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Abstract

Deep neural networks have achieved state-of-the-art performances on named entity recognition
(NER) with sufficient training data, while they perform poorly in low-resource scenarios due to
data scarcity. To solve this problem, we propose a novel data augmentation method based on pre-
trained language model (PLM) and curriculum learning strategy. Concretely, we use the PLM
to generate diverse training instances through predicting different masked words and design a
task-specific curriculum learning strategy to alleviate the influence of noises. We evaluate the
effectiveness of our approach on three datasets: CoNLL-2003, OntoNotes5.0, and MaScip, of
which the first two are simulated low-resource scenarios, and the last one is a real low-resource
dataset in material science domain. Experimental results show that our method consistently
outperform the baseline model. Specifically, our method achieves an absolute improvement of
3.46% F1 score on the 1% CoNLL-2003, 2.58% on the 1% OntoNotes5.0, and 0.99% on the full
of MaScip.

1 Introduction

Named entity recognition (NER) is a fundamental natural language processing (NLP) task aiming to
identify the names of people, places, organizations, and proper nouns in texts, which supports a wide
range of downstream applications (Huang et al., 2015; Kuru et al., 2016). The current state-of-the-art
methods for NER rely on abundant training data. However, manual annotation is expensive, which limits
the effectiveness of the model, especially in bio-medicine and material chemistry domains (Friedrich et
al., 2020). Many studies have investigated NER in low-resource scenarios, by transferring pre-trained
language representations on self-supervised or rich-resource domains to target domains (Ruder, 2019;
Gururangan et al., 2020). Others use the knowledge base to semi-automatically label extra data for
training (Zeng et al., 2015). Nevertheless, these methods usually require huge expertise knowledge to
obtain good performance.

Data augmentation has been proven effective to alleviate data scarcity in many NLP tasks, including
machine translation (Wang et al., 2018; Gao et al., 2019), text classification (Wei and Zou, 2019; Xie
et al., 2020), question answering (Raiman and Miller, 2017), etc. (Min et al., 2020). However, most
existing studies focus on sentence-level tasks, which generate sentences via word replacement, swap,
and deletion (Wei and Zou, 2019; Min et al., 2020) or generative models (Yu et al., 2018; Iyyer et al.,
2018). Different from these sentence-level NLP tasks, NER predict entities on the token level. That is,
for each token in the sentence, NER models predict a label indicating whether the token belongs to a
mention and which entity type the mention has. Therefore, applying transformations to tokens may also
change their labels. Due to this difficulty, data augmentation for NER is comparatively less studied.

In this work, we propose a novel data augmentation framework for NER in low-resource scenarios,
which generates examples with consistent labels and filters noises in the generated data. Concretely, our
approach contains two complementary components: 1) data augmentation via pre-trained BERT, which
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Figure 1: The input format of different data augmentation methods. DA, LA, LDA correspond to the
basic method, label additional method, and label description additional method. As shown in blue, LA
puts the label at the beginning of the sentence, while LDA uses the description of the label.

uses contextualized information to predict a masked word for data augmentation, and 2) data denoising
via curriculum learning, which filter noises in the augmented data for further boost learning. In data
augmentation via pre-trained BERT, our basic idea is to predict the masked words through pre-trained
language models (we use BERT (Devlin et al., 2019) in this paper), and then replace original words with
predicted words to generate new sentences. However, directly using BERT for prediction may generate
some words that mismatch the original labels. As shown in Figure 1, given a sentence “Tom bought a
T-shirt”, we replace “Tom” with [MASK] and predict it by BERT. The predicted words may be third-
person pronouns like “he”, “she” or wrong words, which causes mismatch between original labels and
generated words. In response to this issue, we propose a label-aware data augmentation method, which
considers the label information to make the predicted words match the original label more closely. In
data denoising via curriculum learning, we propose a new method based on curriculum learning to filter
augmented data. Considering that the synthetic data still contain noises, we design three evaluation
metrics to measure the generated examples by confidence, and then use curriculum learning strategy to
filter noises. Consequently, the performance is significantly improved.

