Few-Shot Charge Prediction with Multi-Grained Features and Mutual
Information

Han Zhang', Zhicheng Dou*",Yutao Zhu?,Jirong Wen**
School of Information / Renmin University of China!
Gaoling School of Artificial Intelligence / Renmin University of China?
Université de Montréal
Beijing Key Laboratory of Big Data Management and Analysis Methods
Key Laboratory of Data Engineering and Knowledge Engineering, MOE
zhanghanjl@ruc.edu.cn, doulruc.edu.cn

Abstract

Charge prediction aims to predict the final charge for a case according to its fact description
and plays an important role in legal assistance systems. With deep learning based methods,
prediction on high-frequency charges has achieved promising results but that on few-shot charges
is still challenging. In this work, we propose a framework with multi-grained features and mutual
information for few-shot charge prediction. Specifically, we extract coarse- and fine-grained
features to enhance the model’s capability on representation, based on which the few-shot charges
can be better distinguished. Furthermore, we propose a loss function based on mutual information.
This loss function leverages the prior distribution of the charges to tune their weights, so the few-
shot charges can contribute more on model optimization. Experimental results on several datasets
demonstrate the effectiveness and robustness of our method. Besides, our method can work well
on tiny datasets and has better efficiency in the training, which provides better applicability in real
scenarios.

1 Introduction

Charge prediction aims to determine the final charge (e.g., manslaughter, traffic offence, or theft) for
a case by analyzing the textual fact description of the defendants’ behavior. As a subtask of legal
judgment prediction (LJP), charge prediction plays an important role in legal assistance systems, thus
has been widely applied in real scenarios. On the one hand, a charge prediction system can provide legal
professionals, such as judges and lawyers, a quick and effective reference to improve their work efficiency.
On the other hand, it can also provide non-legal professionals with some simple and useful legal advice.

Automatic charge prediction has been studied for decades. Early studies focused on applying math-
ematical or statistical methods, such as counting the specific attributes (e.g., crime time and place) of
the cases (Kort, 1957; Keown, 1980). Later, researchers began to frame the charge prediction as a text
classification problem and paid attention to designing manual features or extracting shallow features
from fact descriptions to predict the charge (Liu et al., 2004; Liu and Hsieh, 2006; Katz et al., 2017).
However, these features rely heavily on human expertise and are specific for different types of cases, which
limits their application to a larger range of domains. Recently, deep learning based methods have also
achieved promising results on charge prediction due to their superiority on automatic feature extraction
and combination (Luo et al., 2017; Zhong et al., 2018; Yang et al., 2019; Xu et al., 2020).

However, the charge prediction is still a non-trivial problem. One of the challenges is few-shot charges,
which is also the focus of this paper. In practice, the numbers of cases in different charges usually follow a
long-tailed distribution, which means their case data are highly imbalanced. For example, in the real-world
dataset Criminal (Hu et al., 2018), the most frequent ten charges (such as theft and intentional injury)
cover around 78% cases, while the lowest frequent fifty charges (such as scalping relics and tax-escaping)
cover less than 0.5% cases. Under this circumstance, deep learning based methods can hardly perform
well because the training data are insufficient for these few-shot changes. Therefore, how to deal with the
few-shot charges with limited cases is crucial for building a robust and effective charge prediction system.
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Figure 1: An example of charge prediction. The two few-shot charges have the same attributes, thus the
fine-grained features are necessary for distinguishing them.

To alleviate this problem, Hu et al. (2018) introduced the attribute features of the law, which are shared
by all charges, so as to transfer knowledge from high-frequency charges to low-frequency ones. He et al.
(2019) proposed a sequence enhanced capsule model and leveraged the focal loss to alleviate the few-shot
problem. However, we find that they still have some limitations: (1) The introduced attribute features
are artificial, and they are usually very discrete on the cases of the few-shot charges and thus contribute
less to distinguishing them from other charges. For example, the charge illegally granting loans and
illegally absorbing public deposits have the same characteristics on profit-making purpose and nonviolent
crime, and they can only be distinguished by more fine-grained characteristics such as the defendant’s
affiliation. (2) Existing works are all optimized by the cross entropy or its similar variants, and they do
not consider that the cross-entropy is easily affected by the prior distribution, which makes it difficult to
classify few-shot charges. For example, charge A has 1,000 cases and few-shot charge B has only 5 cases,
charge A contributes more to the cross entropy loss as the loss of each sample is directly added up.

