
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 36–46
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_006

36

Exploring Text-to-Text Transformers for English to Hinglish Machine
Translation with Synthetic Code-Mixing
Ganesh Jawahar1,2 El Moatez Billah Nagoudi1

Muhammad Abdul-Mageed1,2 Laks V.S. Lakshmanan2

Natural Language Processing Lab1

Department of Computer Science2

The University of British Columbia
ganeshjwhr@gmail.com, {moatez.nagoudi, muhammad.mageed}@ubc.ca, laks@cs.ubc.ca

Abstract

We describe models focused at the understud-
ied problem of translating between monolin-
gual and code-mixed language pairs. More
specifically, we offer a wide range of mod-
els that convert monolingual English text
into Hinglish (code-mixed Hindi and English).
Given the recent success of pretrained lan-
guage models, we also test the utility of two re-
cent Transformer-based encoder-decoder mod-
els (i.e., mT5 and mBART) on the task find-
ing both to work well. Given the paucity of
training data for code-mixing, we also pro-
pose a dependency-free method for generating
code-mixed texts from bilingual distributed
representations that we exploit for improving
language model performance. In particular,
armed with this additional data, we adopt a
curriculum learning approach where we first
finetune the language models on synthetic data
then on gold code-mixed data. We find that,
although simple, our synthetic code-mixing
method is competitive with (and in some cases
is even superior to) several standard methods
(backtranslation, method based on equivalence
constraint theory) under a diverse set of condi-
tions. Our work shows that the mT5 model,
finetuned following the curriculum learning
procedure, achieves best translation perfor-
mance (12.67 BLEU). Our models place first
in the overall ranking of the English-Hinglish
official shared task.

1 Introduction

Code-mixing is a phenomenon of mixing two
or more languages in speech and text (Gumperz,
1982). Code-mixing is prevalent in multilingual
societies, where the speakers typically have sim-
ilar fluency in two or more languages (Sitaram
et al., 2019). For example, Hindi, Tamil and Telugu
speakers from India frequently code-mix with En-
glish. Code-mixing can happen between dialects,
for example, Modern Standard Arabic is frequently
code-mixed with Arabic dialects (Abdul-Mageed

et al., 2020). Building NLP systems that can handle
code-mixing is challenging as the space of valid
grammatical and lexical configurations can be large
due to presence of syntactic structures from more
than one linguistic system (Pratapa et al., 2018).

In this work, we focus on building a machine
translation (MT) system that converts a mono-
lingual sequence of words into a code-mixed se-
quence. More specifically, we focus on translat-
ing from English to Hindi code-mixed with En-
glish (i.e., Hinglish). In the literature, work has
been done on translating from Hinglish into En-
glish (Dhar et al., 2018; Srivastava and Singh,
2020). To illustrate both directions, we provide
Figure 1. The Figure presents sample translation
pairs for Hinglish to English as well as English
to Hinglish. The challenges for solving this task
include: (i) lack of Hindi data in roman script
(words highlighted in cyan color), (ii) non-standard
spellings (e.g., ‘isme’ vs ‘is me’), (iii) token-level
ambiguity across the two languages (e.g., Hindi
‘main’ vs. English ‘main’), (iv) non-standard cas-
ing (e.g., ROTTEN TOMATOES), (v) informal
writing style, and (vi) paucity of English-Hinglish
parallel data. Compared with Hinglish to English
translation, the English to Hinglish translation di-
rection is a less studied research problem.

English-Hinglish translation can have several
practical applications. For example, it can be used
to create engaging conversational agents that mimic
the code-mixing norm of a human user who uses
code-mixing. Another use of resulting Hinglish
data would be to create training data for some
downstream applications such as token-level lan-
guage identification.

Our proposed machine translation system ex-
ploits a multilingual text-to-text Transformer model
along with synthetically generated code-mixed data.
More specifically, our system utilizes the state-of-
the-art pre-trained multilingual generative model,
mT5 (a multilingual variant of “Text-to-Text Trans-

37

Hinglish to English translation (Dhar et al. (2018), Srivastava and Singh (2020))
Hinglish: Hi there! Chat ke liye ready ho? → English: Hi there! Ready to chat?
Hinglish: isme kids keliye ache message

hein, jo respectful hein sabhi keliye

→ English: It does show a really good message for
kids, to be respectful of everybody

English to Hinglish translation (our task)
English: Maybe it’s to teach kids to challenge
themselves

→ Hinglish: maybe kida ko teach karna unka
challenge ho saktha hein

English: It’s seem to do OK on rotten tomatoes
I got a 79%

→ Hinglish: ROTTEN TOMATOES KA SCORE
79% DIYA HEIN JO OK HEIN KYA

Table 1: Sample translation pairs for Hinglish to English and English to Hinglish machine translation task. Words
highlighted in cyan color are in Hindi language in roman script, while non-highlighted words are in English lan-
guage.

fer Transformer" model (Raffel et al., 2020)) as a
backbone. The mT5 model is pretrained on large
amounts of monolingual text from 107 languages,
making it a good starting point for multilingual
applications such as question answering and MT.
It is not clear, however, how mT5’s representation
fares in a code-mixed context such as ours. This is
the question we explore, empirically, in this paper,
on our data. We also introduce a simple approach
for generating code-mixed data and show that by
explicitly finetuning the model on this code-mixed
data we are able to acquire sizeable improvements.
For this finetuning, we adopt a curriculum learn-
ing method, wherein the model is finetuned on the
synthetically generated code-mixed data and then
finetuned on the gold code-mixed data.

