that negate
causal relations or strengthen conditionally causal
sentences. However, for negations, we notice that
introducing edits is insufficient to improve model
performance. Thus, we also explore adding heuris-
tic edits.

We find that state-of-the-art (SOTA) language
models, such as BERT (Devlin et al., 2019) with
MLP or SVM classifiers, achieve improvements
in classification performance when trained with
our created counterfactuals. In addition, our evalu-
ation on cross-domain datasets shows that train-
ing on augmented datasets (original plus edits)
improves model generalization to out-of-domain
(OOD) contexts. This is consistent with findings
from (Kaushik et al., 2020a,b) in sentiment anal-
ysis and natural language inference contexts. In
summary, we make the following contributions:

1. We show that current SOTA models are not
robust to minimally perturbed sentences that
differ in causal direction and strength. There-
fore, we propose causal negation and strengthen-
ing schemes based on dependency and part-of-
speech (POS) tags to augment causal sentences.
To our knowledge, we are the first to study the
effects of counterfactual augmentation in the
context of causal claims classification.

2. We observe that simple heuristic edits on
negated counterfactuals improve model effec-
tiveness for the CSC task.

3. We show that a mixture of counterfactuals im-
proves performance in the trained domain and
also generalizes better to OOD corpora such as

2

SCITE (Li et al., 2021) and AltLex (Hidey and
McKeown, 2016).

Section 2 details related works in the literature
and positions our work amongst them. Section 3
explains our methods for data augmentation, data
processing and modeling. Section 4 presents and
discusses our findings while Section 5 concludes.

2 Related Works

2.1 Causal Sentence Classification

Although causality is an important concept for
knowledge discovery, benchmarking datasets and
standardization of labeling rules have been lim-
ited, thus prohibiting empirical comparisons across
methodologies (Asghar, 2016; Xu et al., 2020).
Most NLP benchmarking datasets define causal re-
lations as just one out of many class labels (e.g.
Part-Whole) (Jurgens et al., 2012; Gabor et al.,
2018; Caselli and Vossen, 2017b; Mirza et al.,
2014; Mirza and Tonelli, 2016b). Others focus
on causal relations and define such relations as a
binary label (Li et al., 2021; Mariko et al., 2020;
Hidey and McKeown, 2016). However, causal-
ity may not always occur at extremes in real-life
statements, and correlation can get confused for
causation (Buhse et al., 2018). As such, instead
of using a binary model of causality, a better way
is to classify varying “strengths" of causal rela-
tions in sentences. In fact, a seven-point scheme'
was proposed by Sumner et al. (2014) to categorize
causal statements from health-related news and aca-
demic press releases. Subsequently, Yu et al. (2019)
adapted this for scientific texts into a four-level sys-
tem. In this work, we adopt the four-level causality
labeled corpus and classification model by Yu et al.
(2019).

There is also an often observed issue that NLP
systems that perform well on task datasets do not
generalize to “real-life scenarios", thereby mislead-
ing and overstating the accuracies and usefulness
of their models. Ensuring model generalizability
to other domains can be challenging. For example,
Ramesh et al. (2012) showed discourse triggers are

"The seven levels of causal strengths are (1) no statement,
(2) explicit statement of no relation, (3) correlational, (4)
ambiguous (i.e., a relationship is present, but the direction and
level is ambiguous), (5) conditional causal, (6) can cause, and
(7) unconditionally causal.

2We were unable to work on Sumner et al.’s dataset as it
was not publicly available and had very limited samples per
class label.
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Figure 2: Strategies to generate counterfactual examples for CSC.

different between the biomedical and general do-
mains. More focus has been placed on ensuring
sufficient data representativeness and transferabil-
ity of results onto OOD settings in recent years. In
this work, we will also evaluate the generalizability
of our models to classify causal sentences from
other domains.

2.2 Counterfactuals in NLP

Counterfactual generation is a popular strategy for
NLP researchers to test and improve model robust-
ness via adversarial learning and attacks (Morris
et al., 2020; Mahler et al., 2017) or for mitigating
bias (Kaushik et al., 2020a; Maudslay et al., 2019).

Gardner et al. (2020) proposed using counterfac-
tuals to fill local theoretical gaps in a model’s de-
cision boundary. They relied on expert judgments
to generate similar but meaningfully different sen-
tences and showed that SOTA models struggle on
contrast sets compared to original test sets across
multiple tasks. Recently, Wu et al. (2021) proposed
a general-purpose counterfactual generator built
on GPT-2 and also showed that the inclusion of
realistic counterfactuals was useful across three dif-
ferent tasks. Their control codes included negation,
delete, and restructure, amongst other options.>
In our work, we generate counterfactuals purpose-
fully for CSC, such as moving sentences across
labels during Negation (causal — no relationship)
and Strengthening (conditional causal — causal)
strategies. We provide an automatic rule-based
schema to negate and strengthen causal statements,

3Unfortunately, we did not investigate the negation and
delete functions provided by Wu et al. (2021) but acknowledge
this to be an important future work.

focusing on precision over full coverage.*

Kaushik et al. (2020a) manually revised docu-
ments that would correspond to a counterfactual
target label for sentiment analysis and natural lan-
guage inference tasks. They showed that training
with similar quantities of augmented data compared
to the original improves generalization ability to
OQD datasets. In this paper, we have also found
that counterfactuals can help to improve model
generalizability for CSC. Unlike their work, our
linguistics-based augments do not rely on human
intervention.

3 Methodology

3.1 Task Details

Our CSC task involved classifying a span of text
with a causal label based on its intended meaning.
We used the PubMed-based CSci corpus (Yu et al.,
2019)3 comprising of 3061 sentences, annotated
with four levels of causal relation: no relationship
(cp), causal (c1), conditional causal (c2), and cor-
relational (c3).

3.2 Counterfactual Generation

In a low-resource setting, we propose creating
counterfactuals that push causal sentences across
labels to improve the robustness of models. Fig-
ure 2 demonstrates the two main strategies we
employed to generate counterfactual examples for
CSC: (1) Causal Negation (c; — cp) and (2) Causal

*Contemporaneously, ~we also contributed our
rule-based algorithm to an open-source text aug-
mentation effort at https://github.com/
GEM-benchmark/NL-Augmenter under the trans-
formation negate_strengthen.

Shttps://github.com/junwangd/
causal-language-use—-in-science
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Strengthening (co — c1). We discuss these strate-
gies next.”

3.2.1 Causal Negation

In NEGATION, we negate the direction of causal
statements from causal (c1) to no relationship (cp).

