Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data

Akshat Gupta', Sargam Menghani', Sai Krishna Rallabandi?, Alan W Black?
'Department of Electrical and Computer Engineering, Carnegie Mellon University
2Language Technologies, Institute, Carnegie Mellon University

{akshataqgu,

Abstract

Sentiment analysis is an important task in un-
derstanding social media content like customer
reviews, Twitter and Facebook feeds etc. In
multilingual communities around the world,
a large amount of social media text is char-
acterized by the presence of code-switching.
Thus, it has become important to build mod-
els that can handle code-switched data. How-
ever, annotated code-switched data is scarce
and there is a need for unsupervised mod-
els and algorithms. We propose a general
framework called Unsupervised Self-Training
and show its applications for the specific use
case of sentiment analysis of code-switched
data. We use the power of pre-trained BERT
models for initialization and fine-tune them in
an unsupervised manner, only using pseudo
labels produced by zero-shot transfer. We
test our algorithm on multiple code-switched
languages and provide a detailed analysis of
the learning dynamics of the algorithm with
the aim of answering the question - ‘Does
our unsupervised model understand the Code-
Switched languages or does it just learn its rep-
resentations?’. Our unsupervised models com-
pete well with their supervised counterparts,
with their performance reaching within 1-7%
(weighted F1 scores) when compared to super-
vised models trained for a two class problem.

1 Introduction

Sentiment analysis, sometimes also known as opin-
ion mining, aims to understand and classify the
opinion, attitude and emotions of a user based on
a text query. Sentiment analysis has many appli-
cations including understanding product reviews,
social media monitoring, brand monitoring, reputa-
tion management etc. Code switching is referred to
as the phenomenon of alternation between multiple
languages, usually two, within a single utterance.
Code switching is very common in many bilin-
gual and multilingual societies around the world
including India (Hinglish, Tanglish etc.), Singapore

smenghan}@andrew.cmu.edu,

{srallaba, awb}@cs.cmu.edu

(Chinglish) and various Spanish speaking areas of
North America (Spanglish). A large amount of
social media text in these regions is code-mixed,
which is why it is essential to build systems that
are able to handle code switching.

Various datasets have been released to aid ad-
vancements in Sentiment Analysis of code-mixed
data. These datasets are usually much smaller and
more noisy when compared to their high-resource-
language-counterparts and are available for very
few languages. Thus, there is a need to come up
with both unsupervised and semi-supervised algo-
rithms to deal with code-mixed data. In our work,
we present a general framework called Unsuper-
vised Self-Training Algorithm for doing sentiment
analysis of code-mixed data in an unsupervised
manner. We present results for four code-mixed
languages - Hinglish (Hindi-English), Spanglish
(Spanish-English), Tanglish (Tamil-English) and
Malayalam-English.

In this paper, we propose the Unsupervised Self-
Training framework and apply it to the problem
of sentiment classification. Our proposed frame-
work performs two tasks simultaneously - firstly,
it gives sentiment labels to sentences of a code-
mixed dataset in an unsupervised manner, and sec-
ondly, it trains a sentiment classification model in
a purely unsupervised manner. The framework can
be extended to incorporate active learning almost
seamlessly. We present a rigorous analysis of the
learning dynamics of our unsupervised model and
try to answer the question - "Does the unsupervised
model understand the code-switched languages or
does it just recognize its representations?’. We also
show methods for optimizing performance of the
Unsupervised Self-Training algorithm.

2 Related Work

In this paper, we propose a framework called Unsu-
pervised Self-Training, which is an extension to the
semi-supervised machine learning algorithm called

103

Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pages 103—112
June 11, 2021. ©2021 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_013

Self-Training (Zhu, 2005). Self-training has pre-
viously been used in natural language processing
for pre-training (Du et al., 2020a) and for tasks like
word sense disambiguation (Yarowsky, 1995). It
has been shown to be very effective for natural lan-
guage processing tasks (Du et al., 2020b) and better
than pre training in low resource scenarios both the-
oretically (Wei et al., 2020) and emperically(Zoph
et al., 2020a). Zoph et al. 2020b show that self-
training can be a more useful than pre-training in
high resourced scenarios for the task of object de-
tection, and a combination of pre-training and self-
training can improve performance when only 20%
of the available dataset was used. However, our
proposed framework differs from self-training such
that we only use the zero-shot predictions made
by our initialization model to train our models and
never use actual labels.

