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Abstract

This paper tackles a new task for event entity recognition (EER). Different from named entity
recognizing (NER) task, it only identifies the named entities which are related to a specific event
type. Currently, there is no specific model to directly deal with the EER task. Previous named
entity recognition methods that combine both relation extraction and argument role classification
(named NER+TD+ARC) can be adapted for the task, by utilizing the relation extraction compo-
nent for event trigger detection (TD). However, these technical alternatives heavily rely on the
efficacy of the event trigger detection, which have to require the tedious yet expensive human la-
beling of the event triggers, especially for languages where triggers contain multiple tokens and
have numerous synonymous expressions (such as Chinese). In this paper, a novel trigger-aware
multi-task learning framework (TAM), which jointly performs both trigger detection and event
entity recognition, is proposed to tackle Chinese EER task. We conduct extensive experiments
on a real-world Chinese EER dataset. Compared with the previous methods, TAM outperforms
the existing technical alternatives in terms of F'1 measure. Besides, TAM can accurately identify
the synonymous expressions that are not included in the trigger dictionary. Morover, TAM can
obtain a robust performance when only a few labeled triggers are available.

1 Introduction

In this paper, we introduce a variant of named entity recognition (NER) task, which is event entity
recognition (EER). Different from NER task, EER aims at identifying the named entities corresponding
to a specific event type. Figure 1 demonstrates some examples of EER. In example a, text contains
both the event type ‘3¢ 5 iE " (illegal trading) and VW HEE(Z 4’ (illegal pyramid selling). Obviously,
the corresponding entity of event type ‘3 5 iE#’ (illegal trading) is the ‘organization B’. Hence, the
‘organization B’ is defined as the event entity of the query event ‘3¢ 515 #l” (illegal trading). Similarly,
the event entity of query event ‘75 H#{% %5’ (illegal pyramid selling) is ‘organization C’. Clearly, EER can
be seen as a selective NER task, which treats the ‘text’ and the ‘query event’ as the input, and identify
the ‘event entity’ as output. EER is widely useful in many semantic applications such as public opinion
analysis in financial domain, disease extraction in medical domain, etc.

Currently, however, there is no specific model to deal with EER task. To the best of our knowledge,
mainly three types of techniques can be used to possibly achieve EER: vanilla NER models, question-
answer (QA) models and NER+TD+ARC models. For the vanilla NER models, solving EER task may
be difficult due to the lack of event information. QA models can effectively incorporate the event infor-
mation in the form of ‘question’ input. However, how to derive the appropriate question with respect
to EER is still unknown. The NER methods that incorporate both the relation extraction and argument
role classification are the most relevant solutions to tackle EER. Specifically, we could adapt the relation
extraction component for event trigger detection. These solutions extract all the named entities and the
event triggers (i.e., trigger detection (TD)) in a sentence, and then identify the relation between each
named entity and the target event trigger respectively (i.e., argument role classification (ARC)). Here,
an event trigger is a word indicating the event type mentioned in the text. There are various forms of
NER+TD+ARC models. (Chen et al., 2015) proposed a pipelined DMCNN model to perform TD and
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| Example a: 23 7] A2} 4 W BB AL 24 7 CHiJ%, A 7 CYE LT & P56 AL S48 AR
| Company B was reported by Company A due to the illegal reduction of the bonds of Company C,
| the legal person of the Company C was previously arrested for Pyramid selling case.

P U S S S PP

| Example b:/A T AE FRALATIRI T — L858, HRHEME T 2AFB1000 7 5%

The chairman of Company A got some inside information in advance, and accurately sold 10
million shares of the Company B

Example c: A 7] AT HE AR IETL

The executive director of Company A was accused by breaking the laws.

|
|
(

Figure 1: The examples of EER task.