To synthetically generate code-mixed data, we
propose a novel lexical substitution method that
exploits bilingual word embeddings trained on
shuffled context obtained from English-Hindi bi-
text. The method works by replacing select n-
grams in English sentences with their Hindi coun-
terparts obtained from the bilingual word embed-
ding space. For meaningful comparisons, we also
experiment with five different methods to create
code-mixed training data: (i) romanization of mono-
lingual Hindi from English-Hindi parallel data,
(ii) paraphrasing of monolingual English from
English-Hinglish parallel data, (iii) backtransla-
tion of output from the mT5 model trained on
English-Hinglish parallel data, (iv) adapting social
media data containing parallel English-Hinglish
sentences by removing emoticons, hashtags, men-
tions, URLs (Srivastava and Singh, 2020), and (v)
code-mixed data generated based on equivalence
constraint theory (Pratapa et al., 2018). We study

the impact of different settings (e.g., size of train-
ing data, number of paraphrases per input) appli-
cable for most methods on the translation perfor-
mance. We observe that the mT5 model finetuned
on the code-mixed data generated by our proposed
method based on bilingual word embeddings fol-
lowed by finetuning on gold data achieves a BLEU
score of 12.67 and places us first in the overall
ranking for the shared task. Overall, our major
contributions are as follows:

1. We propose a simple, yet effective and
dependency-free, method to generate English-
Hinglish parallel data by leveraging bilingual
word embeddings trained on shuffled context
obtained via English-Hindi bitext.

2. We study the effect of several data augmen-
tation methods (based on romanization, para-
phrasing, backtranslation, etc.) on the transla-
tion performance.

3. Exploiting our code-mixing generation
method in the context of curriculum learning,
we obtain state-of-the-art performance on
the English-Hinglish shared task data with a
BLEU score of 12.67.

2 Related Work

Our work involves code-mixed data generation, ma-
chine translation involving code-mixed language,
and multilingual pretrained generative models.

2.1 Code-Mixed Data Generation

Due to the paucity of code-mixed data, researchers
have developed various methods to automatically
generate code-mixed data. An ideal method for

38

code-mixed data generation should aim to gen-
erate syntactically valid (i.e., fluent), semanti-
cally correct words (i.e., adequate), diverse code-
mixed data of varying lengths. To create gram-
matically valid code-mixed sentences, Pratapa
et al. (2018) leverages a linguistically motivated
technique based on equivalence constraint the-
ory (Poplack, 1980). They observe that the default
distribution of synthetic code-mixed sentences cre-
ated by their method can be quite different from
the distribution of real code-mixed sentences in
terms of code-mixing measures. This distribution
gap can be largely bridged by post-processing the
generated code-mixed sentences by binning them
into switch point fraction bins and appropriately
sampling from these bins. However, the method
depends on availability of a word alignment model,
which can be erroneous for distant languages (e.g.,
Hindi and Chinese) (Gupta et al., 2020). Winata
et al. (2019) show that a Seq2Seq model with a
copy mechanism can be trained to consume paral-
lel monolingual data (concatenated) as input and
produce code-mixed data as output, that is distri-
butionally similar to real code-mixed data. Their
method needs an external NMT system to obtain
monolingual fragment from code-switched text and
is expensive to scale to more language pairs. Garg
et al. (2018) introduces a novel RNN unit for an
RNN based language model that includes separate
components to focus on each language in code-
switched text. They utilize training data gener-
ated from SeqGAN along with syntactic features
(e.g., Part-of-Speech tags, Brown word clusters,
language ID feature) to train their RNN based lan-
guage model. Their method involves added cost
to train SeqGAN model and expensive to scale to
more language pairs.