After obtaining POS tags and root words based
on dependency trees’, we performed negations
around the root word. Our coding schema (Algo-
rithm 1 in the Appendix) inserted negative words
like ‘no’, ‘not’, ‘nor’ or ‘did not’ to negate the
meaning of the sentence. 12 negation linguistic
templates were used. Successfully negated sen-
tences were termed as EDIT sentences. If no match-
ing templates were found, the sentence was skipped.
Of the 493 original (causal) sentences from the
CSci corpus, 384 sentences had available nega-
tions.

To improve text flow, we used antonyms to re-
place negated edits where applicable. We did so
by searching for antonyms of the original root
word based on WordNet (Miller, 1995) and termed
successful antonym edits as EDIT-ALT. To en-
sure a similar tense was used, we detected the
original word’s tense and applied the same tense
onto the antonym word using the Pattern package
(De Smedt and Daelemans, 2012). An example
EDIT and EDIT-ALT sentence is shown in Table 1.

To decide between EDIT and EDIT-ALT versions,
we calculated the Levenshtein edit distance of the
original word versus the antonym. We selected
EDIT-ALT only if the edit distance is less than or
equal to 30% of the length of the longer word,
rounded to the nearest integer. This allowed us to
keep conversions like ‘able’ — ‘unable’ for more
natural word flow, but discard bolder and more
drastic changes like ‘safe’ — ‘dangerous’ and ‘had’
— ‘refused’ that suggested causality in the oppo-
site direction (rather than no relationship) or were
outright wrong. Finally, after dropping duplicates,
we obtained 381 sentences that represented non-
causality.

We were able to apply 11 out of the 12 linguistic
templates to generate causal negation for the sen-
tences in CSci. Most edits fell into the category
where we negated the root verb or adjective of the
sentence. Table A1 shows one randomly sampled

®Qur edit schemes, model pipeline and augmented datasets
are available at https://github.com/tanfiona/
CausalAugment.

"We used NLTK (Wagner, 2010) to obtain POS tags in
PennTreeBank format and spaCy (Honnibal et al., 2020) for
dependency tree extraction.

4

example per available negation method when ap-
plied onto the CSci corpus. With respect to this
table, Appendix A.1 briefly discusses the grammat-
ical sanity of these sentences. We inspected these
randomly sampled counterfactuals to verify that
sentence flows were natural and desirable.

3.2.2 Causal Strengthening

For STRENGTHEN, we increased the strength of
causal statements from conditional causal (¢c2) to
causal (c1) by exploiting modal words. Similar
to negation, we first obtained the POS tags and
dependency trees for each sentence.

Algorithm 2 in the Appendix outlines the rule-
based pseudo-code. To summarize, the 5 linguistic
templates created converted modals based on the
dictionary: {‘could’, ‘should’, ‘would’} — ‘would’
and {‘can’, ‘may’, ‘might’, ‘will’} — ‘will’. If
modals interacted with verbs with the lemma ‘be’,
we replaced ‘modal+be’ with ‘was’ instead to con-
vey certainty in the causal meaning. For special
cases where the modal terms interacted with ‘have’,
thereby forming conditional perfect tense, we con-
verted the examples into simple past tense by re-
placing ‘modal+have’ with ‘had’. When a modal
was followed by an adverb (E.g. “can possibly”),
the adverb was removed to avoid any deviation of
the causal meaning from certainty.

Table A2 shows a randomly sampled example
per causal strengthening method when applied onto
the CSci corpus. Of the 213 available sentences,
we successfully augmented 174 of them.

3.3 Dataset Processing

7 duplicated examples existed in the original CSci
corpus and surfaced when we appended the edits
with the original sentences. For such scenarios,
we applied de-duplication based on priority rules
discussed in Appendix A.2.

As our augmentations would increase the sam-
ple size for particular class labels, we randomly
selected sentences to maintain the original class
distribution. Our primary analysis focuses on ran-
domly sampled datasets to eliminate the concern
that any improved performance might result from
increased data size or advantageous train set distri-
bution.® As a side note, since the final dataset size
is always slightly smaller than the original baseline

8The aim of our paper is to demonstrate that any improve-
ments in our scores are due to increased variations of examples
per class label. These variations must be meaningful for any
improvement in scores.
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Conversion Edit Type

Sentence

Original
REGULAR (EDIT)

TyG is effective to identify individuals at risk for NAFLD.
TyG is not effective to identify individuals at risk for NAFLD.

NEGATION REGULAR (EDIT-ALT) TyG is ineffective to identify individuals at risk for NAFLD.
SHORTEN TyG is ineffective
MULTIPLES is ineffective is ineffective is ineffective
Original Moreover, TT genotype may reduce the risk of CAD in diabetic patients.
STRENGTHEN

REGULAR (Edit)

Moreover, TT genotype will reduce the risk of CAD in diabetic patients.

Table 1: Examples of counterfactual causal sentence augments. Notes. Interventions are highlighted in green.
Causal Strengthening can also have SHORTEN and MULTIPLES edits but is excluded due to space constrains.

due to the de-duplication step, the final distribution
after random sampling slightly differs. The final
sample counts across class labels per augmented
dataset is reflected in Appendix Table AS.

3.4 Further Heuristics

Later in results Section 4.4.2, we observed that
simple edits which highlight the main counterfac-
tual phrase improved performance. Although these
heuristics resulted in non-grammatical sentences,
we believe that these edits explicitly emphasize
augmented keywords for the model to learn the lo-
cal syntactic changes better. Since we still trained
the model with the original sentences (in fact, the
majority), the model will not memorize on only
non-grammatical examples.

An example sentence is detailed in Table 1 with
the two heuristic options as follows:

* SHORTEN: We reduced the sentence length
based on target/root word to cover a mini-
mally interpretable phrase based on depen-
dency parser. The final sentence might not be
a consecutive slice from the original.

* MULTIPLES: We defined a phrase as
one word before and after the target/root
word (i.e. PhraseLength = 3). Phrases
were then duplicated by a multiple of
OriginalSentenceLength/PhraseLength
rounded to the nearest integer. This ensured
that the final sentence was up to as long as
the original length. Note that in the EDIT-ALT
example of Table 1, “is ineffective" represents
“is not effective"”. Thus, although the actual
phrase length was 2, the intended meaning
is based off the latter phrase that had a
length of 3. Hence, we maintained a fixed
PhraseLength for all sentences.

3.5 Out-of-domain Testing

In addition to training and validating on the CSci
corpus, we also applied our trained models on two
other datasets to demonstrate that exposing models
to meaningful counterfactuals during training helps
in OOD settings.

While the CSci corpus was constructed from sci-
entific PubMed-based sentences, the SCITE (Li
et al., 2021)° corpus comprised of general sen-
tences extended from the SemEval 2010 Task 8
dataset (Hendrickx et al., 2010). On the other hand,
AltLex (Hidey and McKeown, 2016)'? contained
sentences from English Wikipedia that included
causal relations signaled by lexical markers. In
AltLex, sentences can be duplicated if they have
multiple relation markers and entities. Thus, we
had to revise the corpus such that if a sentence had
any causal relation, the sentence was labeled as
causal and only one example was retained.