ARC tasks separately. However, the pipelined method shows poor performance for both TD and ARC,
because it cannot capture the inner dependency between TD and ARC tasks. Afterwards, some joint
models (JRNN (Nguyen et al., 2016), JMEE (Liu et al., 2018), etc), which jointly perform TD and ARC
tasks, are proposed. These models significantly improve the performance of the TD and ARC tasks.
In addition, models which jointly perform NER, TD and ARC tasks are also proposed, which further
improves performance (Nguyen and Nguyen, 2019). Although NER+TD+ARC methods are applicable
for EER tasks, however, these existing solutions have the following three defects.

o The three subtasks (NER, TD, and ARC) require enormous efforts for human labeling. In detail,
NER requires to label all the entities in the text. TD requires to label event triggers as much as
possible, and ARC requires to label the relationship between each entity and each event trigger.

e The ARC subtask is severely dependent on the event trigger detection. However in practice, event
triggers are not always identifiable. On the one hand, event triggers do not always exist in the texts.
In some cases, the event is expressed implicitly. Looking at example b demonstrated in Figure 1,
this sentence expresses an event ‘¢ 532 #1” (illegal trading) with no explicit event trigger. On the
other hand, for some languages (such as Chinese) where some event triggers are typically composed
by multiple tokens and have numerous synonymous expressions, it is challenging to compile all the
synonymous expressions of these event triggers with limited human efforts. For example, there
are many synonymous expressions for an event trigger ‘JEFE’ (crime), such as “JE | &’ (crime),
FLTFERAT (crime), “JBIE’ (crime), etc. Last but not least, some triggers can be associated with
multiple events. Takeing example c in Figure 1 as an example, trigger word ‘i 7%’ (break the
law) indicates both the event ‘W HEiF £ (crime) and the event /& ‘& 1 H]” (negative news of the
executive) happen. Therefore, multi-label classification for event triggers is needed, which is mainly
overlooked in the existing works.

e Previous methods are not directly aimed at dealing with EER task, some redundant process may
cause unnecessary training cost and result in poor performance, such as all the named entities have
to be recognized.

To this end, this paper proposes a novel trigget-aware multi-task learning framework (named TAM)
to achieve EER task. TAM joints two networks to deal with the two subtasks. In the first stage of the
TAM, a trigger detection network is proposed to perform the Chinese TD. It uses a local attention mech-
anism to catch the context information of each token, and then perform multi-label classificion of each
single token. The trigger detection network effectively improves the performance in intractable Chinese
event trigger identification. On the one hand, the trigger detection network is capable of identifying the
synonymous expressions of event triggers with limited human-labeling. On the other hand, it effectively
solves the multi-label classification of the event triggers, which is rarely considered in the previous TD
works. In the second stage, we introduce an event-featured transformer-CRF network to identify the
event entities directly. It discards the previous entity-trigger-relation classification workflow. Instead, it
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Figure 2: The network architecture of TAM.

identifies the event entities by full-text understanding with the help of the three event type relevant fea-
tures. This alteration effectively increases the robustness of the model with different amount of trigger
labeling, and significantly outperforms the NER-TD-ARC models in EER task where event triggers are
not explicitly mentioned or more than one event are included in the sentence. The main contribution of
this paper can be summarized as follows:

e We propose a novel trigger-aware multi-task learning framework for event entity recognition. TAM
jointly combine a trigger detection network and an event-featured transformer-CRF to achieve the
trigger detection and event entity recognition simultaneously.

o Experiments demonstrate that TAM significantly outperforms the existing technical alternatives for
EER tasks with single event, multiple events and with no explicit event triggers. Besides, TAM
also is effective at identifying the synonymous expressions of a Chinese event trigger, and is robust
against the availability of the labeled triggers.

2 The Proposed Algorithm

The proposed TAM mainly consists of two components: trigger detection network for event trigger
detection and event-featured transformer-CRF for event entity recognition. The architecture of the pro-
posed TAM is illustrated in Figure 2. At first, we briefly describe the process to build the event trigger
dictionary.

2.1 Event Trigger Dictionary Construction

Formally, an event trigger is a word which indicates a specific event mentioned in a text. For the com-
plex sentence involving multiple events and multiple entities (ref. Figure 1), the corresponding event
triggers naturally provide semantic segmentation between the sub-sentences related to different event
types. Therefore, event trigger detection is very helpful to solve EER task for the sentences with multi-
ple events and multiple entities.

However, a Chinese event trigger is typically composed by several tokens and would have many syn-
onymous expressions. Therefore, labeling Chinese event triggers is a tedious yet expensive task. We first
utilize a simple discriminative measure based on the frequency statistics to obtain the trigger candidates.
Specifically, we first perform Chinese word segmentation with an external Chinese NLP toolkit Jieba !.