Samanta et al. (2019) propose a two-level hierar-
chical variational autoencoder that models syntac-
tic signals in the lower layer and language switch-
ing signals in the upper layer. Their model can
leverage modest real code-switched text and large
monolingual text to generate large amounts of code-
switched text along with its language at token level.
The code-mixed data generated by their model
seems syntactically valid, yet distributionally dif-
ferent from real code-mixed data and their model is
harder to scale for large training data. Gupta et al.
(2020) proposes a two-phase approach: (i) creation
of synthetic code-mixed sentences from monolin-
gual bitexts (English being one of the languages) by

replacing aligned named entities and noun phrases
from English; and (ii) training a Seq2Seq model
to take English sentence as input and produce the
code-mixed sentences created in the first phase.
Their approach depends on the availability of a
word alignment tool, a part-of-speech tagger, and
knowledge of what constituents to replace in order
to create a code-mixed sentence. By contrast, our
proposed method based on bilingual word embed-
dings to generate code-mixed data does not require
external software such as a word alignment tool,
part-of-speech tagger, or constituency parser. Rizvi
et al. (2021) develops the toolkit for code-mixed
data generation for a given language pair using two
linguistic theories: equivalence constraint (code-
mixing following the grammatical structure of both
the languages) and matrix language theory (Mc-
Clure, 1995) (code-mixing by fixing a language
that lends grammatical structure while other lan-
guage lends its vocabulary). For comparison, we
use this tool to implement the code-mixed data
generation method based on equivalence constraint
theory.

2.2 Code-Mixed MT

Building MT systems involving code-mixed lan-
guage is a less researched area. Existing MT sys-
tems trained on monolingual data fail to translate
code-mixed language such as from Hinglish to
English (Dhar et al., 2018; Srivastava and Singh,
2020). Given that neural MT systems require large
training data, Dhar et al. (2018) collects a parallel
corpus of 6, 096 Hinglish-English bitexts. They
propose a machine translation pipeline where they
first identify the languages involved in the code-
mixed sentence, determine the matrix language,
translate the longest word sequence belonging to
the embedded language to the matrix language, and
then translate the resulting sentence into the target
language. The last two steps are performed by
monolingual translation systems trained to trans-
late embedded language to matrix language and
matrix language to target language respectively.
Their proposed pipeline improves the performance
of Google and Bing translation systems. Srivastava
and Singh (2020) collect a large parallel corpus
(called PHINC) of 13, 738 Hinglish-English bitexts
that they claim is topically diverse and has better an-
notation quality than the corpus collected by Dhar
et al. (2018). They propose a translation pipeline
where they perform token level language identifica-

39

tion and translate select phrases involving mostly
Hindi to English using a monolingual translation
system, while keeping the rest of phrases intact.
This proposed pipeline outperforms Google and
Bing systems on the PHINC dataset. For our work,
we make use of the PHINC dataset by adapting
the text by removing mentions, hashtags, emojis,
emoticons as well as non-meaning bearing con-
stituents such as URLs.

2.3 Multilingual Pretrained Models

Neural models pretrained on monolingual data us-
ing a self-supervised objective such as BERT (De-
vlin et al., 2019), BART (Lewis et al., 2020), and
T5 (Raffel et al., 2020) have become integral to
NLP systems as they serve as a good starting point
for building SOTA models for diverse monolingual
tasks. Recently, there is increasing attention to pre-
training neural models on multilingual data, result-
ing in models such as mBERT (Devlin et al., 2019),
XLM (Conneau et al., 2019), mBART (Liu et al.,
2020) and mT5 (Xue et al., 2021). Especially, gen-
erative multilingual models such as mBART (Liu
et al., 2020) and mT5 (Xue et al., 2021) can be
utilized directly without additional neural network
components to solve summarization, MT, and other
natural language generation tasks. These gener-
ative models are trained using a self-supervised
pretraining objective based on span-corruption ob-
jective (mBART and mT5) and sentence shuffling
objective (mBART). Training data for these models
are prepared by concatenating monolingual texts
from multiple languages (e.g., 25 for mBART, 107
for mT5). It is not clear how much code-mixed data
these models have seen during pretraining, making
it an important question to investigate how they fare
in processing text in varieties such as Hinglish. In
this work, we target this question by exploring the
challenges of applying one of these models (mT5)
for the English to Hinglish translation task.

3 Shared Task

The goal of the shared task is to encourage MT
involving code-mixing. We focus on translating
English to Hinglish. A sentence in Hinglish may
contain English tokens and roman Hindi tokens, as
shown in Figure 1. The organizers provide 8, 060,
942 and 960 examples for training, validation, and
test respectively.

4 Our Approach

Our approach to the English-Hinglish MT task is
simple. We first identify the best text-to-text Trans-
former model on the validation set and follow a cur-
riculum learning procedure to finetune the model
for the downstream task. The curriculum learn-
ing procedure works such that we first finetune
the model using synthetic code-mixed data from
our generation method, then further finetune on the
gold code-mixed data. This training recipe has been
explored previously by Choudhury et al. (2017) and
Pratapa et al. (2018) to build code-mixed language
models. Curriculum learning itself has been ex-
plored previously for different NLP tasks such as
parsing (Spitkovsky et al., 2010) and language mod-
eling (Graves et al., 2017). We now present our
proposed method to generate synthetic code-mixed
text for a given language pair.