Additionally, because SCITE and AltLex have
binary labels, we created two measures of accuracy.
The first, ‘Acc’, considered only exact class labels
(no relationship (co) and causal (c1)) (i.e. pre-
dicting the other two labels is a misclassification).
The second, ‘Accgroup’, calculated accuracy after
grouping [no relationship, correlational] into no
relationship (cg) and [causal, conditional causal)
into causal (cy) to align with the binary labels.

In total, we tested on 4439 sentences from
SCITE and 37677 sentences from AltLex.

3.6 Modeling

In each setting, we trained and validated using
K = 5 folds, with 5 epochs per fold. In both
neural network set-ups, we used the standard cross-
entropy loss for multi-class classification. For
OOD testing, we took the majority prediction from

‘https://github.com/Das—Boot/scite
Yhttps://github.com/chridey/AltLex
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the five trained models across the five folds. We
implemented two models as follows:

3.6.1 BERT+MLP (MLP)

We replicated the best performing model on
the CSci corpus (Yu et al., 2019) which was a
BioBERT (Lee et al., 2020) plus multi-layer per-
ceptron (MLP) pipeline. The default architecture
used BioBERT embeddings fed through a single
MLP layer serving as the classifier.

3.6.2 BERT+MLP+SVM (SVM)

Instead of applying LinearSVM based off unigrams
and bigrams like the original authors (Yu et al.,
2019), we believe a fairer comparison would be
to use BERT embeddings as inputs into an SVM
model. To allow for representation updates, for
each sentence (s), the BiIoBERT encoder was first
applied. Next, the BERT pooled output!! (2) ran
through two MLP layers (M LP; and M LP,) to
predict the class labels. After training, the second
layer was discarded, and the hidden representation
(r) was fed as fixed inputs into the SVM classifier.
The equations below outlines this pipeline,

2z = BERT(s), zeRM (1)
r=MLP|(z), r e RM )
0= MLP(r), o€ R° 3)
p=SVM(r), peR!, 4)

where, p represents the final predicted label, and
hi1 = 768, ho = 24, and ¢ = 4.

4 Results & Discussion

4.1 Improvement over Baseline

Table 2 reports our performance on the CSci cor-
pus. For the MLP baseline model, we were un-
able to exactly replicate the reported scores by Yu
etal. (2019) of 90.1% accuracy and 88.1% macro F-
score: We achieved slightly lower scores of 89.15%
and 87.01% respectively. For SVM, our proposed
implementation using updated BERT embeddings
with a detached head was superior over Yu et al.
(2019)’s unigram and bigrams method as we ob-
served significant improvements of accuracy from
77.2% to 88.86% and macro F-score from 72.2%
to 86.95%.

In our experiments, including a mix-
ture of edits (NEGATIONXSHORTEN with

"Pooled output takes the hidden state from the first token.

STRENGTHEN XREGULAR) during training re-
turned the best performance across all metrics.
Accuracy improved by 1.35% over our MLP
baseline, achieving Accp,iy of 90.60%.'2 Notice
that we found improvements of accuracy and
F-score beyond the original reported scores, even
though our replicated scores were lower. The SVM
model also demonstrated that including a mixture
of edits during training improves performance,
but in this setting, NEGATION X MULTIPLES with
STRENGTHEN XREGULAR performed the best on
average across metrics.

A possible explanation for our findings is that
we successfully exposed our models to more sen-
tence types of the real world. Furthermore, we
intentionally created augments around label bound-
aries (i.e. the minor edits changes the sentences’
labels). Therefore, the model learns better for the
CSC task. Interestingly, for NEGATION, the heuris-
tic edits improved performance against baseline
more so than the REGULAR edits itself. Section
4.4.2 will expand on this finding.

4.2 Robustness on Edits

Table 3 highlights how current SOTA models are
not robust to minimally altered sentences that
changes in causal direction and strength.

To conduct the experiment, we randomly split
the available negated edits (n=381) by half, keeping
191 negated sentences for training and the remain-
ing 190 for testing. The 190 original sentences that
correspond to the negated test set were removed
from the original CSci corpus to avoid exposing
models to highly similar sentences during train-
ing.'> Models trained with this base train set dan-
gerously predicted 157 out of 190 test sentences
in the opposite direction as causal instead of no
relationship. A shockingly dismal test accuracy of
12.63% was attained at best, and prediction counts
are available in Appendix Table A6.

Our finding surfaces the problem that the mod-
els were likely memorizing key causal terms in-
stead of understanding sentence structure and flow.

"2The full original set achieved 90.33% accuracy if we
were to include the subset that is dropped out due to random
sampling. To arrive at this value, we predicted the labels for
this dropped-out subset like an OOD dataset, i.e. taken across
5-folds after training completes.

In experiments not shown, the models trained on the full
original CSci corpus almost certainly wrongly predicts the 190
negated sentences as causal To prove our point that models are
memorizing causal terms, we removed the overlapping sen-
tences to eliminate the possibility of the models memorizing
similar sentences in train and test set instead.



Conversion Edit Type MLP SVM
F1 [ Acc [Flo.iy [ Accorig | F1 [ Ace [ Floiy [ Accorig
Yu et al. (2019) 88.10 90.10 88.10 90.10 | 72.20 77.20 72.20 77.20
Ours (Base) 87.01 89.15 87.01 89.15 86.95 88.86 86.95 88.86
NEGATION REGULAR -1.55  -1.92  -0.19 -0.95 -233  -1.99 -1.18 -1.28
NEGATION SHORTEN +1.06 +0.89 +0.57 -0.04 | +095 +1.19 +0.38 +0.18
NEGATION MULTIPLES +1.46 +1.45 +0.93 +0.49 | +1.14 +1.28 +0.60 +0.32
STRENGTHEN REGULAR +1.75 +1.14  +0.80 +0.84 | +0.73 +0.49 -0.28 +0.20
STRENGTHEN SHORTEN +1.08 +091 +0.16 +0.62 | +0.86 +1.08 -0.24 +0.71
STRENGTHEN MULTIPLES +0.98 +0.98 -0.05 +0.57 | +0.62 +0.82 -0.50 +0.38
NEGATION X SHORT, STRENGTHENXREGU | +2.80 +2.33 +1.73 +1.35 | +1.45 +1.38 +0.14 +0.19
NEGATION X MULTI, STRENGTHENXREGU | +1.81 +1.35  +0.09 -0.10 +1.95 +1.81 +0.62 +0.61
Table 2: Performance on CSci corpus. Notes. BioBERT models trained on variations of CSci corpus (Original

plus edits), with edits matching existing labels and randomly sampled to match base class distribution. Results
are for validation set when trained and predicted over 5-folds. Macro F-score (F1) and accuracy (Acc) are in %.
Columns with lowerscript “Orig" are calculated for original sentences only (i.e. Edits are ignored). Rows below
“Ours (Base)" report relative changes to it. Best performance per column is bolded. Precision and Recall scores

are available in Appendix Tables A7 and AS8.