To evaluate the effectiveness of our approach, we conduct experiments in both simulated low-resource
scenarios and real-world low-resource scenarios. In the former scenarios, we use two standard NER
datasets: CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) and OntoNotes5.0 (Pradhan et al.,
2013), which are randomly sampled to simulate a low-resource scenarios. In the latter scenarios, we
use a dataset from the material science domain: MaScip (Mysore et al., 2019). The results show that
our method obtains a significant performance improvement over baseline model (i.e., Bi-LSTM-CRF for
NER)

Our contributions are summarized as follows:

• We propose a novel data augmentation method for low-resource NER task, which uses pre-trained
BERT to generate label-aware synthetic data and curriculum learning strategy on generated data
denoising to improve data quality.

• We conduct experiments on two standard NER datasets and a real-world low-resource NER dataset.
Experimental results demonstrate the effectiveness of our methods in low-resource scenarios. More-
over, our methods can be easily applied to other token-level tasks.

2 Related Work

2.1 Low-resource NER

Deep learning-based methods achieve good performance for NER with abundant annotated data but
encounter various challenges when the labeled data is scarce. Therefore, more and more works pay
attention to improving the performance of NER in low-resource scenarios. Kruengkrai et al. (2020) use
sentence-level information in auxiliary tasks to improve model performance on low-resource languages.
Peng et al. (2019) use dictionaries to directly label data, ignoring entities that are not in the dictionaries.
This method greatly reduce the requirements on the quality of the dictionaries. Shang et al. (2018)
propose a revised fuzzy CRF layer to handle tokens with multiple possible labels and a neural model
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AutoNER with a new Tie or Break scheme. Han and Eisenstein (2019) propose domain adaptive fine-
tuning with unlabeled data to reduce the discrepancy between different domains. All of these methods
focus on existing resources and do not consider using synthetic data for data augmentation.

Several works have studied using data augmentation for NER. Mathew et al. (2019) train a weak tagger
to annotate unlabeled data through weak supervision. Dai and Adel (2020) summarize the sentence-level
and sentence-pair level data augmentation methods on the NLP tasks and apply some of them to the NER
task, including the token replacement, synonym replacement, mention replacement, and shuffle within
segments. Synonym replacement often relies on external knowledge, e.g. WordNet (Miller, 1995),
which is a manually designed dictionary that may have low coverage (or not available) for low-resource
languages. Ding et al. (2020) propose an augmentation method with language models trained on the
linearized labeled sentences.

Different from the above methods, our approach uses pre-trained BERT to predict the masked words,
which contains rich contextual information. Then the masked words are replaced with the predicted
words to generate new synthetic sentences, and the original label sequence remains unchanged.

2.2 Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a particular learning paradigm in machine learning, which
starts from easy instances and then gradually handles harder ones. Liu et al. (2018) propose a natural
answer generation framework based on curriculum learning for question answering tasks. Pentina et
al. (2015) use curriculum learning to study the best order of learning tasks in multitasking problems.
Platanios et al. (2019) propose a neural machine translation framework based on curriculum learning.
It decides which training samples to show to the model at different times during the training process
according to the estimated difficulty of the samples and the current capabilities of the model, which
greatly reduce the training time. Matiisen et al. (2020) propose Teacher-Student Curriculum Learning,
a framework for automatic curriculum learning, where the Student try to learn a complex task, and the
Teacher automatically choose subtasks from a given set for the Student to train on. Gong et al. (2016) em-
ploy the curriculum learning methodology by investigating the difficulty of classifying every unlabeled
image. The reliability and the discriminability of these unlabeled images are particularly investigated
for evaluating their difficulty. As a result, an optimized image sequence is generated during the itera-
tive propagations, and the unlabeled images are logically classified from simple to difficult. Wang et
al. (2019) propose a unified framework called Dynamic Curriculum Learning (DCL) to adaptively adjust
the sampling strategy and loss weight in each batch, which achieves the better ability of generalization
and discrimination.

In our work, we propose three different strategies to determine the difficulty of the augmented data
and add them to the original data for training in an easy-to-difficult order. As a result, the model can
preferentially learn from high-confidence data which contains more accurate information, and thus obtain
better performance.