For our method, we assume having ac-
cess to large amounts of bitext from a given
pair of languages (LG1 and LG2) for which
we need to generate code-mixed data. Let
Bi = {xi, yi} denote the bitext data, where
xi and yi correspond to sentences in LG1 and
LG2, respectively. Let ngrams(n, xi, yi) de-
note the set of unique n-grams in xi and
yi. Let cumulative-ngrams(n, xi, yi) =
∪j=n
j=1ngrams(j, xi, yi) denote the cumulative set

of unique n-grams in the set of pairs xi and yi.
We shuffle the n-grams in the cumulative set and
create a “shuffled” code-mixed sentence by con-
catenating the shuffled set with n-grams separated
by a space. For example, let LG1 denote En-
glish and LG2 denote Hindi (assuming Roman
script for illustration). A sample bitext instance
Bi can be “I’ve never seen it” (xi) and “maine
ye kabhi nah dekhi” (yi). Set of unique 1-grams
will be {“I’ve”, “never”, “seen”, “it”, “maine”,
“ye”, “kabhi”, “nah”, “dekhi”} (ngrams(1, xi, yi),
assuming a whitespace tokenizer for simplic-
ity). Then, cumulative-ngrams(2, xi, yi) cor-
respond to {“I’ve”, “never”, “seen”, “it”, “maine”,
“ye”, “kabhi”, “nah”, “dekhi”, “I’ve never”, “never
seen”, “seen it”, “maine ye”, “ye kabhi”, “kabhi
nah”, “nah dekhi”}. A shuffled code-mixed sen-
tence can be, “I’ve ye_kabhi never seen_it seen
never_seen it kabhi_nah I’ve_never maine_ye ye
kabhi nah dekhi maine nah_dekhi”. We create one
shuffled code-mixed sentence per bitext instance,
thereby creating a shuffled code-mixed corpus. We
train a word2vec model on this shuffled code-mixed

40

corpus to learn embeddings for n-grams in both
languages. The resulting word embeddings seem
cross-lingually aligned (based on manual inspec-
tion), thereby allowing us to do n-gram translation
from one language to another language. For exam-
ple, nearest English neighbor of a Hindi 1-gram
“nah” can be “never”.

Once the word embeddings are learned, we can
create a code-mixed sentence for the given lan-
guages: LG1 and LG2. We first find the n-grams
in xi ∈ LG1 and then sort all the n-grams by co-
sine similarity of the n-gram with its most simi-
lar n-gram in LG2. Let num-substitutions
denote the number of substitutions performed to
convert xi to a code-mixed sentence. We pick one
n-gram at a time from the sorted list and replace
all occurrences of that n-gram with its top n-gram
belonging to language LG2 based on word embed-
dings. We continue this substitution process until
we exhaust the num-substitutions.

For our machine translation task, we assume
LG1 and LG2 to be English and Hindi (native)
respectively. 1 We feed the OPUS corpus 2 con-
taining 17.2M English-Hindi bitexts (Hindi in na-
tive script) as input to the algorithm that outputs
English-Hinglish code-mixed parallel data.

5 Experiments

In this section, we first discuss how we choose a
text-to-text Transformer model from available mod-
els and then introduce our five baseline methods.

5.1 Choosing a Text-to-Text Transformer

Multilingual encoder-decoder models such as
mT5 (Xue et al., 2021)3 and mBART (Liu et al.,
2020)4 are suited to the MT task, and already cover
both English and Hindi. It is not clear, however,
how these models will perform on a task involving
code-mixing at the target side such as ours (where
we need to output Hinglish). For this reason, we
first explore the potential of these two models on
the code-mixed translation task to select the best
model among these two. Once we identify the best
model, we use it as the basis for further experiments
as we will explain in Section 5.3. For both mT5

1We can assume LG1 and LG2 to be Hindi and English
respectively, but we leave this exploration for future.

2https://opus.nlpl.eu/
3https://github.com/google-research/

multilingual-t5
4https://github.com/pytorch/fairseq/

tree/master/examples/mbart

cs method (hyper.) Valid Test
Romanization
IIT-B (100K) 14.27 12.95
IIT-B (250K) 14.74 12.75
IIT-B (500K) 14.12 12.46
OPUS (100K) 14.67 12.62
OPUS (250K) 14.57 12.71
Paraphrasing
Para (1) 14.39 12.72
Para (2) 14.4 12.62
Para (3) 15.07 12.63
Backtranslation
Forward model 14.07 12.16
Backward model 14.51 13.03
Social media
PHINC 14.71 12.68
CMDR (ours)
CMDR-unigram 14.6 12.69
CMDR-bigram 14.58 12.4

Table 2: Performance in BLEU of mT5 model fine-
tuned using curriculum learning — finetuning on one
of the different code-mixed data generation method
followed by finetuning on gold data. CMDR: Code-
Mixing from Distributed Representations refers to our
proposed method. Note that we did not study the
method based on equivalence constraint theory in this
experiment. For CMDR, we perform n-gram transla-
tion of Hindi from native to roman script.

and mBART, we use the implementation provided
by the HuggingFace library (Wolf et al., 2020) with
the default settings for all hyperparameters except
the maximum number of training epochs, which
we choose based on the validation set.