Conversion n MLP SVM

Original 190 | 12.63 10.53
NEGATION 190 | +61.05 +62.63

Original 87 | 77.01  73.56
STRENGTHEN | 87 | +11.49 +13.79

Table 3: Accuracy (in %) of BioBERT models trained
on a subset of CSci corpus and predicted on a fully aug-
mented difference set. Notes. The best performance
per section per column is bolded.

Therefore, they were unable to discern the nega-
tion involved. Inclusion of counterfactual examples
helped to fill this representation gap. We created
augmented sets by combining the base train set
with the 191 negated train sentences for retrain-
ing. Once we exposed the models to these negated
examples during training, the same models could
predict the right label with up to 73.68% accuracy.

We also tested the models’ efficacy on strength-
ened sentences converted from conditional causal
to causal. Once counterfactual examples were in-
cluded in the train set, improvements on test ac-
curacy was obtained to a significant, but smaller,
extent of +13.79% improvement at best.

4.3 Improving Generalization

In Table 4, we show that inclusion of edits dur-
ing training also helps to improve generalization
in cross-domain applications. Although our train
dataset was an academic and scientific-based text
represented by a BioBERT language model, we
show that when we applied the same model to the

general-based SCITE and Wikipedia-based AltLex
corpora, inclusion of edits improved classification
performance. For SCITE, we found improvements
in generalization for the SVM model but not the
MLP model. This could be due to our limited
edit schemes that might not complement SCITE’s
sentence types. Nevertheless, for AltLex, consis-
tent improvements for almost all edit combinations
were obtained across both models. Overall, the mix-
ture of edits with both conversion types once again
reported the best average performance, demonstrat-
ing how such augments can indeed aid help models
generalize.

4.4 Ablations

4.4.1 NEGATION vS. STRENGTHEN

While analyzing both result Tables 2 and 4, one
might wonder why the REGULAR edit schemes
helped improve performance for STRENGTHEN,
but not for NEGATION conversions. One possi-
ble explanation for this phenomenon is as such —
Since any sentence that did not represent any form
of correlational or causal meaning falls under cgp,
sentences that could fall under no relationship are
lexically diverse. In other words, it is challenging
to create edits that exhaustively reflect all ¢y sen-
tence types. By and large, our negation schemes
only covered one category of no relationship sen-
tences, namely, sentences that imply not causal.
On the other hand, conditional causal sentences
were relatively well-defined in the original corpus.
Therefore, STRENGTHEN did successfully repre-
sent most of the sentence types under co. Inclusion



SCITE AltLex
Conversion Edit Type MLP SVM MLP SVM
Acc | Accaroup | Ace | Accgroup | Ace | Accgroup | Ace | Accgroup

Ours (Base) 86.28 85.83 85.04 84.50 85.57 84.64 85.91 84.68
NEGATION REGULAR -1.46 -1.67 -0.36 -0.41 -0.22 -0.44 +0.18 +0.41
NEGATION SHORTEN -0.20 -0.27 +0.02 +0.02 +0.61 +0.54 +0.74 +1.05
NEGATION MULTIPLES -0.18 -0.16 -0.38 -0.38 +0.89 +0.95 +1.19 +1.58
STRENGTHEN REGULAR -0.27 -0.14 +1.01 +1.10 +0.51 +0.69 +0.54 +0.84
STRENGTHEN SHORTEN -3.40 -3.36 -0.11 -0.05 +0.30 +0.37 +0.99 +1.38
STRENGTHEN MULTIPLES -1.31 -1.28 -0.90 -0.90 +0.88 +0.99 +0.07 +0.29
NEGATION X SHORT, STRENGTHENXREGU | -0.02 -0.05 +0.79 +0.63 +0.94 +0.84 +0.31 +0.41
NEGATION X MULTI, STRENGTHEN XREGU | -0.18 -0.16 +0.56 +0.56 +0.74 +0.88 +1.11 +1.33

Table 4: Performance on OOD datasets. Notes. BioBERT models trained on variations of CSci corpus (Original
plus edits), with edits matching existing labels and randomly sampled to match base class distribution. For SCITE
and AltLex, predictions are from takes mode class over 5-folds. Accuracies (Acc) are reported in %. Columns
‘Acc’ considers exact class labels, while ‘Accgroup’ calculates accuracy after converting the four class labels into
binary labels. Rows below “Ours (Base)" report relative changes to it. The best performance per column is bolded.

of these edits during training thus proved useful
in highlighting the syntax that makes a sentence
causal or conditional causal to the models.

4.4.2 Need for Heuristic Edits

Earlier in Table 2, we noted that models exposed
to NEGATION XREGULAR edits were unable to ef-
fectively learn the label boundaries: Accoyq fell
by 0.95% for the MLP model and 1.28% for the
SVM compared to our baselines. However, when
we performed simple heuristics like MULTIPLES,
accuracy improved by +0.49% and +0.32% respec-
tively. As for SHORTEN, accuracy rose by +0.18%
for the SVM model, while the MLP model had a
negligible reduction of -0.04%.

We study the net change in classification counts
per model per label in Table 5 to explore this phe-
nomenon. Given class labels ¢ and j predicted by
a model and our baseline respectively, we report
the model’s NetChange; = Right; — Wrong; =
Zj;éz’ N(i=true)j — Zi;éj i (j=true)> where i, j =
cop, €1, C2, c3 and n refers to the number of observa-
tions. Right; (Wrong;) is the number of observa-
tions where a model predicts correctly (wrongly)
for class label 7 but baseline predicts wrongly (cor-
rectly). When either MLP or SVM model is trained
with the augmented NEGATION X REGULAR dataset,
the model became confused and predicted poorly
for causal (c1) and no relationship (cy) classes.
Once the edits were presented in the heuristic
forms, this situation improved.

We offer two plausible explanations for our find-
ings: (1) It could be the case that highlighting the
model to the short spans of (non-)causality aids its
identification of the exact borders it needs to be

sensitive to. (2) In the REGULAR form, non-causal
sentences are linguistically very similar to causal
ones. As mentioned in Section 4.4.1, these non-
causal sentences only represent one out of many
possible sentence types from cy. Therefore, feed-
ing some non-grammatical examples of cy might
help make it more explicit to the model that ¢y can
take a wide variety of sentences types. More work
is needed to confirm either hypotheses.
Interestingly, we observed improvements in clas-
sification for labels we did not edit (c3) in the ma-
jority of settings. This highlights the possibility
that exposing models to minimally perturbed sen-
tences around label boundaries might also improve
comprehension beyond the introduced edits.