To tackle these problems, in this work, we first propose using multi-grained features. We introduce
a convolutional network (CNN) with multiple kernels to extract coarse-grained features and a bilinear
CNN (Lin et al., 2015) to extract fine-grained features from the case descriptions. These two kinds of
features are then fused by a capsule network. The attribute features provided by Hu et al. (2018) are also
leveraged as additional explicit knowledge. The fine-grained features, fused features, and attribute features
are finally combined by a multi-layer perceptron for charge prediction. By this means, the representation
of each description can be greatly enhanced and the classifier can obtain more information for predicting
the charge. Second, we consider the prior probability distribution of different charges over the dataset,
based on which we construct a mutual information loss function. The few-shot charges can thus be paid
more attention during the training process. Finally, the whole model is optimized by both the charge
prediction and attribute prediction tasks. Experimental results on a series of datasets with different sizes
demonstrate the effectiveness and wide applicability of our method.

2 Related Work

2.1 Charge Predication

Early work on charge prediction focused on quantitative and statistical methods. For example, Kort (1957)
counted various facts in the case to predict the crime. Keown (1980) introduced a linear model and a
nearest neighbor method to predict crime. With the success of machine learning in some areas, researchers
begin to model the charge prediction problem as a text classification problem. The basic idea is to extract
features from the case description and make predictions by machine learning methods, such as linear
models, logistic model trees (Lin et al., 2012), or SVMs (Sulea et al., 2017). However, these methods are
built on manual features, which heavily rely on human expertise and are hard to apply on large datasets
with various charges.

Recently, deep learning based methods have achieved promising results on charge prediction or legal
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Figure 2: The framework of MFMI.

judgement prediction. For example, Wang et al. (2019) proposed a hierarchical text matching model
to predict the cases. Xu et al. (2020) improved performance by introducing all laws into legal judge
prediction task and building a relationship graph of all laws to distinguish the confusable cases. Liu et
al. (2019) used a seq2seq model with attention to predict the cause of the decision. Chen et al. (2019)
adopt gating mechanism to improve penalty prediction based on the charge. Pan et al. (2019) applied
multi-scale attention to deal with the cases of multiple defendants. To deal with the problem of few-shot
charge prediction, Hu et al. (2018) introduced the attribute characteristics (manually defined) as expertise
knowledge into the charge prediction task, while He et al. (2019) applied a focal loss and designed a
capsule network.

Different from the existing work, we propose to extract fine-grained features automatically from the
case descriptions to enhance the representation and design a mutual information loss function to take
the prior distribution of different charges into account. Both strategies are helpful in improving the
performance of few-shot charges.

2.2 Few-shot Text Classification

In recent years, some studies have focused on text classification with few-shot samples. Gao et al. (2019)
proposed a prototype network structure based on mixed attention. Considering the domain differences
of the text, Xu et al. (2018) proposed the lifelong domain word embedding. Yu et al. (2018) proposed
to integrate a variety of measures in cross-domain few-shot learning. For invisible classes and cold start
problems, Xu et al. (2019) proposed an open world learning model to deal with invisible classes. Geng et
al. (2019) proposed a dynamic routing induction method to encapsulate abstract class representations.

3 Methodology

We propose a multi-task framework based on Multi-grained Features and Mutual Information (MFMI)
for few-shot charge prediction. The structure of our MFMI is shown in Figure 2. In general, MFMI
considers three different kinds of features (namely coarse-grained features, fine-grained features, and
attribute features) to represent a case and predict the charge based on the fused representations. To
facilitate the few-shot charge prediction, we propose a loss function based on mutual information, with
which the few-shot charges can contribute more on the model optimization, so the overall performance
can be improved. Besides, similar to (Hu et al., 2018), we also add a supplementary task to predict
whether the predefined attributes are contained in the fact, which is reported to be helpful in improving
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the performance. As a result, the whole model is trained with both our proposed mutual information loss
on charge prediction and a cross-entropy loss on attribute prediction.