0 20 40 60 80 100
epoch

0

2

4

6

8

10

12

14

BLE
U

mBART
mT5

Figure 1: Validation BLEU of mBART and mT5 model
on 541 randomly picked examples from the official
training set after deduplication, while the rest of the
7000 examples are used for training.

Data Splits. For this set of experiments, we
use “custom” splits using the official shared task
training data after deduplication5 and shuffling, as
follows: 7, 000 examples for training set and 541
examples for validation set. For testing test, we
use the official validation data (n=942 examples).
We finetune both mT5 and mBART on the custom

5Deduplication is done based on exact overlap of source
and target text.

https://opus.nlpl.eu/
https://github.com/google-research/multilingual-t5
https://github.com/google-research/multilingual-t5
https://github.com/pytorch/fairseq/tree/master/examples/mbart
https://github.com/pytorch/fairseq/tree/master/examples/mbart

41

split, and show results in Figure 1. We observe that
mBART converges quickly within 5 epochs, while
mT5 model takes ∼ 46 epochs for convergence.
Importantly, the best validation performance of
13.95 BLEU is obtained by the mT5 model, which
helped us choose mT5 as the backbone model to
build our final MT system. For subsequent experi-
ments, we choose 50 as the maximum number of
epochs to finetune the mT5 model. We now in-
troduce our baseline code-mixing data generation
methods.

5.2 Baseline Code-Mixing Generation
Methods

We experiment with five different baseline meth-
ods to generate English-Hinglish bitexts that can
be used in the first stage of finetuning. We now
describe each of these methods.

5.2.1 Monolingual Target Romanization
In this method, we focus on creating monolingual
bitexts by taking the Hindi sentence from paral-
lel English-Hindi data and changing the script of
Hindi from native script (Devanagari) to Roman
script while keeping the English sentence intact.
Although the resulting Hindi sentence is monolin-
gual, the generated bitexts can help mT5 model to
learn the semantics of Romanized Hindi language
(mT5 model might be pretrained on native Hindi),
along with the relationships between English and
romanized Hindi language. To this end, we exploit
two large parallel data sources for English-Hindi
pairs (Hindi in native script) — IIT Bombay Par-
allel corpus (Kunchukuttan et al., 2018) (1.49M
bitexts) and OPUS corpus (17.2M bitexts). We uti-
lize the Aksharamukha tool to convert native Hindi
to romanized Hindi.6

5.2.2 Monolingual Source Paraphrasing
Here, we paraphrase each English source sentence
in the gold data to create a new training exam-
ple, while keeping the target Hinglish sentence
intact. Since good paraphrases can typically re-
tain the meaning of the original sentence although
the form can be different, we hypothesize the re-
sulting bitext can improve the robustness of our
translation system. To generate paraphrases, we
use the T5BASE (Raffel et al., 2020) model fine-
tuned on paraphrases from diverse English sources.
For our experiments, we use n paraphrases of each
source sentence, with n chosen from the set {1,2,3}.

6https://aksharamukha.appspot.com

Details about our paraphrasing model are in Ap-
pendix A.1.

5.2.3 Backtranslation
We also use the traditional backtranslation pipeline
to generate more data for our task. Specifically, we
create two models: forward model that is obtained
by finetuning the mT5 model on English as source
and Hinglish as target, backward model that is ob-
tained by finetuning mT5 on Hinglish as source
and English as target, on the gold training data in
both cases. For each gold bitext, the process in-
volves two steps: forward model inference, where
the gold English sentence is fed to the forward
model that generates the intermediate Hinglish sen-
tence; backward model inference, where the inter-
mediate Hinglish sentence is fed to the backward
model that generates the final English sentence.
The new bitext is obtained by pairing up the final
English sentence with the gold Hinglish sentence
(which is parallel to the English fed to the forward
model as source). This method can be treated as
an alternative method to creating paraphrases of an
English sentence.

5.2.4 Social Media Adaptation
We adapt a publicly available English-Hinglish so-
cial media dataset, PHINC (Srivastava and Singh,
2020), to our task. PHINC consists of 13, 738 man-
ually annotated English-Hinglish code-mixed sen-
tences, mainly sourced from social media platforms
such as Twitter and Facebook. It covers a wide
range of topics (such as sports and politics) and has
high quality text (e.g., it handles spelling variations
and filters abusive and ambiguous sentences). We
perform post-processing on PHINC by removing
tokens particular to the social media context such as
hashtags, mentions, emojis, emoticons and URLs.
We use the resulting, adapted, dataset to finetune
mT5 for the first stage (as explained in Section 4).

5.2.5 Equivalence Constraint Theory
This method generates code-mixed data based on
equivalence constraint theory (EC), as originally
proposed by Pratapa et al. (2018). The method
works by producing parse trees for English-Hindi
sentence pair and replaces common nodes between
the two trees based on the EC theory. We use the
implementation provided by the GCM tool (Rizvi
et al., 2021). We feed the English-Hindi bitexts
(Hindi in native script) from the OPUS corpus to
generate English-Hinglish (Hindi in native script)

https://aksharamukha.appspot.com

42

parallel data. We now describe our results with
mT5 on our custom splits.