Sentiment analysis is a popular task in industry
as well as within the research community, used
in analysing the markets (Nanli et al., 2012), elec-
tion campaigns (Haselmayer and Jenny, 2017) etc.
A large amount of social media text in most bilin-
gual communities is code-mixed and many labelled
datasets have been released to perform sentiment
analysis. We will be working with four code-mixed
datasets for sentiment analysis, Malayalam-English
and Tamil-English (Chakravarthi et al., 2020a,b,c)
and Spanglish and Hinglish (Patwa et al., 2020).

Previous work has shown BERT based models
to achieve state of the art performance for code-
switched languages in tasks like offensive language
identification (Jayanthi and Gupta, 2021) and senti-
ment analysis (Gupta et al., 2021). We will build
unsupervised models on top of BERT. BERT (De-
vlin et al., 2018) based models have achieved state
of the art performance in many downstream tasks
due to their superior contextualized representations
of language, providing true bidirectional context
to word embeddings. We will use the sentiment
analysis model from (Barbieri et al., 2020), trained
on a large corpus of English Tweets (60 million
Tweets) for initializing our algorithm. We will re-
fer to the sentiment analysis model from (Barbieri
et al., 2020) as the TweetEval model in the remain-
der of the paper. The TweetEval model is built
on top of an English RoBERTa (Liu et al., 2019)
model.

3 Proposed Approach: Unsupervised
Self-Training

Our proposed algorithm is centred around the idea
of creating an unsupervised learning algorithm that
is able to harness the power of cross-lingual trans-
fer in the most efficient way possible, with the aim
of producing unsupervised sentiment labels. In
its most fundamental form, our proposed Unsuper-
vised Self-Training algorithm' is shown in Figure
1 is shown in Figure 1.

We begin by producing zero-shot results for sen-
timent classification using a selected pre-trained
model trained for the same task. From the pre-
dictions made, we select the top-N most confident
predictions made by the model. The confidence
level is judged by the softmax scores. Making the
zero-shot predictions and selecting sentences make
up the Initialization block as shown in Figure 1.
We then use the pseduo-labels predicted by the
zero-shot model to fine tune our model. After that,
predictions are made on the remaining dataset with
the fine-tuned model. We again select sentences
based on their softmax scores for fine-tuning the
model in the next iteration. These steps are re-
peated until we’ve gone through the entire dataset
or until a stopping condition. At all fine-tuning
steps, we only use the predicted pseduo-labels as
ground truth to train the model, which makes the
algorithm completely unsupervised.

As the first set of predicted pseudo-labels are
produced by a zero-shot model, our framework
is very sensitive to initialization. Care must be
taken to initialize the algorithm with a compatible
model. For example, for the task of sentiment clas-
sification of Hinglish Twitter data, an example of a
compatible initial model would be a sentiment clas-
sification model trained on either English or Hindi
sentiment data. It would be even more compatible
if the model was trained on Twitter sentiment data,
the data thus being from the same domain.

3.1 Optimizing Performance

The most important blocks in the Unsupervised
Self-Training framework with respect to maximiz-
ing performance are the Initialization Block and the
Selection Block (Figure 1). To improve initializa-
tion, we must choose the most compatible model
for the chosen task. Additionally, to improve per-
formance, we can use several training strategies

'"The code for the framework can be found here:
https://github.com/akshat57/Unsupervised-Self-Training

104

https://github.com/akshat57/Unsupervised-Self-Training

Use predicted labels

Select N
most
confident
predictions

Find Zero
Shot _—
Predictions

Initialization Block

Fine tune model on
selected N

predictions

to fine tune model

Select N most
confident
predictions

Find Predictions
on remaining
dataset

Loop until stopping condition

Figure 1: A visual representation of our proposed Unsupervised Self-Training framework.

in the Selection Block. In this section we discuss
several variants of the Selection Block.