4.4.3 Capturing Causal Strengths

One benefit of capitalizing on CSci’s four-label for-
mat is that our methodology is now able to identify
causal strengths in SCITE and AltLex corpora be-
yond the original binary labels. For SCITE, the
baseline MLP model originally labeled five sen-
tences as conditional causal. When training the
model with STRENGTHEN X REGULAR edits, four
remained as conditional causal (c3) while one of
the sentence'* correctly switched label to causal
(c1). For the baseline SVM model, seven sentences
were tagged as cp, of which four remained, and
the same one as MLP’s converted to ¢;. One!d cor-

4<In the present recession, which has been triggered by a
collapse in land prices, land-value taxation would reverse the
collapse - not by re-inflating a temporary speculative bubble,
but by inducing investment in infrastructure that permanently
enhances the utility of the land."

15<The glass tealight holder appears to float inside the metal
spiral as it spins in the gentle breeze."



. . MLP SVM
Conversion Edit Type Co ‘ C1 ‘ C9 ‘ C3 Total Co ‘ C1 ‘ C9 ‘ C3 Total
NEGATION REGULAR -13 -18 +10 0 -21 9 21 +1 -2 -31
NEGATION SHORTEN -15 49 49 +2 +5 -4 +7 +1 +6 | +10
NEGATION MULTIPLES -5 +9 +5 +9 +18 -1 +8 +3 +3 | +13

STRENGTHEN REGULAR -7 +12 +10 49 +24 | +1 +1 +5 -4 +3
STRENGTHEN SHORTEN -7 +11 46 +6 +16 0 +8 +3 +5 | +16
STRENGTHEN MULTIPLES -14 +13  +7 +10| +16 | -12 +11 +6 +3 +8
NEGATION X SHORT, STRENGTHENXREGU | +2 +20 +10 49 +41 2 +12 +1 4 +7
NEGATIONXMULTI, STRENGTHENXREGU | -16  +6 +5 +7 +2 +2 49 +2 +5| +18

Table 5: Net change in correct classification counts on CSci corpus compared to “Ours (Base)” for original exam-
ples. Note that NEGATION is the conversion of ¢c; —co and STRENGTHEN is the conversion of ¢y —c;;

rectly switched to no relationship (cg) as labeled,
while the last sentence'® converted to correlational
(c3), which is surprising because we did not edit
any sentences to or from class c3. Unfortunately,
the authors of SCITE tagged this sentence as causal,
which means this is considered to be mislabeled.
However, the sentence contains signals like ‘cor-
responds to’, which we believe should be correla-
tional, not causal. Our short qualitative analysis
again supports the earlier quantitative study that
exposing models to meaningfully augmented sen-
tences across labels could improve classification
even for the other uninvolved labels.

4.4.4 Other Experiments

We also explored other popular methodologies but
did not obtain consistent and significant improve-
ments from baseline. These include, (i) creating
more edit types (using masking, synonyms and
paraphrasers), (i) extending to a five-way classifi-
cation problem (by labelling negated edits as a new
class label representing not causal, separate from
no relationship (cp)), and (24%) experimenting with
some contrastive learning loss functions. Appendix
Section A.3 details these experiments further for
interested readers.

5 Conclusion & Future Work

We explored the task of CSC in a low-resource
setting. Following recent literature, we generated
counterfactual sentences via rule-based edits that
change sentences’ causal direction and strength.
We showed that SOTA CSC models worryingly
misclassifies on such augmented sentences. This
concern can be mitigated by including of our edits

16“The increase of the signal might correspond to formation

of the high-density excitons, while the reduction of the signal
originates from the relaxation."

during training. We demonstrated that our proposal
improves classification performance both on orig-
inal and edit sentences, and within and outside of
the corpus’ domain. However, for NEGATION, we
found that the regular format was insufficient to
teach effective decision boundaries given limited
data size and augmentation templates. Therefore,
proposed heuristic edits and found performance
improvements for both training and OOD contexts.

For future work, Yu et al. (2020)’s recent corpus
using scientific press statements annotated with
the same four class labels of causality is a promis-
ing dataset to replicate our findings upon. Addi-
tionally, we utilized rule-based augment schemes
which have a finite number of working templates.
Thus, our augmentations might not be lexically di-
verse. Therefore, our subsequent steps would be
to explore SOTA NLP augmentation and genera-
tion tools, like from Wu et al. (2021) and Ross et al.
(2021). Furthermore, it might be worthwhile to find
alternative models that can learn directly from the
augmented datasets without the need for heuristics.

Lastly, our work did not go beyond the “correct-
ness" of the claims. However, in reality, one has to
distinguish between causal effects as factual events
of real-world or at the level of “meta-causality"
(Andersson et al., 2020). Hence, grounding the
claims to world knowledge will be an important
research avenue to pursue.
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A Appendix

A.1 Negation Examples

Appendix Table A1 shows one randomly sampled
example per available negation method when ap-
plied onto the CSci corpus. As shown, most ex-
amples fell into “VB_3.1’, ‘VB_5.1", ‘JJ_1.3" and
‘VB_1.2’ types, for which the templates in Algo-
rithm 1 worked well for'”. For rarer method types,
like “VB_2.1’, the templates seemed to work poorly.
Further investigation shows that the error arose
from the POS tagging step: “Both" was tagged as
a VB but should have been a DT or CC, for which,
we have no template for at the moment, so the ex-
ample would have been correctly skipped. As for
‘VB_4.1’, the negated example was unnatural but
not grammatically wrong.

A.2 De-duplication

After appending original sentences with edits, we
conducted de-duplication. Appendix Table A3
shows problematic duplicates that had differing
labels. The original CSci corpus contained 7 du-
plicate sentences instances which were removed. 6
of them were exact duplicates (same label, same
sentence), while the last one (sentence S/N 1) was
duplicated with different labels (cyp and c3). We
manually changed this to retain only the cyp-labeled
example. The total data size thus reduced from
3061 to 3054. This explains the differences in data
size and distribution when comparing the original
versus augmented sets shown in Table AS5. We also
take this chance to highlight concerns that some
sentences in CSci were labeled contrary to how we
understood them.

Subsequent duplicates were handled via rule-
based removal. The motivation was to ensure iden-
tical sentences do not have different labels which
adds noise to our training. Our assumption was that
if an edit was performed but remained identical to
the original, the original must have been mislabeled.
We note that our rule-based de-duplication cannot
accommodate multi-label cases, as there was one
sentence (S/N 4) that correctly reflected both cg
and c; labels in different parts of the sentence, but
due to de-duplication, we only kept the ¢y label.