'nttps://github.com/fxsjy/jieba
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Then, for each word w, we calculate the relatedness (. (w) towards an event type e as follows:

c(w,e) c(—e)

Be(w) =

cle) c(w,—e) M
where c(w, ) is the number of sentences containing word w and belonging to event type e, c(e) is the
number of sentences of event type e. c¢(—e) is the number of sentences of the other event types, c¢(w, —e)
is the number of the sentences containing word w but not belonging to event type e. We manually identify
the words as the triggers for event type e by examining the words with high 3. (w). Note that our trigger
labeling is not exhaustive due to the numerous synonymous expressions of event triggers. That is, the
built event trigger dictionary is limited on its coverage.

2.2 Trigger Detection Network

BERT is one of the most popular pretrained language models recently, the resultant contextual embed-
dings have achieved the state-of-the-art performance in various NLP tasks. Here, we utilize a Chinese
character based BERT-QA to obtain the contextual word embedding of each token in the given sentence.
The structure of the BERT-QA is shown as the pink block in Figure 2. Specifically, the sentence and
query event are fed into BERT-QA, where text and query are separated by a special token ‘[SEP]’. Then,
the contextual token embedding e® € R% of z-th token in the sentence is obtained through the pre-
trained Chinese Simplified character based BERT model?, where d; is the dimension size. Note that our
trigger labeling is not exhaustive due to the numerous synonymous expressions of event triggers. That
is, the built event trigger dictionary is limited on its coverage. In the proposed TAM, we first learn a
trigger detection network to identify the plausible triggers which will be utilized in entity recognition for
the target event.

We apply a linear mapping by transfering each token embedding e® into a feature vecotr e, with a
learnable weigth matrix Wy € R92*% in order to better adapt to the event trigger detection task. Note
that a Chinese event trigger often contains several tokens. Here, we utilize a context window of length
w centering at each token, [eZ % ... eZ™], to help identify whether the token is a constituent of a
trigger. This local context window could help us judge whether the token belongs to an event trigger and
what event type it is. In detail, we utilize an attention network to help e¥, find the most related contextual
information:

T,k
e exp(ey, €p,) )
T a1 ’ + ‘
e wexp(er) cem) + 3700 exp(el - em)
r—1 r+w
et= Y aj-et+ Y ajel, (3)
j=z—w Jj=z+1

where e denotes the contextual information around z-th token. Then, the contextual information is
concatenated with ey, to form the phrase embedding e;: e, = ej, @ e, where @ is the concatenation
operaton.

With the phrase embedding, we then perform a multi-label classification to idenitfy the event types of
the current token. The structure of the event mapping layer is shown as the orange block in Figure 2. Let
the total number of the event types is d3, the classification is performed as a regression:

t* = o(Wae} + b) )

where o (-) is the nonlinear sigmoid function, Wy € R%*24 i5 a learnable weight matrix. Each di-
mension of the t¥ € R% is the probability of the z-th token belonging to the corresponding event type,
which is exhibited in the green block of Figure 2. Finally, by using the event trigger dictionary as the

https://github.com/google-research/bert
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supervision, the loss of the trigger detection networks is calculate as the sum of the cross-entropy loss of
each token:

Jrp = — ZZH ) log (7 (4)) (5)

=1 j=1

where t/ € R% is the groundtruth multi-hot vector of j-th token, n is the sentence length.

2.3 Event-Featured Transformer-CRF

In order to reduce the strong dependency between TD and ARC subtasks existed in the current technical
alternatives, here, we introduce an event-featured transformer-CRF network (shown as the blue block in
Figure 2) to directly identify the event entities. Specifically, besides the contextual token embeddings
produced by BERT-QA, the event-featured transformer-CRF incorporates three additional features (ie
event type feature, trigger feature and position feature) related to the target event type to perform event
entity recognition.

Event Type Feature. We utilize another learnable event type embedding matrix E € R%*9 to encode
the features related to each event type. Given the target event type e, we can adopt look-up operation
to extract the corresponding feature embedding E(e). The utilization of the E(e) could enhance the
model’s awareness towards the target event type.