3 Proposed Method

3.1 Overview

Figure 2 shows the overview of our approach, which effectively deals with insufficient data for low-
resource NER. The framework consists of two parts: data augmentation and denoising. Data augmenta-
tion mainly uses BERT (Devlin et al., 2019) to predict the masked words according to the context and
synthesizes new sentences by replacing the words in the original masked position to augment the training
set. Furthermore, we denoise the augmented data through curriculum learning (Bengio et al., 2009) to
obtain higher quality data. We will introduce the details of each part.

3.2 Data Augmentation via Pre-Trained BERT

In this section, we propose a data augmentation method based on pre-trained BERT for low-resource
conditions, which predict words based on the context to generate new synthetic sentences. We apply two
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Figure 2: The overall framework. The left is the data augmentation part using pre-trained BERT, and the
right is the denoising part using curriculum learning.

methods: basic method, which directly uses the BERT model for prediction, and label-aware method,
which attaches label or label description.

3.2.1 The Basic DA Method
Let a labeled sentence be x = (x1, · · · , xm) and the corresponding labels be y = (y1, · · · , ym), where
xi denotes the i-th token and yi denotes the i-th label. If xi is inside an entity, which can be judged by
its gold label (e.g. B-PER, I-PER, ...), we first mask xi in this sentence, i.e. masked token {xi} and
its context S. Then we use the masked sentence as the input of BERT. The final hidden representation
corresponding to the masked token is fed into a softmax layer to generate a sequence of vocabulary size
with a probability distribution p(·|S{xi}). Then we replace xi with the k words which have the highest
probability. For each sentence in the corpus, we perform the above procedure. Especially note that we
only mask the words inside the entity, not the non-entity temporarily. After substituting the masked
words with predicted words, our method generates some new sentences, which share the same label
sequence with the original sentence. Then these sentences are added to the original low-resource dataset.

3.2.2 Label-Aware Data Augmentation
Although, pre-trained BERT encodes the context information, there is still a lot of noises, such as pro-
nouns and wrong words, in the synthetic sentences. Considering that, we propose a label-aware data
augmentation method. Different from basic DA method, this method fine-tunes the BERT before predic-
tion to incorporate label information in the prediction process and improve the matching degree between
predicted words and their corresponding labels. We elaborate this process in two steps: BERT fine-tuning
and Synthetic Sentence Generation.

BERT Fine-tuning At first step, we fine-tune the BERT with label-aware original data, which allows
us to further train the hidden feature representation with label information. Here we consider two strate-
gies for label-aware data generation:

• Label Additional (LA), where we define all entity types (e.g. PER, ORG, ...) as the training signal.

• Label Description Additional (LDA), where we use descriptions0 of entity types as the training
signal.

As shown in Figure 1, the label (or label description) of masked entity words with [SEP] token is inserted
between [CLS] and the first word of the sentence. Then we fine-tune BERT with data obtained from
above steps.

0We obtain the label descriptions from https://spacy.io/api/annotation#named-entities.
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Algorithm 1 Label-Aware DA Method
Input: Labeled dataset D
Output: Augmented dataset D′

1: for each sentence do
2: for each word in sentence do
3: if this word in an entity then
4: Mask this word.
5: Put the label or label description in front of the sentence and separate with [SEP].
6: Use BERT to predict words on masked position.
7: Replace the original words with the predicted top k words with the highest probability to

generate new sentences.
8: end if
9: end for

10: end for
11: Add new sentences to the original dataset D to generate an augmented dataset D′.
12: Perform NER task on augmented dataset D′.

Synthetic Sentence Generation At the second step, we use fine-tuned model to make predictions on
original data. Note that input data is also transformed into label-aware format, which is the same as fine-
tuning data shown in Figure 1 (LA and LDA). Given a masked word xi and its label yi, we define its label
description as di. Different from basic DA method in Section 3.2.1 calculating p(·|S{xi}), we calculate
p(·|yi, S{xi}) or p(·|di, S{xi}) in label-aware DA method. The concrete process of label-aware method
is shown in Algorithm 1.