17We highlight the main POS tags used and mentioned: VB
(verbs, e.g. ‘eating’), 1] (adjective, e.g. ‘big’), IN (preposition
or subordinating conjunction, e.g. ‘by’), DT (determiner, e.g.
‘he’), CC (coordinating conjunction, e.g. ‘and’), MD (modal,
e.g. ‘should’).
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A.3 Other Experiments

Other experiments that were conducted but did not
produce significant improvements are mentioned
here.

Other Edit Types Three were explored:

e MASK: Based on POS, all nouns were re-
placed by the token “/MASK]".

* SYNONYMS: Using WordNet synonyms, we
skipped common words!'® and randomly sub-
stituted up to 5 words. Synonyms matched
the tense and plurarity of original words using
Pattern package, which we note, had imper-
fections.

* T5PARA: We ran the sentence through a pre-
trained TS-paraphraser model!® to generate
paraphrased sentences.

Appendix Table A4 shows an example sentence
with the above edits for the same causal sen-
tence of Table 1. With the SVM model, only
STRENGTHEN X SYNONYMS appended with origi-
nal increased accuracy on CSci by 1.01% while
STRENGTHEN XTSPARA increased accuracy by
0.39%. However, these findings could not be repli-
cated across to the MLP model nor for NEGATION.

Extending to a Five-way Classification In our
main set up, we focused on edits that matched the
original labels and were randomly sampled such
that the unified train set matches base class distribu-
tion for fairer comparison to baseline. Successful
NEGATION examples were labeled no relationship
(cp). However, to the extent that we believe negated
causal statements deserve a class of their own, we
also explore the event when negations were labeled
with a new level not causal (c4) instead. Based on
the set up for Table 3, we obtained even higher im-
provements in accuracy of +70.53% and +74.74%
for the MLP and SVM model respectively. This
could be due to the clearer distinction of a not
causal sentence structure compared to if we were
to combine them with other no relationship state-
ments. When we extended the MLP and SVM
model to work with such a five-way classification
set up, we did observe improvements in Accoyig

8We do not try to find synonyms for common words with
these POS types: 'DT’IN’, ’EX’, "CC’, ’MD’, "WP’, "WD’,
"WR’, ’UH’, ’RP’, ’SY’, PO’

Yhttps://huggingface.co/
ramsrigouthamg/t5_paraphraser


https://huggingface.co/ramsrigouthamg/t5_paraphraser
https://huggingface.co/ramsrigouthamg/t5_paraphraser

for SHORTEN, MULTIPLES and SYNONYMS edit
types. However, because we cannot truly balance
the dataset (random sampling does not apply here
because we have a whole new class), we cannot be
certain if the improvements were due to the larger
dataset or the model picking up on the boundaries.
Furthermore, the improvements did not generalize
on our OOD set ups.

Other Training Setups In addition to standard
cross-entropy based supervised learning, we also
explored contrastive learning schemes. In particu-
lar, we trained with Supervised Contrastive Loss
(SupCon) (Khosla et al., 2020; Chen et al., 2020)
and Triplet Margin Loss (Paszke et al., 2019). In
the contrastive setup, we introduced counterfactu-
als as the negative examples for each anchor sen-
tence. For positive samples, we used SHORTEN,
SYNONYMS and T5PARA augmentation strategies
derived from the original anchor sentence. How-
ever, our results did not provide performance im-
provements in either CSci or OOD datasets, high-
lighting the challenge in building a generalized
scheme of counterfactual generations. Exploring
avenues in contrastive learning remains a critical
future work.

A.4 Reproducibility Checklist

We include additional details about our main exper-
iment not highlighted in other parts of the paper.

¢ Computing Infrastructure: Tesla V100
SXM?2 32 GB

* MLP Hyperparameters: “atten-
tion_probs_dropout_prob": 0.1, “hidden_act":
“gelu", “hidden_dropout_prob": 0.1, “hid-
den_size": 768, “initializer_range": 0.02,
“intermediate_size": 3072, “layer_norm_eps":
le-12, “max_position_embeddings":
512, “num_attention_heads": 12,
“num_hidden_layers": 12, “type_vocab_size":
2, “vocab_size": 28996

SVM Hyperparameters: kernel: “linear",
“C": le-2

Average Runtime: For 5 epochs and 5 folds,
our baseline MLP model took approximately
22 minutes 51 seconds to train and validate
for the CSci dataset.

A.5 Additional Figures & Tables
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Algorithm 1: NegationRules — Causal negation scheme

e ® N & U s W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33

34
35

Input: edit_id, text_ids, text, pos, sentid2tid, max_try=2, curr_try=0

Output: text, method, edit_id

curr_try < curr_try + 1

curr_pos, curr_word < pos|edit_id], text[edit_id]
prev_pos, prev_word < posledit_id — 1], text[edit_id — 1] if valid else None
next_pos, next_word « posledit_id + 1], text[edit_id + 1] if valid else None
while curr_try <= max_try do

(&

(&

e

if curr_pos = V B then

if curr_word = AuxilliaryType then
if edit_id = max(text_ids) then
‘ Insert *not* in front of curr_word
else if next_word = DeterminerType then
Replace next_word with *no*
edit_id + edit_id + 1
else if next_word = NounType then
‘ Insert *not* behind of curr_word
else if next_pos = V B then
‘ Insert *no* behind of curr_word
else if edit_id = min(text_ids) then
‘ Replace curr_word with *Not* + lowercased curr_word
else if prev_word = NounType then
‘ Replace curr_word with *did not* + lemma(curr_word)
else if edit_id = max(text_ids) then
‘ Insert *not* in front of curr_word
else if prev_word = AuzilliaryType next_pos = IN|TO then
‘ Insert *not* in front of curr_word
Ise if curr_pos = NN then

curr_try)

Ise if curr_pos = J.J then

if edit_id = maz(text_ids) then
‘ Insert *not* in front of curr_word

else if next_word = PositiveConjuctionType then
‘ Insert *not* in front of curr_word

Replace next_word with *nor* else
L Insert *not* in front of curr_word

Ise if curr_pos = I N then
‘ Insert *not* in front of curr_word

36 Define method as method name if applicable edit occurs
37 return text, method, edit_id

// Method

// Method

// Method

// Method

// Method

// Method

// Method

// Method

Get head_id of head word of curr_word based on dependency tree
text, method, edit_id < NegationRules(head_id, text_ids, text, pos, sentid2tid,

// Method

// Method

// Method

// Method

“VB_1.

‘“VB_1.

‘“VB_1.

‘“VB_1.