As an example, instead of selecting a fixed num-
ber of samples N from the dataset in the selection
block, we could be selecting a different but fixed
number /N; from each class ¢ in the dataset. This
would need an understanding of the class distribu-
tion of the dataset. We discuss this in later sections.
Another variable number of sentences in each it-
eration, rather than a fixed number. This would
give us a selection schedule for the algorithm. We
explore some of these techniques in later sections.

Other factors can be incorporated in the Selec-
tion Block. Selection need not be based on just
the most confident predictions. We can have addi-
tional selection criteria, for example, incorporating
the Token Ratio (defined in section 8) of a partic-
ular language in the predicted sentences. Taking
the example of a Hinglish dataset, one way to do
this would be to select sentences that have a larger
amount of Hindi and are within selection thresh-
old. In our experiments, we find that knowing an
optimal selection strategy is vital to achieving the
maximum performance.

4 Datasets

We test our proposed framework on four different
languages - Hinglish (Patwa et al., 2020), Spanglish
(Patwa et al., 2020), Tanglish (Chakravarthi et al.,
2020b) and Malayalam-English (Chakravarthi
et al., 2020a). The statistics of the training sets
are given in Table 1. We also use the test sets of
the above datasets, which have similar distribution
as their respective training sets. The statistics of
the test sets are not shown for brevity. We ask the
reader to refer to the respective papers for more
details.

The choice of datasets, apart from covering three

language families, incorporate several other impor-
tant features. We can see from Table 1 that the
four datasets have different sizes, the Malayalam-
English dataset being the smallest. Apart from the
Hinglish dataset, the other three datasets are highly
imbalanced. This is an important distinction as we
cannot expect an unknown set of sentences to have
a balanced class distributions. We will later see
that having a biased underlying distribution affects
the performance of our algorithm and how better
training strategies can alleviate this problem.

The chosen datasets are also from two differ-
ent domains - the Hinglish and Spanglish datasets
are a collection of Tweets whereas Tanglish and
Malaylam-English are a collection of Youtube
Comments. The TweetEval model, which is used
for initialization is trained on a corpus of English
Tweets. Thus the Hinglish and Spangish datasets
are in-domain datasets for our initialization model
(Barbieri et al., 2020), whereas the Dravidian lan-
guage (Tamil and Malayalam) datasets are out of
domain.

The datasets also differ in the amount of class-
wise code-mixing. Figure 3 shows that for the
Hinglish dataset, a negative Tweet is more likely
to contain large amounts of Hindi. This is not
the same for the other datasets. For Spanglish,
both positive and negative sentiment Tweets have
a tendency to use a larger amount of Spanish than
English.

An important thing to note here is that each of
the four code-mixed datasets selected are written
in the latin script. Thus our choice of datasets does
not take into account mixing of different scripts.

5 Models

Models built on top of BERT (Devlin et al., 2018)
and its multilingual version like mBERT, XLM-

105

Language Domain Total Positive | Negative | Neutral
Hinglish Tweets 14000 4634 4102 5264
Spanglish Tweets 12002 6005 2023 3974
Tanglish Youtube Comments 9684 7627 1448 609
Malayalam-English ~ Youtube Comments 3915 2022 549 1344
Table 1: Training dataset statistics for chosen datasets.
RoBERTa (Conneau et al., 2019) have recently ’ Language F1 Accuracy
produced state-of-the-art results in many natural Hinglish 0.32 0.36
language processing tasks. Various shared tasks Spanglish 0.31 0.32
(Patwa et al., 2020) (Chakravarthi et al., 2020c) in Tanglish 0.15 0.16
the domain of code-switched sentiment analysis Malayalam-English 0.17 0.14

have also seen their best performing systems build
on top of these BERT models.