5.3 Performance With mT5

As briefly introduced earlier, we finetune the mT5
model using curriculum learning where we have
two stages. In stage one, we finetune one of the
code-mixed data generation methods. We follow
that by stage two where we finetune on the gold
code-mixed data (official shared task training data).
Also, for stage one, to cap GPU hours with the
large synthetic code-mixed data, we experiment
with a maximum of 5 epochs. For the stage two,
where we have smaller amount of gold data, we
experiment with 50 as the maximum number of
epochs choosing the best epoch on the validation
set.

Table 2 displays the validation and the test per-
formance of mT5 finetuned using curriculum learn-
ing. 7 For romanization of monolingual target
method, as the Table shows, more data does not
strictly improve validation (nor test) performance.
That is, there seems to be a ‘sweet spot’ after which
quality deteriorates with noise. The behavior is sim-
ilar for the models exploiting paraphrases of the
source monolingual English data: Adding more
paraphrases for a single gold instance can lead to
overfitting of the model, as noticed by consistent
degradation in test performance. For backtransla-
tion, we experiment with two variants: forward
model where predictions (Hinglish) from the for-
ward model is paired up with English sentence
from the gold, backward model which corresponds
to the traditional backtranslation bitext. Perfor-
mance of the backward model is consistently bet-
ter on both the validation and the test set. For
the social media adaptation method, mT5 achieves
validation performance that is better than any of
the methods based on romanization or backtrans-
lation. For our proposed method based on code-
mixing from bilingual distributed representations
(CMDR), we experiment with different values of
num-substitutions and change the script of
replaced Hindi words from native to roman script
using the Aksharamukha tool. Manual inspection
of the data reveals that script conversion at word
level is noisy due to lack of sentential context. This
might lead to decline in the performance as our
method makes more substitutions. Nevertheless,

7The best epoch for each stage in the pipeline is displayed
in Appendix B.

English (Gold): And they grow apart. She is the protector of
the Moors forest.
Hinglish (Prediction): Aur wo apart grow karte hai. Wo
Moors forest ka (ki) protector hai.
English (Gold): I watched it at least twice.. it was that good.
I love female superheros
Hinglish (Prediction): Maine ise kam se kam ek (do)
baar dekha hai. Ye itni achi thi. Mujhe female superheros
pasand hai.
English (Gold): I loved the story & how true they made it
in how teen girls act but I honestly don’t know why I didn’t
rate it highly as all the right ingredients were there. I cannot
believe it was 2004 it was released though, 14 years ago!
Hinglish (Prediction): mujhe story bahut pasand aaya aur
teen girls ka act kaise hota lekin main honestly nahi janta
kyon ki main ise highly rate nahi kar raha tha kyunki sahi
ingredients wahan they. mujhe yakin nahi hota ki 2004 mein
release huyi thi, 14 saal pehle!

Table 3: Translations of our proposed system that uses
native script and 3 as num-substitutions. Errors
in translations are highligthed in red color, with their
the right translation in paranthesis and highlighted in
green color.

our proposed method, simple as it is, leads to re-
sults competitive with any of the other methods.

5.4 Qualitative Analysis

We manually inspect translations from our pro-
posed system that uses native script and 3 as
num-substitutions on 25 randomly picked
examples from the official test set. 64% of the
translations are correct, while 24% and 12% of
the translations have grammatical error (e.g., in-
correct gender) and semantic errors (e.g., factual
inconsistency) respectively. 12% of the translations
exactly match with the source. Few of these trans-
lations are shown in Table 3. The first translation
has grammatical gender error, as it contains male
posessive noun, ‘ka’ (instead of female possessive
noun, ‘ki’). The second translation has semantic
error, where the number of times that the movie has
been watched is incorrectly translated as one time
(‘ek’) when the source mentions it as two (‘do’)
times. The third example is long (43 words), which
our system translates without errors.

6 Official Results

In this section, we describe the official test per-
formance obtained by our models. First, we ex-
periment with mT5 model finetuned using promis-
ing code-mixing methods identified in our previ-
ous experiments (see Section 5.3). The best per-
forming baseline method is based on equivalence
constraint theory for 100K examples and yields a

43

cs method BLEU
baseline (mBART model) 11.00
LinCE leaderboard (only best results)
LTRC Team 12.22
IITP-MT Team 10.09
CMMTOne Team 2.58
Romanization
OPUS 12.38
Paraphrasing
Para 12.1
Backtranslation
Backward model 11.47
Social media
PHINC 11.9
Equivalence constraint theory
ECT (100K) 12.45
CMDR (ours)
CMDR-unigram (roman) 12.25
CMDR-bigram (native) 12.63
CMDR-bigram (roman) 12.08
CMDR-trigram (native) 12.67
CMDR-trigram (roman) 12.05
Method Combinations
CMDR-unigram (roman) + PHINC 11.58
ECT (100K) + CMDR-trigram (native) 12.27