‘“VB_2.

‘VB_3.

‘VB_4.

‘VB_5.

*JJ_1.

*JJ_1.

*JJ_1.

YIN_I.
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Method REGULAR (EDIT) REGULAR (EDIT-ALT) n

VB_1.2 Eyes with better vision at baseline had no Eyes with better vision at baseline abstained 35
more favorable prognosis, whereas eyes with a more favorable prognosis, whereas eyes with
initial macular detachment, intraoperative ia- initial macular detachment, intraoperative ia-
trogenic break, or heavy SO showed more un- trogenic break, or heavy SO showed more un-
favorable outcomes. favorable outcomes.

VB_1.3 Age, female sex, BMI, non-HDL cholesterol, Age, female sex, BMI, non-HDL cholesterol, 12
and polyps are not independent determinants and polyps differ independent determinants
for gallstone formation. for gallstone formation.

VB_1.4 Both general and central adiposity have no Both general and central adiposity refuse 2
causal effects on CHD and type 2 diabetes causal effects on CHD and type 2 diabetes
mellitus. mellitus.

VB_2.1 Not "both a low-fat vegan diet and a diet - 1
based on ADA guidelines improved glycemic
and lipid control in type 2 diabetic patients."

VB_3.1 Collectively, these findings did not indicate Collectively, these findings contraindicate 174
that energy-matched high intensity and moder- that energy-matched high intensity and moder-
ate intensity exercise are effective at decreas- ate intensity exercise are effective at decreas-
ing ITHL and NAFLD risk that is not contin- ing IHL and NAFLD risk that is not contin-
gent upon reductions in abdominal adiposity gent upon reductions in abdominal adiposity
or body mass. or body mass.

VB_4.1 The benefits of exercise for reducing risk of - 1
chronic disease, including CVD, are well not
known.

VB_5.1 A higher BMI and a greater prevalence of co- A higher BMI and a greater prevalence of 81
morbidities had not driven patients to seek comorbidities had attract patients to seek a
a more radical solution for their obesity, i.e., more radical solution for their obesity, i.e.,
surgery. surgery.

JJ_1.1  The effects of TRT on cardiovascular risk - 6
markers were not ambiguous.

JJ_1.2 Results are not encouraging nor demon- Results are discouraging and disprove that 15
strate that exercise was popular and conveyed exercise was popular and conveyed benefit to
benefit to participants. participants.

JJ_1.3  While LSG weakens the LES immediately, it While LSG weakens the LES immediately, it 53
does not predictably not affect postoperative does not predictably impede postoperative
GERD symptoms; therefore, distensibility is GERD symptoms; therefore, distensibility is
not the only factor affecting development of not the only factor affecting development of
postoperative GERD, confirming the multifac- postoperative GERD, confirming the multifac-
torial nature of post-LSG GERD. torial nature of post-LSG GERD.

IN_1.1 Although further investigation of long-term - 1

and prospective studies is not needed, we
identified four variables as predisposing fac-
tors for higher major amputation in diabetic
patients through meta-analysis.

Table Al: Example negated causal sentences per method Notes. ‘“Method” refers to NEGATION method label
as per Algorithm 1. REGULAR (EDIT) refers to direct negation from this Algorithm. REGULAR (EDIT-ALT)
refers to alternate intervention using same negation location, but based off antonyms from WordNet, if available.
Interventions, excluding lemmatization or case-changes, are highlighted in green. “n” is the number of successful

conversions applicable in CSci corpus.
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Algorithm 2: StrengthenRules — Causal strengthening scheme

e 0 N N B R W N =

e T
A R W N =2

17
18
19
20
21

22
23

Input: edit_id, text_ids, text, pos, sentid2tid, curr_try=0
Output: text, method, edit_id

Initialize M odalDict

curr_try < curr_try + 1

curr_pos, curr_word < pos|edit_id], text[edit_id]

next_pos, next_word < posledit_id + 1], text[edit_id + 1] if valid else None
nnext_pos, nnext_word < pos|edit_id + 2|, text[edit_id + 2] if valid else None

while curr_try <= max_try do
if lemma(next_word) = ‘be‘ then
Replace curr_word with *was*
Replace next_word with empty string
else if lemma(next_word) = ‘have’ then
if lemma(nnext_word) = ‘be‘ then
Replace curr_word with *was*
Replace next_word and nnext_word with empty string
else
Replace curr_word with *had*
L Replace next_word with empty string

else if curr_pos = M D & next_pos = RB then
Replace curr_word with M odal Dict[curr_word]
Replace next_word with empty string

else
L Replace curr_word with M odal Dict[curr_word]

Define method as method name if applicable edit occurs
return text, method, edit_id

/7

!/

/7

/7

/7

Method

Method

Method

Method

Method

‘MOD_1.

‘MOD_3.

‘MOD_3.

‘MOD_4 .

‘MOD_1.

Method REGULAR (EDIT) n

MOD_1.1 Physical therapy in conjunction with nutritional therapy may will help prevent weakness 98
in HSCT recipients.

MOD_2.1 The 157044343 polymorphism couldbe was involved in regulating the production of 42
IL-33.

MOD_3.1 Increased titers of cows milk antibody before anti-TG2A and celiac disease indicates that 21
subjects with celiac disease M had increased intestinal permeability in early life.

MOD_4.1 Physical rehabilitation aimed at improving exercise tolerance canpessibly will improve 13

the long-term prognosis after operations for lung cancer.

Table A2: Example strengthened conditional causal sentences per method. Notes. “Method” refers to strength-
ening method label as per Algorithm 2, resulting in augments as per REGULAR (EDIT). Interventions, excluding
lemmatization or case-changes, are highlighted in green. Words removed from original version are striked out and

highlighted in red. “n” is the number of successful conversions applicable in CSci corpus.
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S/N Sentence Conversion

1 | None the less, both artificially sweetened beverages and fruit | 1 1 Original
juice were unlikely to be healthy alternatives to sugar sweetened
beverages for the prevention of type 2 diabetes.

2 | There was no effect on lumen volume, fibro-fatty and necrotic | 1 1 NEGATION
tissue volumes.

3 | There are no indications that endogenous and exogenous gonadal | 1 1 NEGATION
hormones affect the radiation dose-response relationship.

4 | In two randomized trials comparing the PCSK9 inhibitor boco- | 1 1 NEGATION

cizumab with placebo, bococizumab had no benefit with respect
to major adverse cardiovascular events in the trial involving lower-
risk patients but did have a significant benefit in the trial involving
higher-risk patients.

5 | Altering margin policies to follow either SSO-ASTRO or ABS 1 1 STRENGTHEN
guidelines would result in a modest reduction in the national re-
excision rate.