English is a common language among all the
four code-mixed datasets being considered. This is
why we use a RoBERTa based sentiment classifica-
tion model trained on a large corpus of 60 million
English Tweets (Barbieri et al., 2020) for initializa-
tion. We refer to this sentiment classification model
as the TweetEval model for the rest of this paper.
We use the Hugging Face implementation of the
TweetEval sentiment classification model 2. The
models are fine-tuned with a batch size of 16 and
a learning rate of 2e-5. The TweetEval model pre-
processes sentiment data to not include any URL’s.
We have done the same for for all the four datasets.

We compare our unsupervised model with a
set of supervised models trained on each of the
four datasets. We train supervised models by fine
tuning the TweetEval model on each of the four
datasets. Our experiments have shown that the
TweetEval model performs the better in compari-
son to mBERT and XLM-RoBERTa based models
for code-switched data.

6 Evaluation

We evaluate our results based on weighted aver-
age F1 and accuracy scores. When calculating the
weighted average, the F1 scores are calculated for
each class and a weighted average is taken based on
the number of samples in each class. This metric is
chosen because three out of four datasets we work
with are highly imbalanced. We use the sklearn
implementation for calculating weighted average

F1 scores.

Zhttps://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment
*https://scikit-learn.org/stable/

modules/generated/sklearn.metrics.
classification_report.html

Table 2: Zero-shot prediction performance for the
TweetEval model for each of the four datasets, for a
two-class classification problem (positive and negative
classes). The F1 scores represent the weighted aver-
age F1. These zero-shot predictions are for the training
datasets in each of the four languages.

There are two ways to evaluate the performance
of our proposed method, corresponding to two dif-
ferent perspectives with which we look at the out-
come. One of the ways to evaluate the proposed
method is to answer the question - ‘How good is the
model when trained in the proposed, unsupervised
manner?’. We call this perspective of evaluation,
having a model perspective. Here we’re evaluating
the strength of the unsupervised model. To evaluate
the method from a model perspective, we compare
the performance of best unsupervised model with
the performance of the supervised model on the
test set.

The second way to evaluate the proposed method
is by looking at it from what we call an algorithmic
perspective. The aim of proposing an unsupervised
algorithm is to be able to select sentences belong-
ing to a particular sentiment class from an unkown
dataset. Hence, to evaluate from an algorithmic per-
spective, we must look at the training set and check
how accurate the algorithm is in its annotations
for each class. To do this, we show performance
(F1-scores) as a function of the number of selected
sentences from the training set.

7 Experiments

For our experiments, we restrict the dataset to
consist of two sentiment classes - positive and
negative sentiments. In this section, we evaluate
our proposed unsupervised self-training framework

106

https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

Train Language Vanilla Ratio Supervised
F1 Accuracy || F1 Accuracy || F1 Accuracy
Hinglish 0.84 | 0.84 0.84 | 0.84 0.91 | 091
Spanglish 0.77 | 0.76 0.77 | 0.77 0.78 | 0.79
Tamil 0.68 | 0.63 0.79 | 0.80 0.83 | 0.85
Malayalam 0.73 | 0.71 0.83 | 0.85 0.90 | 0.90

Table 3: Performance of best Unsupervised Self-Training models for Vanilla and Ratio selection strategies when
compared to performance of supervised models. The F1 scores represent the weighted average F1.

for four different code-swithced languages span-
ning across three language families, with different
dataset sizes and different extents of imbalance and
code-mixing, and across two different domains. We
also present a comparison between supervised and
unsupervised models.

We present two training strategies for our pro-
posed Unsupervised Self-Training Algorithm. The
first is a vanilla strategy where the same number
of sentences are selected in the selection block for
each class. The second strategy uses a selection
ratio - where we select sentences for fine tuning
in a particular ratio from each class. We evaluate
the algorithm based on the two evaluation criterion
described in section 6.