3.1 Task Formalization

Before introducing our model, we first give the formalization of the charge prediction task. Formally,
assuming a fact description (text) containing n words as X = (wy,--- ,wy,), where w; € D, and D is the
fixed dictionary, the model is asked to predict (classify) the charge y € Y of the fact from the predefined
charge set Y. Besides, as suggested by (Hu et al., 2018), we also predict the common attributes of the law
articles as a supplementary task to boost the performance on few-shot charges prediction. It has the same
input sequence X and aims at predicting the corresponding fact-findings of attributes p = {p1,--- , px }
according to the fact. Here, k is the number of attributes, and p; € {0, 1} is the label for a certain attribute.
Generally, the charge prediction can be treated as a (multi-class) text classification task, while the attribute
prediction can be regarded as a binary classification task.

3.2 Coarse-grained Features

As illustrated in Figure 2, the case description X is represented as a sequence of embeddings X by a
looking-up operation on a pre-trained embedding table E:

X = e, e, - ,e,], e; =Look-Up(E(w;)), (D

where X € R™*?, and e; € R? is the embedding of the i-th word wj in the fact description.
To further enhance the representation of the word, we apply 1D CNNs with different kernels over the
embedding sequence and compute the coarse-grained features as:

XY = ID-CNN(X, s¢), te[1,T], 2)

where s; is the kernel size of the ¢-th CNN and 7" is the number of CNNs. With different kernels, the
semantic information in the consecutive words can be integrated together. For example, if s; = 2, we
can obtain a sequence of bigram representations. As these features can only reflect shallow semantic
information, we call them coarse-grained features. Note that we apply zero padding during the convolution,
thus Xtc has a dimension of n X m, where m is the number of output channels. Other neural networks,
such as RNN (Lai et al., 2015), can also be applied to represent the word sequence, here we choose CNN
because it can be computed in parallel and provide better efficiency in a real system.

3.3 Fine-grained Features

In charge prediction, some charges usually have the same or similar fact descriptions. For example, the
few-shot charge illegally granting loans and illegally absorbing public deposits are both nonviolent and
have a profit-making purpose. It is hard to distinguish them based on only the coarse-grained features.
Therefore, we propose to leverage a bilinear CNN module to extract fine-grained features for better
distinguishing the charges. Bilinear CNN can integrate the information from two sub-CNNs by a bilinear
transformation. In the original CNN structure, the features are usually refined through a max-pooling
or mean-pooling operation, which can only take the first-order information into account. However, the
pooling function of a bilinear CNN calculates the outer product of different feature channels. The outer
product can capture the pairwise correlation between feature channels, providing a stronger characteristic
representation than traditional CNNGs.

Specifically, considering two 1D convolutional operations f4(X, ) and fg(X,!) computing at the
position [ of the embedding matrix X, the bilinear transformation can be described as:

Bilinear(fa, f5) = fa(X, )" f5(X,1). (3)

As aresult, if f4(X,1) and fp(X,[) have m4 and mp channels respectively, the dimension of obtained
features after bilinear transformation will be m 4 x mp. Then, the features at all positions are aggregated
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by sum-pooling and produce an integrated feature representation ®(X) as:

®(X) =) _ Bilinear(f4, f5). “)

leL

Finally, the output ® of the bilinear transformation is flattened as a vector:
V = Flatten(®(X)). 5)

To alleviate the overfitting problem (Lin et al., 2015), a signed square root and a L2 normalization are
usually applied on v and output the fine-grained features X:

V' = sign(V)y/[V], X" = V//||V]]. (6)
3.4 Capsule Layer

A typical problem of CNNss is that they cannot obtain the relative position information among extracted
features. To deal with this problem, we apply a capsule network (Sabour et al., 2017) to integrate the
spatial information and fuse the features for better representation. Compared with traditional neural
networks, the basic unit of capsule network is the capsule, which conducts a series of operations on
input vectors rather than scalars. The connections between capsules are implemented by a dynamic
routing mechanism, which contains several affine transformations and nonlinear functions®. Here, we use
Capsule(-) to denote a capsule layer.