6 | Adding an allowance for accumulation of thyroidal iodine stores 1 1 STRENGTHEN
would produce an EAR of 72 AZAvig and a recommended dietary
allowance of 80 AZAlg.

7 | " In arandomized controlled trial of 230 infants with genetic risk 1 1 STRENGTHEN

factors for celiac disease, we did not find evidence that weaning
to a diet of extensively hydrolyzed formula compared with cows
milk-based formula would decrease the risk for celiac disease later
in life.

Table A3: Sentences that had duplicates with differing labels. Notes. Rule-based de-duplication was performed,
with the final label kept highlighted in green. “Conversion” refers to the augmented edit dataset that when we merge
with the original, the duplicate appears. Do note that Sentence S/N 7, to us, should be labeled as no relationship
(co), but was labeled as conditional causal (c2) by original authors.

Conversion Edit Type Sentence
Original TyG is effective to identify individuals at risk for NAFLD.
REGULAR (EDIT) TyG is not effective to identify individuals at risk for NAFLD.
REGULAR (EDIT-ALT) TyG is ineffective to identify individuals at risk for NAFLD.
NEGATION ~ SHORTEN TyG is ineffective
MULTIPLES is ineffective is ineffective is ineffective
MASK [MASK] is ineffective to identify [MASK] at [MASK] for [MASK]
SYNONYMS TyG exists inefficient to describe someone at take chances for NAFLD.
TSPARA Ineffective for identifying individuals at risk for NAFLD.

Table A4: Extended examples of counterfactual causal sentence augments Notes. Interventions are highlighted in
green.
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Conversion Edit Type nc Nn.cg ND_cy D_C3 n
Original (Yu et al., 2019) 1356 494 213 998 | 3061
NEGATION REGULAR 1356 491 212 995 | 3054
NEGATION SHORTEN 1356 491 212 995 | 3054
NEGATION MULTIPLES 1356 491 212 995 | 3054
STRENGTHEN REGULAR 1353 494 209 995 | 3051
STRENGTHEN SHORTEN 1353 494 209 995 | 3051
STRENGTHEN MULTIPLES 1353 494 209 995 | 3051
NEGATION X SHORT, STRENGTHENXREGU | 1356 494 209 995 | 3054
NEGATION X MULTI, STRENGTHENXREGU | 1356 494 210 995 | 3055

Table A5: Number of sentences per class label after appending edits with base corpus, de-duplication and random
sampling. Note that the dataset corresponding to the first row did not undergo de-duplication (i.e. we used the
original corpus as is).

Conversion | True Label | ¢¢ ¢ ¢ c¢3 | Total
NEGATION co 24 157 5 4| 190
STRENGTHEN c1 3 67 16 1 87

Table A6: Number of sentences predicted per class label for augmented dataset when trained on only original CSci
corpus. Notes. Counts correspond to accuracy scores reported in Rows 1 and 3 of Table 3.

Conversion Edit Type P R F1 Acc  Poriy Rorig Flory Accorg
Yu et al. (2019) 87.80 88.60 88.10 90.10 | 87.80 88.60 88.10 90.10
Ours (Base) 86.02 88.13 87.01 89.15 | 86.02 88.13 87.01 89.15
NEGATION REGULAR -1.81 -1.20 -1.55 -1.92 | +0.29 -0.71 -0.19 -0.95
NEGATION SHORTEN +0.76 +1.45 +1.06 +0.89 | +0.46 +0.78 +0.57 -0.04
NEGATION MULTIPLES +1.47 +1.44 +146 +145 | +1.05 +0.81 +0.93 +0.49
STRENGTHEN REGULAR +1.96 +1.51 +1.75 +1.14 | +0.98 +0.58 +0.80 +0.84
STRENGTHEN SHORTEN +1.54 +0.54 +1.08 +091 | +0.52 -0.29 +0.16 +0.62
STRENGTHEN MULTIPLES +1.51 +0.38 +098 +0.98 | +0.53 -0.70  -0.05 +0.57
NEGATION X SHORT, STRENGTHENXREGU | +2.98 +2.57 +2.80 +2.33 | +1.90 +1.54 +1.73 +1.35
NEGATION X MULTI, STRENGTHENXREGU | +1.72 +1.91 +1.81 +1.35 | -0.02 +0.23 +0.09 -0.10

Table A7: Performance of BERT+MLP on CSci corpus. Notes. BioBERT models trained on variations of CSci
corpus (Original plus edits), with edits matching existing labels and randomly sampled to match base class distri-
bution. Results are for test set when trained and predicted over 5-folds. Precision (P), Recall (R), macro F-score
(F1) and accuracy (Acc) are reported in %. Columns with lowerscript “Orig" are calculated for base items only
(i.e. Edits are ignored). Rows below “Ours (Base)" report relative changes to it. The best performance per column
is bolded.
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Conversion Edit Type P R F1 Acc  Poriy Rorig Floryg Accopg
Yu et al. (2019) 73.90 71.10 7220 77.20 | 7390 71.10 72.20 77.20
Ours (Base) 86.28 87.70 86.95 88.86 | 86.28 87.70 86.95 88.86
NEGATION REGULAR 272 -185 -233 -199 | -0.89 -144 -1.18 -1.28
NEGATION SHORTEN +0.60 +1.36 +095 +1.19 | +0.16 +0.67 +0.38 +0.18
NEGATION MULTIPLES +1.18 +1.12 +1.14 +1.28 | +0.68 +0.53 +0.60 +0.32
STRENGTHEN REGULAR +0.97 +0.44 +0.73 +049 | -0.14 -0.46 -0.28 +0.20
STRENGTHEN SHORTEN +1.19 +0.54 +0.86 +1.08 | +0.17 -0.65 -0.24 +0.71
STRENGTHEN MULTIPLES +0.92 +0.26 +0.62 +0.82 | -0.21 -0.84 -0.50 +0.38
NEGATION X SHORT, STRENGTHENXREGU | +1.25 +1.69 +1.45 +1.38 | +0.00 +0.32 +0.14 +0.19
NEGATION X MULTI, STRENGTHENXREGU | +2.23 +1.62 +1.95 +1.81 | +0.89 +0.29 +0.62 +0.61

Table A8: Performance of BERT+MLP+SVM on CSci corpus. Notes. Yu et al.’s SVM method does not use
BERT inputs. Our BioBERT models are trained on variations of CSci corpus (Original plus edits), with edits
matching existing labels and randomly sampled to match base class distribution. Results are for test set when
trained and predicted over 5-folds. Precision (P), Recall (R), macro F-score (F1) and accuracy (Acc) are reported
in %. Columns with lowerscript “Orig" are calculated for base items only (i.e. Edits are ignored). Rows below
“Ours (Base)" report relative changes to it. The best performance per column is bolded.
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