3.3 Denoising via Curriculum Learning

BERT is a powerful pre-trained language model, which make full use of contextualized information to
generate context-sensitive words. However, directly using original label sequence may cause mismatch
between predicted words and original labels, so it is necessary to denoise augmented data via curriculum
learning.

3.3.1 Synthetic Example Ranking
As the right part of Figure 2 shows, we train a Bi-LSTM model on original data. Then we use it to predict
augmented data without original data and take the predicted probability of the gold label corresponding
to each word, i.e. Pi, where i represents the i-th word in a sentence, as the basis for scoring. Based on
this process, we artificially formulate three curriculum indicators described in detail as follows:

• Average. We calculate the sentence score Ssent by averaging the predicted probabilities Pi of all
words in it. The lower the value, the more mismatch between the whole sentence and the original
gold label, and the more incorrect information contained, which may hurt the model training.

• Entity. Different from average, we only consider entity words and average their predicted proba-
bilities Pi as sentence score Ssent. Entities are more important than other words, because the named
entity recognition task is mainly to recognize entities in sentences. Same as above, the higher the
value, the more the predicted word matches the original label.

• Length. Using sentence length L as the score Ssent, we believe that the longer the sentence, the
more information it contains, which is more instructive for the training of the model.

Then we sort the sentences in descending order of sentence scores Ssent, corresponding to the easy to
difficult in the curriculum learning. We believe that prioritizing model to learn more correct information
can lead to an improvement in model performance.
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3.3.2 Incremental Training
We sample the sorted data according to the ratio of 0%, 5%, 10%, · · · , 100%, and add them to the original
data gradually. In the training process, we save the best model on each scale, and the next scale of data
uses the model parameters of the previous scale to train. That is to say, we only use a part of synthetic
examples to train our model, i.e., samples with high confidence, to reduce the impact of noises in the
data augmentation process.

4 Experimental Setups

4.1 Datasets

We consider both the simulated and real-world low-resource scenarios. In the simulated low-resource
scenarios, we conduct our experiments on two English NER datasets of different granularities: CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003) and OntoNotes5.0 (Pradhan et al., 2013). CoNLL-2003
is composed of newswire from the Reuters RCV1 corpus and contains four types of named entities:
location, organization, person, and miscellaneous. OntoNotes5.0 contains 18 entity types for the CoNLL-
2012 task, which includes broadcast conversations, broadcast news, newswire, magazines, telephone
conversations, and web texts. Pradhan et al. (2013) comply a core portion of the OntoNotes5.0 dataset
and describe a standard train/dev/test split, which we use for our evaluation. As our work mainly focuses
on low-resource NER, we randomly select four ratios for CoNLL-2003 and OntoNotes5.0 to simulate
the low-resource situation, as shown in Table 1.

CoNLL-2003 0.2% 1% 2.5% 5%
Sentence Num 29 149 374 749

OntoNotes5.0 0.05% 0.1% 1% 2%
Sentence Num 57 115 1158 2316

Table 1: The sampling ratio of the two datasets and the corresponding sentence number.

In the real-world low-resource scenarios, we conduct our experiments on a dataset from material
science: MaScip (Mysore et al., 2019)1. This dataset contains 230 synthesis procedures annotated by
domain experts with labeled graphs that express the semantics of the synthesis sentences, and 21 entity
types (e.g., Material, Number, Operation, Amount-Unit, etc.). We use the train/dev/test split provided by
the authors, which contains 1901/109/158 sentences respectively. To simulate a low-resource setting, we
also randomly select 50, 150, 500 sentences that contain all entity types from the training set to create the
corresponding small, medium, and large training sets (denoted as S, M, L, whereas the complete training
set is denoted as F) for each dataset. Note that we only apply data augmentation to the training set, and
the development set and test set remain unchanged.