In the Fine-Tune Block in Figure 1, we fine-tune
the TweetEval model on the selected sentences for
only 1 epoch. We do this because we do not want
our model to overfit on the small amount of selected
sentences. This means that when we go through
the entire training dataset, the model has seen every
sentence in the train set exactly once. We see that
if we fine-tune the model for multiple epochs, the
model overfits and its performance and capacity to
learn reduces with every iteration.

7.1 Zero-Shot Results

Table 2 shows the zero-shot results for the Tweet-
Eval model. We see that the zero-shot F1 scores
are much higher for the Hinglish and Spanglish
datasets when compared to the results for the Dra-
vidian languages. Part of the disparity in zero-shot
performance can be attributed to the differences in
domains. This means that the TweetEval model is
not as compatible to the Tanglish and Malayalam-
English dataset than it is to the Spanglish and
Hinglish datasets. Improved training strategies help
increase performance.

The zero-shot results in Table 2 use the TweetE-
val model, which is a 3-class classification model.
Due to this, we get a prediction accuracy of less

than 50% for a binary classification problem.

7.2 Vanilla Selection

In the Vanilla Selection strategy, we select the same
number of sentences for each class. We saw no im-
provement when selecting less than 5% sentences
of the total dataset size in every iteration, equally
split into the two classes. Table 3 shows the perfor-
mance of the best unsupervised model trained in
comparison with a supervised model. For each of
these results, N = 0.05 * (dataset size), where N/2 is
the number of sentences selected from each class at
every iteration step. The best unsupervised model
is achieved almost halfway through the dataset for
all languages.

The unsupervised model performs surprisingly
well for Spanglish when compared to the su-
pervised counterpart. The performance for the
Hinglish model is also comparable to the super-
vised model. This can be attributed to the fact
that both datasets are in-domain for the TweetEval
model and their zero-shot performances are bet-
ter than for the Dravidian languages, as shown in
Table 2. Also, the fact that the Hinglish dataset
is balanced helps improve performance. We ex-
pect the performance of the unsupervised models
to increase with better training strategies.

For a balanced dataset like Hinglish, selecting
N > 5% at every iteration provided similar perfor-
mance whereas the performance deteriorates for
the three imbalanced datasets if a larger number
of sentences were selected. This behaviour was
somewhat expected as when the dataset is imbal-
anced, the model is likely to make more errors in
generating pseduo-labels for one class more than
the other. Thus it helps to reduce the number of
selections as that also reduces the number of errors.

7.3 Selection Ratio

In this selection strategy, we select unequal num-
ber of samples from each class, deciding on a ratio

107

of positive samples to negative samples. The aim
of selecting sentences with a particular ratio is to
incorporate the underlying class distribution of the
dataset for selection. When the underlying distribu-
tion is biased, selecting equal number of sentences
would leave the algorithm to have lower accuracy
in the produced pseudo-labels for the smaller class,
and this error is propagated with every iteration
step.

The only way to truly estimate the correct selec-
tion ratio is to sample from the given dataset. In an
unsupervised scenario, we would need to annotate a
selected sample of sentences to determine the selec-
tion ratio empirically. We found that on sampling
around 50 sentences from the dataset, we were ac-
curately able to predict the distribution of the class
labels with a standard deviation of approximately
4-6%, depending on the dataset. The performance
is not sensitive to estimation inaccuracies of that
amount.

Finding the selection ratio serves a second pur-
pose - it also gives us an estimated stopping condi-
tion. By knowing an approximate ratio of the class
labels and the size of the dataset, we now have an
approximation for the total number of samples in
each class. As soon as the total selections for a class
across all iteration reaches the predicted number
of samples of that class, according to the sampled
selection ratio, we should stop the algorithm.