In particular, we use the capsule layer to aggregate the coarse-grained features X and fine-grained
features X! by:

X% = Max-pooling(X{,--- | X%), X®P = Flatten(Capsule(X® @ X)), (7)

where & is the concatenation operation. With such a capsule network, the spatial information of the
features can be integrated into the refined representations.

3.5 Attribute Features

Inspired by (Hu et al., 2018), we also extract attribute features from the fact description. These attribute
features are shared by various charges, thus can transfer knowledge from high-frequency charges to
low-frequency ones.

Specifically, the attribute features are computed based on the coarse-grained features X¢'. First,
we calculate attention weights a = {ay,--- ,a;} for all attributes, where a; = [a;1, - ,a;,]. For
Vi € [1,k] and Vj € [1,T7, a; ; is calculated by:

exp(tanh(W“X?)Tui)
i :
ST exp(tanh(WeXE) Tu)

where u; is the context vector of the i-th attribute (randomly initialized) to calculate how informative an
element is to the attribute, and W is a weight matrix (parameter) shared by all attributes. Thereafter, we
can obtain the fact-aware attribute features as:

®)

T
X = a X ©)
t=1

These features will be used for both charge prediction and attribute prediction (introduced in Section 3.7).

3.6 Aggregation and Prediction

To aggregate all obtained features, we concatenate them together and apply a multi-layer perceptron
(MLP) to fuse them. Finally, the distribution Z,, of all crimes is calculated as:

Z, = MLP(X" @ XAP @ X4), (10)
X4 = Mean-pooling(X{, - - -, Xih). (1)

9We suggest the reader to refer to the original paper (Sabour et al., 2017) for the details of capsule network.
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3.7 Optimization

In general, our model is a multi-task learning framework. Both a charge prediction loss and an attribute
prediction loss are used for optimizing our model.

3.7.1 Charge Prediction Loss based on Mutual Information

As a multi-class classification problem, charge prediction is often optimized by a cross-entropy loss.
Suppose that there are L categories, and the training data (x,y) ~ 7 have the distribution py(y|z), the
cross-entropy loss can be computed as:

L= E(m,y)w’r[_ 1ng9(y’l‘)], (12)
L
po(yla) = /> e?i. (13)
=1

Directly applying cross-entropy loss into the charge prediction task is not suitable because the numbers of
samples in different charge categories are extremely unbalanced. In this case, when we sample a batch
of data during the training process, only a few low-frequency charges are contained, so they have less
contribution for the optimization. As a result, the performance of the model on the few-shot charges is
worse than that on others.

Essentially, whether a charge is few-shot or not is determined by its frequency in the training set, which
is usually represented by the probability distribution. Therefore, the key point is how to integrate the prior
probability distribution p(y) of each charge into the loss function. When combining the cross entropy and
the prior probability distribution, we find that the form fits the mutual information naturally (Menon et al.,

2020):
log polylz) Z,, (14)
p(y)
which is equivalent to:
log py(ylx) ~ Zy +log p(y)- (15)

In other words, we integrate the prior probability distribution into the loss function by adding a term
log p(y) to Equation (12) as:

-1
Zy+logp(y) j
e“v p(i) 5 _
polylr) = 7T——— = 1+Z(())€Zl S (16)
S eZitlogp(i) iy Py
i=1
The mutual information loss function is defined by taking Equation (16) into Equation (12).