Table 4: Official test performance of mT5 model fine-
tuned using curriculum learning — finetuning on one of
the different code-mixed data generation method (max.
epochs is 5) followed by finetuning on concatenation of
gold training data and gold validation data (leaving out
200 examples for validation) (max. epochs is 50)

BLEU score of 12.45. For the proposed CMDR
method, we experiment not only with the value for
num-substitutions, but also the script type.
Surprisingly, the best combination for our proposed
method is based on maximum substitutions of 3,
sticking to the original native script, and yields the
highest BLEU score of 12.67. The variants of our
proposed method that romanizes the replacement n-
gram consistently perform poorly, which confirms
our observation that n-gram level romanization is
deprived of sentential context and is prone to errors.

7 Discussion

The lessons learned in this shared task can be sum-
marized as follows.
Similar Text-to-Text Models. Off-the-shelf mT5
and mBART models perform similarly, with mT5 be-
ing slightly better in our experiments (for English-
Hinglish MT). A down side of mT5 is that it takes
many more epochs than mBART to converge. In
the future, it will be interesting to explore recent ex-
tensions of mBART8, which are already finetuned

8These are mbart-large-50-many-to-many-mmt,
mbart-large-50-one-to-many-mmt, and
mbart-large-50-many-to-one-mmt.

for multilingual translation. These extensions in-
volve training on English-Hindi (native) bitexts,
and so can act as an interesting zero-shot transla-
tion baseline without further finetuning. They may
also serve as a better baseline when finetuned using
the curriculum learning approach adopted in our
work.
Code-Mixing from Distributed Representa-
tions is Useful. Our proposed code-mixed data
generation method based on bilingual word embed-
dings can be exploited by mT5 model to achieve
the state-of-the-art translation performance, espe-
cially when the number of substitutions is high
and the script remains in native form. It will be
interesting to see the sweet spot for the number of
substitutions, as too low value can result in very
less code-mixing while too high value can result in
more code-mixing along with more noise (possibly
grammatically incorrect and unnatural to bilingual
speaker).
Combinations of Code-Mixed Data not Ideal.
Combining code-mixed generations from two meth-
ods likely introduces more noise and does not im-
prove the performance of the mT5 model compared
to performance obtained using generations from
individual method, as seen in the ‘Misc.’ section of
Table 4. It might be interesting to explore more than
two stages of curriculum learning, where the mT5
model is successively finetuned on code-mixed data
generated using different methods.

8 Conclusion

We proposed an MT pipeline for translating
between English and Hinglish. We test the utility
of existing pretrained language models on the task
and propose a simple, dependency-free, method
for generating synthetic code-mixed text from
bilingual distributed representations of words
and phrases. Comparing our proposed method to
five baseline methods, we show that our method
achieves competitively. The method results in
best translation performance on the shared task
blind test data, placing us first in the official
competition. In the future, we plan to (i) scale up
the size of code-mixed data, (ii) experiment with
different domains of English-Hindi bitexts such as
Twitter, (iii) experiment with recent extensions of
mBART, and (iv) assess the generalizability of our
proposed code-mixing method to other NLP tasks
such as question answering and dialogue modeling.

44

Acknowledgements

We gratefully acknowledges support from the
Natural Sciences and Engineering Research
Council of Canada, the Social Sciences and Hu-
manities Research Council of Canada, Canadian
Foundation for Innovation, Compute Canada
(www.computecanada.ca), and UBC ARC-
Sockeye (https://doi.org/10.14288/
SOCKEYE).

References
Muhammad Abdul-Mageed, Chiyu Zhang, Ab-

delRahim Elmadany, and Lyle Ungar. 2020.
Micro-dialect identification in diaglossic and code-
switched environments. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5855–5876.

Monojit Choudhury, Kalika Bali, Sunayana Sitaram,
and Ashutosh Baheti. 2017. Curriculum design for
code-switching: Experiments with language iden-
tification and language modeling with deep neu-
ral networks. In Proceedings of the 14th Interna-
tional Conference on Natural Language Processing
(ICON-2017), pages 65–74, Kolkata, India. NLP As-
sociation of India.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Mathias Creutz. 2018. Open subtitles paraphrase
corpus for six languages. arXiv preprint
arXiv:1809.06142.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivastava.
2018. Enabling code-mixed translation: Parallel cor-
pus creation and MT augmentation approach. In
Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi.
2018. Code-switched language models using dual
RNNs and same-source pretraining. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3078–3083,

Brussels, Belgium. Association for Computational
Linguistics.

Alex Graves, Marc G. Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks.

John J. Gumperz. 1982. Discourse Strategies. Studies
in Interactional Sociolinguistics. Cambridge Univer-
sity Press.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267–
2280, Online. Association for Computational Lin-
guistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural
Text Degeneration. In International Conference on
Learning Representations.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1224–1234, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual Denoising
Pre-training for Neural Machine Translation.