Trigger Feature. Since the trigger information provides both the information of what events occur in
the sentence, we utilize two sets of trigger feature embeddings to inject the trigger information detected
by the trigger detection network mentioned above. We first binarize the predicted event type vector t* of
each token into vector b” by utilizing 0.5 as the threshold. When t””( ) > 0.5, the corresponding value
b? (i) is set to 1; otherwise, b” (i) is set to 0. Then, we transform the b” into trigger embedding e} € R%
by looking up a learnable matrix W3: ef = W3b®. Here, ef encodes the event type information of the
z-th token in the sentence.

Position Feature. The position embeddings have been widely adopted in many relevant NLP tasks, such
as relation extraction (Chen et al., 2015). Here, we further encode the position of each token as a dg
dimensional embedding p*, using the work presented in (Devlin et al., 2019). Under the combination
of both position embeddings and trigger embeddings, the information of semantic segmentation between
sub-sentences of different events could be extracted by the transformer-CRF network.

The above three kinds of event type relevant features are concatenated together with the contextual
token embeddings produced by the BERT-QA to form the new token embeddings. Then, these updated
token embeddings are then fed into a transformer-CRF layer for event entity recognition. It includes
two sub-layers. The first layer is a transformer encoder model (Devlin et al., 2019), which is a powerful
feature extractor various NLP tasks. In the second layer, a conditional random field (CRF) is utilized to
learn the correlation between the tag correlations. As for the labeling, we utilize the BIO scheme in CRFE.
The maximum conditional likelihood loss is used to update the parameters as follows:

Jeer = — Y _logp(yslt.) 6)

=T
where p(y.|t;) is the probability of assigning label y, to token t,, n is the length of the sentence, and y,,
is the groundtruth label for token ¢,.

2.4 Loss Function

Since TAM is devised with a multi-task learning paradigm, for model training, we minimize the joint
negative log-likelihood loss function by combining Jgggr and Jrp as:

Jtotat = JEER + AJTD (7)

where A is the hyper-parameter which controls the training weight of the two subtasks. We use the
Adam algorithm to optimize the parameters with minibatches. The gradients are computed with back-
propagation.
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3 Experiments

3.1 Experimental Setup

Dataset. We evaluate the proposed TAM on the CCKS2019-task4 (named CCK19) dataset®>. CCKS19
dataset contains in total 19, 500 sentences from the financial news. After excluding the overlapping
sentences in both training and test sets, There are 16, 000 sentences in training set and 2, 400 sentences
in test set. It defines 22 negative event types (including type ‘None’). For each item in training set, the
event entity and the corresponding event type are annotated. For each item in test set, only query event
type is used as an input, and the event entity are used for performance evaluation. It is worth mentioning
that since the event triggers are not provided in CCKS19 dataset, we utilize the event trigger dictionary
constructed in Section 2.1.

Baseline Methods. Currently, there is no direct model to deal with EER task. We compare TAM with
the following related methods:

o BiLSTM+CRF was proposed by (Huang et al., 2015). It achieves a good performance on vanilla
NER tasks. We use the sentence and the annotated event entities while training, and only use the
sentence while testing.

e BERT-QA was proposed by (Devlin et al., 2019). It achieves the state-of-the-art performance in
question answer tasks. We use the sentence (paragraph) and the event type (question) as the input
of the BERT-QA, and treat the event entity as the answer.

e DMCNN was proposed by (Chen et al., 2015). It is a typical pipelined relation extraction method
(TD-ARC). In our settings, The NER is realized by BILSTM+CRE, TD and ARC are realized by
DMCNN.

e JRNN was proposed by (Nguyen et al., 2016). It is a typical joint relation extraction method (TD-
ARC). In our settings, The NER is realized by BiLSTM+CRF, TD and ARC are realized by JRNN.

e Joint3EE was proposed by (Nguyen and Nguyen, 2019). It is a typical joint relation extraction
method which combines three subtasks (i.e., NER-TD-ARC).