3.7.2 Attribute Prediction Loss

As suggested by (Hu et al., 2018), we also add a supplementary task, namely, the attribute prediction, to
improve the performance of our model on few-shot charge prediction. Specifically, we project the attribute
features into the label space and use softmax function to get the final prediction result p = [p1, - - - , pi]
as:

z; = softmax(MLP(X?)), p; = arg max(z;), (17)

where p; is the prediction result of the i-th attribute, and z; is the predicted binary probability distribution.
As each attribute is equally important in the model, we can easily calculate the attribute prediction loss by
summing up the cross-entropy of all attributes:

k2
Lotr ==Y > Zijlog(z), (18)
i=1 j=1

where Z; is the ground-truth label, and z; is the predicted probabilities distribution.
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Table 1: The statistics of all datasets.

Datasets Criminal-S Criminal-M  Criminal-L.  Criminal-T

Train 61,589 153,521 306,900 6,860
Validation 7,755 19,250 38,429 2,730
Test 7,102 19,189 38,368 2,684

3.7.3 Overall Loss

Finally, we combine L. and L., to get the overall loss function £ as follows:
L=L.+ v Lattr, (19)
where vy is a hyper-parameter, which is used to adjust the weights of these two loss functions.

4 Experiments

4.1 Datasets

We conduct experiments on two real datasets Criminal (Hu et al., 2018) and CAIL (Xiao et al., 2018).

Criminal: This dataset is for few-shot charges prediction. It contains three datasets with different sizes,
denoted as Criminal-S (small), Criminal-M (medium), and Criminal-L (large), respectively. Each sample
contains a fact description, a charge result, and attribute labels. The number of samples on these three
datasets are as shown in Table 1. All datasets are divided into training, validation, and testing set with the
ratio of 8:1:1.

In order to verify the performance of the model in terms of few-shot charges, all categories in the
Criminal-S (small) dataset, are divided into three different classes according to their frequencies, where the
charges with < 10 cases are low-frequency charges and the charges with > 100 cases are high-frequency
charges.

In practical situations, the number of cases for each charge is usually small. In order to further test the
robustness and performance of the models in a real world scenario, on the basis of Criminal-S (small), the
number of cases of all charges in the training set is limited to less than 100. That is, all high-frequency
charges become medium-frequency. This dataset is named as Criminal-T (tiny), the categories of samples
in the dataset is the same as the above three datasets. The statistics of all datasets are shonw in Table 1.

CAIL: This is a dataset for legal judgement prediction, which consists of three tasks (prediction of
applicable law articles, charges, and term of penalty). The total number of samples is 101,619. The
attribute information of each charge is not provided, thus we label it manually.

4.2 Baselines

On the Criminal dataset, we select two basic models and three state-of-the-art few-shot charge prediction
models as baselines:

CNN and LSTM: These are two basic models for text classification. For CNN, we use {100, 200} as
the number of output channels; while for LSTM, we set the size of the hidden states as {100, 200}.

Fact-Law Attention (Luo et al., 2017): It improves the accuracy of charge prediction task by introduc-
ing additional legal articles and using attention mechanism to obtain most relevant legal article to enhance
the representation capacity of fact description.

Secaps (He et al., 2019): It uses a capsule network to improve the model’s representation ability and
manually adjusts the category weights to improve the accuracy of few-shot charges.

Attribute-Attention (Hu et al., 2018): It constructs the features of artificial law attributes and predicts
the charges and attributes simultaneously to improve performance.

On the CAIL dataset, we compare our model with three state-of-the-art models, which learn three legal
judgement prediction tasks simultaneously, as introduced in Section 4.1:
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Table 2: Charge prediction results on the Criminal datasets. “{” indicates significant improvements
(p < 0.05) compared with the best baseline.

Criminal-S Criminal-M Criminal-L
Model Acc. MP MR MF1 Acc. MP MR MF1 Acec. MP MR MFI

CNN-100 919 505 449 46.1 935 57.6 481 505 939 660 503 54.7
CNN-200 92.6 S51.1 463 473 928 562 500 508 941 619 500 53.1
LSTM-100 93,5 594 58.6 573 947 658 630 626 955 698 670 66.8
LSTM-200 9277 600 584 570 944 665 624 627 951 728 667 679
Fact-Law Att. 92.8 57.0 539 534 947 667 604 618 957 733 67.1 68.6

Secaps 937 67.8 663 658 947 704 683 682 959 772 735 73.7
Att. Attention 93.4 66.7 692 649 944 683 692 67.1 958 758 737 73.1
MFEMI 93.7 69.37 70.57 682 949 702 75.00 71.00 959 787" 77.4" 76.4f

Table 3: Macro F1 values of various charges on the Criminal-S dataset. “4” indicates significant improve-
ments (p < 0.05) compared with the best baseline.