4.2 Implementations

We regard the NER task as a sequence labeling task: given a token sequence, the model needs to predict
the label corresponding to each token, which includes position indicators (BIO schema) and entity types.
In our study, we use the Bi-LSTM-CRF model (Ma and Hovy, 2016) commonly used in NER tasks as
the experimental model. It consists of two parts: a neural-based encoder that creates context-sensitive
embedding for each token, whose weights are learned from scratch, the other is a condition random field
output layer, which captures the dependencies between adjacent labels. Besides, CNN is used to obtain
the character representation of each token, which is then concatenated with the word representation
and sent to the bidirectional LSTM layer. The hidden states of the forward and backward LSTM are
concatenated together as the final representation. We use a single-layer BiLSTM with a hidden state size
of 200. Dropout layers are applied before and after the BiLSTM layer with a dropout rate of 0.5. This
model is trained using SGD (Bottou, 2012) with an initial learning rate of 0.015 and batch size of 10. The

1https://github.com/olivettigroup/annotated-materials-syntheses

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1131-1142, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Method
CoNLL-2003

4
OntoNotes 5.0

40.2% 1% 2.5% 5% 0.05% 0.1% 1% 2%

None 25.72 38.74 50.65 60.65 2.64 12.43 46.71 56.00
EDA 11.14 33.67 41.86 51.69 -9.3500 7.23 13.82 40.46 48.60 -1.9175

DA 27.11 40.11 53.23 59.25 0.9850 12.37 21.43 47.63 55.39 4.7600
LA 29.03 42.20 51.88 61.48 2.2075 11.91 21.46 49.29 54.25 4.7825

LDA 27.90 41.38 52.46 59.91 1.4725 13.39 20.19 47.84 55.39 4.7575

Table 2: Evaluation results in F1 score. 4 column shows the averaged improvement due to data augmen-
tation. Bold means the result is significantly better than the baseline model without data augmentation.

learning rate of each epoch decays proportionally. We use randomly initialized word embeddings with a
dimension of 100. We stop training when the F1 score of the development set has not been updated for
10 epochs. We use the F1 score to evaluate the effectiveness of the models. The best model saved on the
development set is measured using the F1 score, and finally evaluated on the test set.

4.3 Experimental Results

4.3.1 Impact of Data Augmentation

We compare our methods (DA, LA, LDA) with the following models: None, the original Bi-LSTM-
CRF model without data augmentation; EDA (Wei and Zou, 2019), which includes the substitution of
synonyms, random insertion, random exchange, and random deletion of words. DA, LA, LDA corre-
spond to the basic method, label additional method, and label description additional method. For each
augmentation method, we take k = 20 predicted words to replace the masked words.

Table 2 provides the evaluation results on the test set. We can first conclude that our augmentation
framework improves over the baseline where no augmentation is used in most cases, and superior to EDA
in any ratio. For the CoNLL-2003 dataset, the four proportions increased by 3.31%, 3.46%, 2.58%, and
0.83% respectively compared to the baseline. For the OntoNotes5.0 dataset, the first three proportions
have increased by 10.75%, 9.03%, and 2.58% respectively, while the performance of the last proportion
has decreased slightly. This situation may reflect the trade-off between the diversity and validity of
augmented instances. On the one hand, we use BERT to generate different training instances to prevent
overfitting. This positive effect is especially useful when the training set is small. On the other hand, it
may also increase the risk of generating invalid instances. For larger training sets, this negative effect
may be dominant.

Second, the label additional method outperforms other augmentation on average, i.e. 2.21% for
CoNLL-2003 and 4.78% for OntoNotes5.0, although there is no single clear winner across both datasets.
However, there is little difference in the performance of the three methods on OntoNotes5.0, which may
be due to its more fine-grained entity types. For the label description additional method, the performance
is slightly lower than the label additional method. We consider that the label description contains more
information compared with the label, which leads to more fixed words predicted by the model and causes
a slightly negative impact.

Third, data augmentation techniques are more effective when the training sets are small. In both
datasets, data augmentation methods achieve more significant improvements when the training sets are
small, such as 0.2% of CoNLL-2003 and 0.05% OntoNotes5.0. In contrast, when the larger training sets
are used, the augmentation methods achieve less improvements and some even decrease the performance.
This has also been observed in previous work on machine translation tasks (Fadaee et al., 2017).