We further introduce several variants of TAM by excluding the trigger detection network (named
TAM /TD), event type feature (named TAM / EE), position feature (named TAM / PE), both event type
feature and position feature (named TAM / EE&PE), both trigger detection network and position feature
(named TAM / TD&PE), both trigger detection network and event type feature (named TAM / TD&EE)
to validate their impacts in an individual and combination manner. Note that when trigger detection
network is excluded, trigger embedding e} is equivalent to the zero vector.

Parameter Settings. For BiLSTM+CRF, DMCNN, JRNN and Joint3EE, word embeddings are ob-
tained using vanilla BERT with a dimension size 768 for a fair comparison. The same dimension size
applies for BERT-QA and TAM. For the trigger detection network used in TAM, the window size is set
to 5. For the event-featured transformer-CRF network, the dimension size of each feature embedding is
set to 48 (i.e., dy = d5 = dg = 48). The transformer encoding module utilizes 3 layers and 6 attention
heads. Loss weight A in Equation 7 is set to 0.05. The dropout rate is 0.5, and we apply the Adam opti-
mizer for parameter update. Three metrics: precision (P), recall (R) and F'1, are utilized for performance
comparison. We report the optimal F'1 performance of each method on the test set.

3.2 Results and Discussion

Event Entity Recognition. The results of different models on EER task are reported in Table 1. In
order to better demonstrate the traits of each kind of model, the test set are divided into three subsets:
1) sentences with a single event (1,366 instances); 2) sentences with multiple explicit events (1,005
instances) and sentences with no event trigger (29 instances).

*http://www.ccks2019.cn/?page_id=62
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With Trigger

Method Single Event Multiple Event

P R F1 P R F1 P R F1 P R F1

BiLSTM-CRF | 0.935 | 0.937 | 0.936 | 0.850 | 0.862 | 0.856 | 0.750 | 0.750 | 0.750 | 0.896 | 0.902 | 0.899
BERT-QA 0.949 | 0.945 | 0.947 | 0.920 | 0.923 | 0.922 | 0.848 | 0.875 | 0.862 | 0.935 | 0.935 | 0.935
DMCNN 0.952 | 0.949 | 0.951 | 0.895 | 0.955 | 0.924 | 1.00 | 0.094 | 0.171 | 0.926 | 0.940 | 0.933

Without Trigger Total

JRNN 0.954 | 0.938 | 0.946 | 0.890 | 0.949 | 0.919 | 0.591 | 0.406 | 0.481 | 0.922 | 0.936 | 0.929
Joint3EE 0.960 | 0.940 | 0.951 | 0.890 | 0.948 | 0918 | 0.647 | 0.344 | 0.449 | 0.926 | 0.936 | 0.931
TAM 0.958 | 0.958 | 0.958 | 0.935 | 0.941 | 0.938 | 0.848 | 0.875 | 0.862 | 0.947 | 0.950 | 0.948

TAM /TD 0.948 | 0.946 | 0.947 | 0.919 | 0.929 | 0.924 | 0.848 | 0.875 | 0.862 | 0.947 | 0.950 | 0.948
TAM /TD&PE | 0.949 | 0.945 | 0.947 | 0.921 | 0.931 | 0.926 | 0.848 | 0.875 | 0.862 | 0.935 | 0.938 | 0.937
TAM /TD&EE | 0.949 | 0.947 | 0.948 | 0.918 | 0.924 | 0.921 | 0.844 | 0.844 | 0.844 | 0.935 | 0.936 | 0.935
TAM /EE&PE | 0.957 | 0.943 | 0.955 | 0.926 | 0.930 | 0.928 | 0.897 | 0.813 | 0.852 | 0.943 | 0.941 | 0.942

TAM /EE 0.955 | 0.952 | 0.953 | 0.927 | 0.936 | 0.931 | 0.867 | 0.813 | 0.839 | 0.942 | 0.944 | 0.943

TAM /PE 0.956 | 0.956 | 0.956 | 0.932 | 0.936 | 0.934 | 0.871 | 0.844 | 0.857 | 0.945 | 0.946 | 0.945

Table 1: The performance of different methods in EER task. The best results are highlighted in boldface.

Trigger Detection
P R F1
DMCNN | 0.929 | 0.840 | 0.882
JRNN 0.929 | 0.844 | 0.884
Joint3EE | 0.928 | 0.844 | 0.884
TAM 0.930 | 0.865 | 0.895

Method

Table 2: The performance of different methods in TD task.