Charge Type  Low (<10) Medium High (>100)

# Charges 49 51 49

Secaps 52.4 59.2 85.9
Att. Attention 49.7 60.0 85.2
MFMI 55.91 63.51 85.7

Attribute-Attention-MTL: It has the same structure as the Attribute-Attention model, but is trained
on three judgement prediction tasks.

TopJudge (Zhong et al., 2018): It leverages the dependencies of sub-tasks to improve the performance
of legal judge prediction.

MPBFN (Yang et al., 2019): It designs a multi-view forward prediction and backward validation
framework to utilize the dependencies among sub-tasks of legal judge prediction.

4.3 Evaluation Metrics

Following existing studies (Hu et al., 2018; He et al., 2019), we adopt Accuracy (Acc.), Macro precision
(MP), Macro Recall (MR), and Macro F1 (MF1) as the evaluation metrics. Among them, MR and MF1
are the preferred evaluation metrics for multi-class classification problems, especially for those with
imbalance categories.

4.4 Experiment Settings

We adopt THULAC! for word segmentation on all fact descriptions in the datasets. The maximum length
of the fact description is set as 500. The pre-trained embedding table is obtained by Word2Vec (Mikolov
et al., 2013) with the dimension of 100. For CNN module, we use four kernels with the sizes of {2,4,8,16},
and the number of output channels is set as 64. For bilinear CNN module, we set the kernel sizes as
{8,12}, and the number of output channels is also 64. As for the capsule layer, we set the number of
capsule as the number of categories, and the dimension of each capsule is 32. The number of routings is 3.
Adam (Kingma and Ba, 2015) is applied as the optimizer with the learning rate of 1e-3. The settings of all
baselines are consistent with their original papers.

'nttps://github.cosm/thunlp/THULAC-Python
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Table 4: Charge prediction results on the tiny Criminal-T dataset. “{” indicates significant improvements
(p < 0.05) compared with the best baseline.

Acc. MP MR MFI1

Secaps 814 638 674 6338
Att. Attention 81.2 623 69.3 63.5
MFMI 83.9" 63.7 70.77 65.2f

Table 5: Charge prediction results on the CAIL dataset.

Acc. MP MR  MF1

TopJudge 82.10 83.60 78.42 79.05
MPBFN 82.14 82.28 80.72 80.72
Att. Attention-MTL 83.65 80.84 82.01 81.55
MFMI 84.20 81.34 8274 81.65

4.5 Experimental Results

Experimental results on the Criminal datasets are shown in Table 2 to Table 4. We can observe:

(1) In general, our MFMI achieves consistently better performance on all three sizes of datasets.
This indicates that our method has wide applicability over various application scenarios (sufficient or
insufficient data).

(2) Compared with accuracy, all methods perform poorly in terms of the Macro F1 metric. This is
mainly because of the imbalance of training samples among different charges, and indicates the shortage of
prediction for few-shot charges. However, our model achieves promising improvements (3.3%, 3.9%, and
3.3% absolutely on three datasets respectively), which demonstrates the robustness and effectiveness of
our model. To further validate the performance on few-shot charges, we compare the results of our model
with the two best baseline models on different frequency of charges. As shown in Table 3, we divide all
charges into three classes based on the case number. The charges with less than 10 samples are regarded as
low-frequency, while those with more than 100 samples are high-frequency. The rest charges are treated
as medium-frequency. By this means, we obtain 49 low-frequency charges, 51 medium-frequency charges,
and 49 high-frequency charges. From the results, we can see that our model significantly improves the
performance (6.68% and 5.83% compared with the baseline models) on both low- and medium-frequency
charges. These results clearly demonstrate the effectiveness of our model in dealing with few-shot charges.