4.3.2 Impact of Curriculum Learning

Figure 3 shows the results of three different indicators via curriculum learning on CoNLL-2003 and
OntoNotes5.0 respectively. We take 1% of CoNLL-2003 LDA data and 0.1% of OntoNotes5.0 LDA

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1131-1142, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Figure 3: The result of average, entity and length strategies. The black dashed line represents the original
LDA method without curriculum learning.

data as examples and use the method described in Section 3.3 for data denoising2.
As can be seen from the figure, the entity indicator is more effective on both datasets. On CoNLL-2003,

the best result of 43.43% is achieved on 35% of the LDA augmented data, which is 2.05% higher than
the original LDA method. On OntoNotes5.0, the best result of 21.23% is achieved on 55% of the LDA
augmented data, which outperforms the original LDA method by 1.04%. It can be explained that when
we use data augmentation technologies mentioned in the Section 3.2.1 and 3.2.2, we also introduce noise
in the augmented dataset at the same time. The purpose of denoising method is to reduce the negative
impact of noise. Experiment results demonstrate the effectiveness of using curriculum learning for data
denoising. By giving priority to training high-confidence data except the noise part, the model gets better
performance.

4.3.3 Real Low-Resource Scenarios
We use the methods on MaScip, which include data augmentation method via BERT model (DA), label
additional data augmentation method (LA), and denoising LA data via curriculum learning (LA-CL),
but except the method of additional label description, because this dataset does not have an official
description of all labels. Note that when denoising, we only use the entity indicator among the above
three indicators as it has a best performance.

Method S M L F

None 59.95 70.05 72.59 76.30
DA 62.08 69.36 72.62 75.03
LA 62.36 68.65 73.35 76.31

LA-CL 62.02 70.41 74.31 77.29

Table 3: The result of MaScip3. None represent the baseline with unaugmented data.

Table 3 presents comparisons of our methods with the baseline. What we see is that our methods are
significantly better than the baseline on the real-world low-resource scenarios. Our methods outperforms
the baseline with 62.36%, 70.41%, 74.31% and 77.29% in terms of F1 score. It can be seen that the
denoising results have been improved to a certain extent in most of the experiments, including the full
amount of data. However, in the small-scale experiment, the denoising result is lower than the LA result.
We consider the reason is that the amount of data used to train the Bi-LSTM model for scoring is too
small, which makes the model learning less information. This situation leads us to fail to select the most
correct predicted words, which negatively feeds back on performance. Therefore, when the training data

2For OntoNotes5.0, we do not save the previous scale model, and all start training from scratch.
3We leverage GloVe embedding for these experiments.
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is particularly small, it is enough to use the data augmentation methods without denoising, by which can
achieve an obvious improvement. In summary, the experimental results on the MaScip dataset confirm
the effectiveness of our methods in real world low-resource situations.

4.4 Discussion

4.4.1 Performance on Entity Types
To further understand the effectiveness of our method, we investigate the performances for each entity
type. Table 4 and Table 5 describe the performance on F1 score for each entity type in 1% of CoNLL-
2003 data and 0.1% of OntoNotes5.0 data.

Label Num None DA LA LDA

LOC 72 46.04 47.71 48.98 47.43
MISC 38 11.04 17.37 21.78 20.33
ORG 131 38.93 39.10 43.55 40.64
PER 127 39.78 44.50 45.39 44.99

Table 4: The F1 score of each label of CoNLL-2003 (1%).

In CoNLL-2003, it is clear that our methods both outperform the baseline where no augmentation is
used on every entity types. Comparing these three methods, we can see that the label additional method
is significantly better than the other two. These results first reflect the effectiveness of the label-aware
method mentioned in Section 3.2.2. Second, regarding the reason why the LA’s score is higher than the
LDA’s, we consider that the predicted words by LA method are more diverse, which can prevent the
model from overfitting.