The results for using the selection ratio are
shown in Table 3. We see significant improve-
ments in performance for the Dravidian languages,
with the performance reaching very close to the
supervised performance. The improvement in per-
formance for the Hinglish and Spanglish datasets
are minimal. This hints that a selection ratio strat-
egy was able to overcome the difference in domains
and the affects of poor initialization as pointed out
in Table 2.

The selection ratio strategy was also able to over-
come the problem of data imbalance. This can be
seen in Figure 2 when we evaluate the framework
from an algorithmic perspective. Figure 2 plots the
classification F1 scores of the unsupervised algo-
rithm as a function of the selected sentences. We
find that using the selection ratio strategy improves
the performance on the training set significantly.
We see improvements for the Dravidian languages,
which were also reflected in Table 3.

This improvement is also seen for the Spanglish
dataset, which is not reflected in Table 3. This

means that for Spanglish, the improvement in the
unsupervised model when trained with selection
ratio strategy does not generalize to a test set, but
the improvement is enough to select sentences in
the next iterations more accurately. This means
that we’re able to give better labels to our training
set in an unsupervised manner, which was one of
the aims of developing an unsupervised algorithm.
(Note : The evaluation from a model perspective is
done on the test set, whereas from an algorithmic
perspective is done on the training set.)

This evaluation perspective also shows that if
the aim of the unsupervised endevour is to create
labels for an unlabelled set of sentences, one does
not have to process the entire dataset. For exam-
ple, if we are content with pseudo-labels or noisy
labels for 4000 Hinglish Tweets, the accuracy of
the produced labels would be close to 90%.

- Hinglish - Spanglish

095 { R, rtio 095

050 - 030

—anils
ratio
N ——— Pl
085 oss
°
2
080 N £ om0
S
015 3 o7
=
o0 o070

065 065

Weighted F1

060 060
2000 000 5000 00

Number of Samples Selected

1000 2000 3000 4000 5000 6000 7000 8000
Number of Samples Selected

Tanglish Malayalam-English

— vanilla o anilla
095 ntio 035

090 050

ghted F1

080

Weighted F1

@ 075

=
o7
065
060 060

2000 o & 000
Number of Samples Selected

550 oo 1m0 w00 200
Number of Samples Selected

Figure 2: Performance of the Unsupervised Self-
Training algorithm as a function of selected sentences
from the training set.

8 Analysis

In this section we aim to understand the in-
formation learnt by a model trained under the
Unsupervised Self-Training. We take the example
of the Hinglish dataset. To do so, we define
a quantity called Token Ratio to quantify the
amount of code-mixing in a sentence. Since
our initialization model is trained on an English
dataset, the language of interest is Hindi and we
would like to understand how well our model
handles sentences with a large amount of Hindi.
Hence, for the Hinglish dataset, we define the
Hindi Token Ratio as:

Number of Hindi Tokens

Hindi Token Ratio = Total Number of Words

108

(Patwa et al., 2020) provide three language la-
bels for each token in the dataset - HIN, ENG, 0,
where 0 usually corresponds to a symbol or other
special characters in a Tweet. To quantify amount
of code-mixing, we only use the tokens that have
ENG or HIN as labels. Words are defined as tokens
that have either the label HIN or ENG. We define
the Token Ratio quantity with respect to Hindi, but
our analysis can be generalized to any code-mixed
language. The distribution of the Hindi Token Ra-
tio (HTR) in the Hinglish dataset is shown in Figure
3. The figure clearly shows that the dataset is dom-
inated by tweets that have a larger amount Hindi
words than English words. This is also true for the
other three datasets.

Distribution of HTR Classwise Distribution of HTR

%01 —— Positive
Negative

350

300 20

250

£ om0 gk
8

150 100
100
50

0
0L 02 03 04 05 06 07 08 09

Hindi Token Ratio

01 02 03 04 05 06 07 08 09

Hindi Token Ratio

Figure 3: Distributions of Hindi Token Ratio for the
Hinglish Dataset.