According to Table 1, it can be seen that TAM outperforms the other baselines in all the three subsets.
The BiLSTM-CRF model for vanilla NER delivers the worst performance in dealing with EER task. It
is reasonable since no event information is incorporated.

By comparing TAM with TAM / TD and BERT-QA, we can see that since TD effectively provides
the event type information and trigger position information, such as the three event type relevant features
for transformer-CRF, incorporating the trigger detection network and the additional event type relevant
features is notably beneficial for the downstream EER task with explicit event triggers, especially for the
sentences with multiple events. However, for the sentences with no trigger, the utilization of TD shows
trivial effect, BERT-QA, TAM / TD and TAM all show good performance in sentences with no event
trigger. Note that we take the target event type as input into BERT-QA. The observation suggests that
explicitly modeling event type information is very useful for EER task.

The three NER-TD-ARC based models (DMCNN, JRNN and Joint3EE) all show good performance
in dealing sentence with single event and multiple events, because these models are all relying on event
trigger detection. However, TAM shows better performance, especially in EER task with multiple events,
due to its good performance in TD task. Since NER-TD-ARC based models are strongly dependent on
event trigger detection, for the sentences where event is expressed implicitly (no event trigger exists),
these models perform much worse instead. Since DMCNN performs relatively better overall, we take
this model as a reference to examine the impact of different amounts of labeled triggers. Figure 3(a) plot
the performance patterns of DMCNN and TAM with different rates of dropping out the labeled event
triggers for supervision. The results shows that with few trigger labeling, the performance of DMCNN
model experiences a large deterioration. In contrast, TAM experience only a very small performance
decrease, which is much desired for real-world applications.

As to the several variants of TAM, we can clearly see that excluding each feature or their combina-
tions lead to performance deterioration to some extent. Seperately applying the position feature (i.e.,
TAM / TD&EE) or event type feature (i.e., TAM / TD&PE) shows little effect on EER task.However,
when solely applying TD, the performance of EER is much improved (i.e., TAM / EE&PE), which ver-
ifies that the upstream TD task is helpful for the downstream EER task. In addition, it is observed that
the inclusion of the event type feature and position feature both effectively enhance the performance of
the TD based EER task, especially for sentence with multiple events (i.e., TAM / EE and TAM / PE). It
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Figure 3: Ratios at different ranks (a), and performance with A values (b).

| Example a: |
| H 3 TH(000063) 14 55 57 i (R i) ER I i HLA 0 e gt |
There exists many doubts for the financial fraud of ZTE(000063), Xiacao I
| accused ZTE for intencially evading the crucial point of information disclosure |
TAM: 553l AF{E(Finacial Fraud) Others: J& (None) |

|
! Example b:

: e EER AR K2 HEN3AN, BB R AEE A 5 423300 75 70
i 134 victims are affectgd by Beijing Hengchang Keqiao branch, and totally 33
| million yuan of illegal absorption of public deposits is recovered

TAM: 3JEiLM fifi(Tllegal absorption of public deposits)  Others: J& (None)J.

Figure 4: Examples of trigger detection by TAM.

may because that the event type feature helps the model know which event trigger should be attentioned
and the position feature offers the position information between entity candidates and event triggers.
Trigger Detection. To evaluate the performance of the trigger detection network, we randomly pick 240
sentences from the test set and check the detected event trigger manually. Some event triggers are not
existing in the constructed trigger dictionary because they rarely appear in the training set, but they are
the synonymous expressions of the triggers covered by the dictionary. The classification performance are
listed in Table 2. As can be seen, the trigger detection network outperforms the other methods in terms
of F'1. Note that the synonymous expressions of the event triggers covered by the dictionary comprise
only a small proportion of the test set. Hence, the improvement over the baseline methods for TD task is
significant. Figure 4 gives two examples in which our model outperforms. It can be seen that TAM can
effectively identify the synonymous expressions of the trigger but other methods fail. By including ‘llf
1B (financial fraud) and ‘3EJEIR WA ARAF X (illegal absorption of public deposits) in the trigger
dictionary, TAM successfully predicts their synonymous expression ‘Wf §5 3¢ FE/E{R’ (financial fraud)
and ‘JEVEI fi#’ (illegal absorption of public deposits) as triggers. Furthermore, the results also show
that TAM precisely predicts the boundary of trigger phrases. These abilities are very useful for Chinese
trigger detection, where numerous synonymous expressions exist and these triggers usually contains
multiple tokens.