Label Num None DA LA LDA

CARDINAL 16 25.50 29.79 27.19 24.68
DATE 41 15.75 32.72 33.06 28.13

EVENT 2 0.00 0.00 0.00 2.11
FAC 9 0.00 1.14 0.00 0.00
GPE 28 13.35 25.05 23.17 25.31

LANGUAGE 2 16.67 0.00 8.70 30.30
LOC 7 2.52 10.77 8.70 9.16

MONEY 12 25.42 29.76 28.65 28.49
NORP 4 0.00 7.44 8.85 6.05

ORDINAL 2 24.54 50.24 30.87 40.25
ORG 82 6.81 10.15 11.16 9.51

PERCENT 18 35.12 43.21 56.83 56.85
PERSON 37 1.28 8.83 9.69 12.21

QUANTITY 2 0.00 0.00 0.00 0.82
TIME 6 0.81 1.55 2.01 0.76

Table 5: The F1 score of each label of OntoNotes5.0 (0.1%).

In OntoNotes5.0, due to the complexity of entity types, the three methods have different manifestations
in each entity type. It can be seen that the score of some entity types are zero, because the number
of sampled sentences is small, and some entity types have almost never appeared. Among them, we
omitted some entity types with all zero F1 score. Summarized as follows, the basic method is better on
‘CARDINAL’, ‘FAC’, etc., the label additional method is more effective on ‘DETA’, ‘NORP’, ‘ORG’,
and the label description additional method improves more significantly on entity types with lower scores,
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Example Method Generated Word

[MASK] buys
a gaming
company.

DA He She It he Michae . Joe Jack David Tony

LA(PER) He Sinclair Warner Simon Blackburn Morgan Hamilton Fox Anderson Harry

LA(ORG) Sony Blackburn Sinclair He Dell Britain Hamilton Leeds Fischer Intel

[MASK] went
bankrupt.

DA It He They and it he . She which they

LA(PER) Blackburn Leeds Middlesbrough Barrow Yorkshire York Hamilton Italy Sheffield Milan

LA(ORG) Salzburg Switzerland Zürich Austria Blackburn Bavaria Zurich Leeds Italy Juventus

[MASK] plans
this event.

DA Who He Currently She It FIFA who India Nike Israel

LA(LOC) Canada Ireland Australia WHO Bermuda FIFA UEFA Argentina Scotland Yorkshire

LA(ORG) WHO UCI UEFA Slovenia Slovakia Canada Yorkshire Britain Azerbaijan Schedule

Table 6: The table shows the change of the predicted word after using additional label information, where
DA means basic method, LA means label additional method, and the brackets indicate the label placed
before the sentence. Bold font indicates words that match the label. The words from left to right indicate
that the predicted probability is from high to low.

like ‘EVENT’, ‘PERSON’, ‘QUANTITY’. This may be due to the words predicted by the LDA method
more closely match the gold label for entity types that appear less frequently.

4.4.2 Case Study
We examine the effect of different methods on generating words. We use 2% of CoNLL-2003 to fine-
tune BERT and Table 6 lists some examples of generated words by the basic method and LA method
with different settings. All the examples can fill in at least two different entity types of words in the
masked position.

As known to all, BERT encodes semantic features from the input sentences for extracting global con-
texts. In the fist example, when directly using BERT for prediction, we can see that there are some person
names generated, which prove the ability of BERT to obtain contextual information. However, one prob-
lem with BERT is that the predicted words have a higher probability to be third-person pronouns or even
wrong words, which cannot increase the diversity of the augmented data and may hurt the performance.
Therefore, we propose the label-aware method described in Section 3.2.2 to minimize this weakness.
When we use label additional method with ‘PER’, more person names appeared, whose probability of
being predicted increased. Then when we change the label to ‘ORG’, some organization names are pre-
dicted by the pre-trained model. The situation goes to show the effectiveness of our methods. The same
conclusion can be drawn from the second and third examples. In summary, the LA method considers
more label information than the DA method, and makes the generated words contain less impurities.

5 Conclusion

In this paper, we propose a novel framework to generate high-quality synthetic data for low-resource
NER. We use pre-trained BERT to fully integrate contextual information to generate diverse synthetic
sentences, and leverage curriculum learning to denoise synthetic sentences for obtaining higher quality
augmented data. Our framework shows superior performance in both simulated low-resource scenarios
and real-world low-resource scenarios. In the future, we will explore the performance of our framework
when customizing label descriptions and on other token-level NLP tasks.
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