8.1 Learning Dynamics of the Unsupervised
Model

To study if the unsupervised model understands
Hinglish, we look at the performance of the model
as a function of the Hindi Token Ratio. In Figure 4
, the sentences in the Hinglish dataset are grouped
into buckets of Hindi Token Ratio. A bucket is of
size 0.1 and contains all the sentences that fall in
its range. For example, when the x-axis says 0.1,
this means the bucket contains all sentences that
have a Hindi Token ratio between 0.1 and 0.2.

Figure 4 shows that the zero shot model performs
the best for sentences that have very low amount
of Hindi code-mixed with English. As the amount
of Hindi in a sentence increases, the performance
of the zero-shot predictions decreases drastically.
On training the model with our proposed Unsuper-
vised Self-Training framework, we see a significant
rise in the performance for sentences with higher
HTR (or sentences with a larger amount of Hindi
than English) as well as the overall performance
of the model. This rise is gradual and the model
improves at classifying sentences with higher HTR
with every iteration.

Next, we refer back to Figure 3. Figure 3 shows

Performance of zero-shot model performance of best model

Weight F1 score
Weight F1 score

0
G o1 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09

o
Hindi Token Ratio Buckets Hindi Token Ratio Buckets

Figure 4: Model Performance for different Hindi Token
Ratio buckets. For example, a bucket labelled as 0.3
contains all sentences that have a Hindi Token ration
between 0.3 and 0.4.

the distribution of the Hindi Token Ratio for each of
the two sentiment classes. For the Hinglish dataset,
we see that tweets with negative sentiments are
more likely to contain more Hindi words than En-
glish. The distribution for the Hindi Token Ratio
for positive sentiment is almost uniform, thus show-
ing no preference for English or Hindi words when
expressing a positive sentiment. If we look at the
distribution of the predictions made by the zero-
shot unsupervised model, shown in Figure 5, we
see that majority of the sentences are predicted as
belonging to the positive sentiment class. There
seems to be no resemblance with the original dis-
tribution (Figure 3). As the model trains under
our Unsupervised Self-Training framework, we see
that the predicted distribution becomes very similar
to the original distribution.

100

Zero-Shot Model Predictions

Best Unsupervised Model Predictions

—— Positive
Negative

—— Positive
Negative

8 8 150

100
0
50

0
01 02 03 04 05 06 07 08 09

Hindi Token Ratio

[
01 02 03 04 05 06 07 08

Hindi Token Ratio

Figure 5: Comparison made between predictions made
by the zero-shot and the best unsupervised model.

8.2 Error Analysis

In this section, we look at the errors made by the
unsupervised model. Table 4 shows the compar-
ison between the class-wise performance of the
supervised and the best unsupervised model. The
unsupervised model is better at making correct pre-
dictions for the negative sentiment class when com-
pared to the supervised model. Figure 6 shows the
classwise performance for the zero-shot and best
unsupervised model for the different HTR buck-
ets. We see that the zero-shot models performs
poorly for both the positive and negative classes.
As the unsupervised model improves with itera-

109

Model Positive Negative

Type Accuracy Accuracy

Unsupervised 0.73 0.94
Supervised 0.93 0.83

Table 4: Comparison between class-wise performance
for supervised and unsupervised models.

tions through the dataset, we see the performance
for each class increase.

i Classwise Performance of Zero-Shot Model Classwise Performance of Best Unsupervised Model

- positive
= regative

Accuracy

1

aaaaaaaaaaaaaaaaaa

Accuracy
<, J————
—
I —

Figure 6: Class-wise performance of the zero-shot and
the best unsupervised models for different Hindi Token
Ratio buckets.