Erica McClure. 1995. Duelling languages: Grammat-
ical structure in codeswitching. Studies in Second
Language Acquisition, 17(1):117–118.

Shana Poplack. 1980. Sometimes i’ll start a sentence
in spanish y termino en espaÑol: toward a typology
of code-switching. 18(7-8):581–618.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In

www.computecanada.ca
https://doi.org/10.14288/SOCKEYE
https://doi.org/10.14288/SOCKEYE
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W18-3817
https://www.aclweb.org/anthology/W18-3817
https://doi.org/10.18653/v1/D18-1346
https://doi.org/10.18653/v1/D18-1346
http://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1704.03003
https://doi.org/10.1017/CBO9780511611834
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://www.aclweb.org/anthology/L18-1548
https://www.aclweb.org/anthology/L18-1548
https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/D17-1126
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2001.08210
http://arxiv.org/abs/2001.08210
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143

45

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja
Ganu, Monojit Choudhury, and Sunayana Sitaram.
2021. GCM: A toolkit for generating synthetic
code-mixed text. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 205–211, Online. Association for Com-
putational Linguistics.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019.
A deep generative model for code-switched text.
CoRR, abs/1906.08972.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A sur-
vey of code-switched speech and language process-
ing. CoRR, abs/1904.00784.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 751–759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Vivek Srivastava and Mayank Singh. 2020. PHINC:
A parallel Hinglish social media code-mixed cor-
pus for machine translation. In Proceedings of the
Sixth Workshop on Noisy User-generated Text (W-
NUT 2020), pages 41–49, Online. Association for
Computational Linguistics.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wei Xu, Chris Callison-Burch, and Bill Dolan. 2015.
SemEval-2015 task 1: Paraphrase and semantic sim-
ilarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 1–11, Denver, Colorado. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer.

Appendix

A Baseline Code-Mixing Generation
Methods

A.1 Monolingual Source Paraphrasing
To generate paraphrases, we use the T5BASE (Raffel
et al., 2020) model finetuned on paraphrases from
diverse English sources: paraphrase and semantic
similarity in Twitter shared task (PIT-2015) (Xu
et al., 2015), LanguageNet (tweet) (Lan et al.,
2017), Opusparcus (Creutz, 2018) (video subti-
tle), and Quora question pairs (Q&A website). 9

For all datasets excluding Quora question pairs,
we keep sentence pairs with a semantic similarity
score ≥ 70%. We merge all the datasets, split the
resulting data into training, validation, and testing
(80%, 10%, and 10%). The T5 model is finetuned
on the training split for 20 epochs with constant
learning rate of 3e−4. Given an English sentence
to paraphrase, the finetuned model uses top-p sam-
pling (Holtzman et al., 2020) during inference to
generate 10 diverse paraphrases. We pick relevant
paraphrases for a given sentence by ranking all
the generated paraphrases based on the semantic
similarity score with the original English sentence
and discarding those paraphrases whose semantic
similarity score ≥ 95%.

B Performance With mT5 On Custom
Splits

Table 5 presents the performance of our proposed
system on custom splits, along with best epoch for
each stage in the pipeline.

9https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1906.08972
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/N10-1116
https://doi.org/10.18653/v1/2020.wnut-1.7
https://doi.org/10.18653/v1/2020.wnut-1.7
https://doi.org/10.18653/v1/2020.wnut-1.7
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/S15-2001
https://doi.org/10.18653/v1/S15-2001
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

46

cs method (hyper.) S1 epoch S2 epoch Valid Test
Romanization
IIT-B (100K) 3 50 14.27 12.95
IIT-B (250K) 5 47 14.74 12.75
IIT-B (500K) 3 46 14.12 12.46
OPUS (100K) 3 43 14.67 12.62
OPUS (250K) 3 50 14.57 12.71
Paraphrasing
Para (1) 5 43 14.39 12.72
Para (2) 5 43 14.4 12.62
Para (3) 5 44 15.07 12.63
Backtranslation
Forward model 3 37 14.07 12.16
Backward model 3 36 14.51 13.03
Social media
PHINC 5 29 14.71 12.68
CMDR (ours)
CMDR-unigram 3 48 14.6 12.69
CMDR-bigram 5 42 14.58 12.4

Table 5: Performance in BLEU of mT5 model finetuned using curriculum learning — finetuning on one of the
different code-mixed data generation method (max. epochs is 5) followed by finetuning on gold data (max. epochs
is 50). CMDR: Code-Mixing from Distributed Representations refers to our proposed method. Validation per-
formance is calculated on 541 randomly picked examples from the official training set after deduplication, while
the rest of the 7, 000 examples are used for training. Test performance is calculated on the official validation set.
Note that we did not study the method based on equivalence constraint theory in this experiment. For CMDR, we
perform n-gram translation of Hindi from native to Roman script.