(3) Specifically, on Criminal-S, MEMI achieves the best results in terms of all evaluation metrics. The
value of Macro F1 is significantly improved by 3.6% compared with the previous best method. This
proves the superiority of our method on small datasets. In practice, the number of samples for each charge
is usually very small. To mimic the application in such real scenario, we build a tiny dataset Criminal-T
(tiny) based on Criminal-S (small) and test the performance of MFMI and the other two best baselines.
Criminal-T contains only 12,274 samples from the original Criminal dataset. The results are shown in
Table 4. We can observe that MFMI achieves new state-of-the-art results on Accuracy, Macro Recall, and
Macro F1. The improvements are significant. This proves that our model is applicable in the real scenario
and is capable of dealing with few-shot charges.

The experimental results on the CAIL dataset are shown in Table 5. It is worth noting that all baselines
listed here are multi-task learning models, which are trained on three tasks (applicable law articles
prediction, term of penalty prediction, and charge prediction). They use much more data and obtain more
supervision signals. However, it is very interesting to see that our MFMI model achieves better results in
terms of Accuracy, Macro Recall, and Macro F1. This implies that by leveraging fine-grained features
and optimizing with the mutual information loss function, our method can make full use of the data and
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Table 6: Ablation results on the Criminal datasets. “{” indicates significant improvements (p < 0.05)
compared with the best baseline.

Criminal-S Criminal-M Criminal-L
Model Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

MFMI 93.7 69.3 70.57 682 949 702 75.0f 71.00 959 787 774 764'
w/oFF 92.1 63.1 688 63.6 93.6 664 737 681 940 701 769 723
w/CE 937 697 670 67.1 947 714 69.8 694 958 79.0 73.1 748

Table 7: The time (seconds) taken per epoch.

Model Criminal-T  Criminal-S
Att. Attention 200 2,150
Secaps 272 2,200
MFMI 19 150

provide better performance.

4.6 Ablation Study

To investigate the effectiveness of fine-grained features and our proposed mutual information loss, we
conduct an ablation study by removing them from the full model, respectively. The two variants are
denoted as “w/o FF” and “w/ CE”. The results are shown in Table 6. We can observe the performance
degradation when removing either module. Specifically, when fine-grained features are not used, the
performance of our model decreased significantly. The potential reason is that the fine-grained features can
effectively improve the representation capability of our model. Thus the overall performance is improved.
On the other hand, when replacing the mutual information loss with a normal cross-entropy (CE) loss,
the accuracy has less change but the Macro F1 decreases significantly. By checking the results, we find
that the performance on few-shot charges degrades more than the others. As the number of samples in
few-shot charges is limited, the overall accuracy is less affected. This result demonstrates that the mutual
information loss is effective on learning few-shot charges, which is consistent with our assumption.

4.7 Efficiency Analysis

We also compared the average time taken for each epoch during the training stage of our model and the
two best few-shot charge prediction models. As shown in Table 7, our model spends less than a tenth of
the time on both datasets compared to the baselines. This is because our model is based on several CNN
modules, and the parallel training ability is far better than baselines with RNNs. In practice, our model
with fast training speed is easier to deploy and apply.

5 Conclusion

In this work, we studied the problem of few-shot charge prediction. We proposed a multi-task learning
framework, where both the charge prediction and attribute prediction are learned simultaneously. We
extracted fine-grained and coarse-grained features to enhance the model’s capability of representation,
which are helpful for distinguishing the few-shot charges. Besides, we also proposed a loss function based
on mutual information to enhance the learning on few-shot charges. Experimental results demonstrated
the effectiveness of proposed methods on charge prediction, especially on the few-shot charges. Moreover,
further experiments showed that our method has better scalability and efficiency. In the future, we will
apply our method to other legal judgement prediction tasks and leverage the knowledge from other tasks
to further improve the performance.
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