It is worth mentioning that the loss weight parameter A has a vital influence on the performance of
TAM. As can be seen in Figure 3, the performance of the downstream task EER is highly related with
the upstream TD task. When ) is too large, TAM losts its generation capability and becomes the same
as the other TD models. Also, if A is set too small, nothing will be learned. In our experiment, the trigger
detection network shows generation capability among [0.03,0.1].
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4 Related Work

Event entity recognition (EER) is a novel task which has wide applications in various scenarios such as
public opinion analysis, etc. Since our work jointly perform EER and TD, we will introduce the related
works in these two tasks separately. For the TD task, various methods have been proposed to realize TD
task by identifying the event trigger with supervision. In the early years, feature-based methods, which
incorporated diverse semantic clues (such as lexical features, dependency features, etc) into feature vec-
tors, have long been used for TD task (Ahn, 2006; Gupta and Ji, 2009; Liao and Grishman, 2010).
Recently, representation based methods have achieved the state-of-art performance. These methods rep-
resented the event mentions into embeddings, and then be sent to neural networks to classify the event
type (Chen et al., 2015; Nguyen and Grishman, 2015; Liu et al., 2016). However, current TD models
are mainly used in English corpus. For some languages where event triggers are generally in the form of
nugget (composed by several tokens), the trigger boundary mismatch problem severely deteriorates the
effectiveness of the TD models (Chen and Ji, 2009). To solve that, (Li et al., 2012; Li and Zhou, 2012)
defined manually character compositional patterns for Chinese event triggers. (Ghaeini et al., 2016) first
applied a neural network based model FBRNNS to identify event trigger nugget. Besides, (Liu et al.,
2019) proposed a nugget proposal network to realize Chinese TD by exploiting character compositional
structure of Chinese event triggers. Although supervised TD models achieves a good performance in
most TD tasks, these methods also require too many labeling labors. Some semi-supervised methods
were proposed to relieve the cost of labeling (Liao and Grishman, 2011; Ferguson et al., 2018).

For the EER task, to the best of our knowledge, there is no previous works directly dealing with it.
Previous NER methods are a clue for solving EER since they both aim at identifying named entities.
However, NER method lacks event information. Previous NER+TD+ARC models are another clues for
dealing with EER. Difference lies on that NER+TD+ARC aims at classifying the role of the arguments
for an event type, but EER aims at recognizing the named entities that are related to a specified event.
Previous methods mainly focus on the TD and ARC, and the named entities were considered as known.
(Chen et al., 2015) proposed DMCNN based method to pipeline realize TD and ARC, (Nguyen et al.,
2016; Liu et al., 2018; Sha et al., 2018) jointly realized ED+ARC to catch the inner relation between the
two tasks. (Nguyen and Nguyen, 2019) pointed that only concerning the TD+ARC had neglected the
error propagation from the NER, and further improved the model by jointly realizing NER, TD and ARC
in one model.

5 Conclusion

This paper proposed a trigger-aware multi-task model (TAM) to deal with a novel event entity extraction
(EER) task. TAM is composed by two subtasks:a trigger detection network for event trigger identifica-
tion and an event-featured transformer-CRF for event entity recognition. The former effectively tackles
the intractable Chinese event trigger detection, where triggers usually contain multiple tokens and have
numerous syn-onymous expressions. Experiments show that the trigger detection network is effective for
identifying the synonymous expressions of the labeled event triggers, which is useful to the downstream
EER subtask, which is also robust against the availability of labeled triggers. The latter incorporates
three kinds of event type relevant features and avoid the dependency modeling between the event trigger
and ARC existed in the relevant techniques. The experimental results demonstrate the superiority of the
proposed TAM against the existing SOTA technical alternatives. Future work will be dedicated in further
improving the performance of trigger detection.
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