8.3 Does the Unsupervised Model
‘Understand’ Hinglish?

The learning dynamics in section 8.1 show that
as the TweetEval model is fine-tuned under our
proposed Unsupervised Training Framework, the
performance of the model increases for sentences
that have higher amounts of Hindi. In fact, the per-
formance increase is seen across the board for all
Hindi Token Ratio buckets. We saw the distribu-
tion of the predictions made by the zero-shot model,
which preferred to classify almost all sentences as
positive. But as the model was fine-tuned, the pre-
dicted distribution was able to replicate the original
data distribution. These experiments show that the
model originally trained on an English dataset is
beginning to atleast recognize Hindi when trained
with our proposed framework, if not understand it.

We also see a bias in the Hinglish dataset where
the negative sentiments are more likely to contain
a larger number Hindi Tokens, which are unknown
tokens from the perspective of the initial TweetE-
val model. Thus the classification task would be
aided by learning the difference in the underlying
distributions of the two classes. Note that we do
expect a supervised model to use this divide in the
distributions as well. Figure 6 shows a larger in-
crease in performance for the negative sentiment
class than the positive sentiment class, although the
performance is increased across the board for all
Hindi Token Ratio buckets. (This difference in per-

formance can be remedied by selecting sentences
with high Hindi Token Ratio in the selection block.)
Thus, it does seem like that the model is able to
understand Hindi and this understanding is aided
by the differences in the class-wise distribution of
the two sentiments.

9 Conclusion

We propose the Unsupervised Self-Training frame-
work and show results for unsupervised sentiment
classification of code-switched data. The algo-
rithm is comprehensively tested for four very dif-
ferent code-mixed languages - Hinglish, Spanglish,
Tanglish and Malayalam-English, covering many
variations including differences in language fami-
lies, domains, dataset sizes and dataset imbalances.
The unsupervised models performed competitively
when compared to supervised models. We also
present training strategies to optimize the perfor-
mance of our proposed framework.

An extensive analysis is provided describing the
learning dynamics of the algorithm. The algorithm
is initialized with a model trained on an English
dataset and has poor zero-shot performance on sen-
tence with large amounts of code-mixing. We show
that with every iteration, the performance on fine-
tuned model increases for sentences with a larger
amounts of code-mixing. Eventually, the model
begins to understand the code-mixed data.

10 Future Work

The proposed Unsupervised Self-Training algo-
rithm was tested with only two sentiment classes -
positive and negative. An unsupervised sentiment
classification algorithm is to be able to generate
annotations for an unlabelled code-mixed dataset
without going through the expensive annotation
process. This can be done by including the neutral
class in the dataset, which is going to be a part of
our future work.

In our work, we only used one initialization
model trained on English Tweets for all four code-
mixed datasets, as all of them were code-mixed
with English. Future work can include testing
the framework with different and more compatible
models for initialization. Further work can be done
on optimization strategies, including incorporating
the Token Ratio while selecting pseudo-labels, and
active learning.

110

References

Francesco Barbieri, Jose Camacho-Collados, Leonardo
Neves, and Luis Espinosa-Anke. 2020. Tweet-
eval: Unified benchmark and comparative eval-
uation for tweet classification. arXiv preprint
arXiv:2010.12421.

Bharathi Raja Chakravarthi, Navya Jose, Shardul
Suryawanshi, Elizabeth Sherly, and John P Mc-
Crae. 2020a. A sentiment analysis dataset for
code-mixed malayalam-english. arXiv preprint
arXiv:2006.00210.

Bharathi Raja Chakravarthi, Vigneshwaran Murali-
daran, Ruba Priyadharshini, and John P McCrae.
2020b. Corpus creation for sentiment analysis
in code-mixed tamil-english text. arXiv preprint
arXiv:2006.00206.

BR Chakravarthi, R Priyadharshini, V Muralidaran,
S Suryawanshi, N Jose, E Sherly, and JP McCrae.
2020c. Overview of the track on sentiment analysis
for dravidian languages in code-mixed text. In Work-
ing Notes of the Forum for Information Retrieval
Evaluation (FIRE 2020). CEUR Workshop Proceed-
ings. In: CEUR-WS. org, Hyderabad, India.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020a. Self-training im-
proves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020b. Self-training im-
proves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194.

Akshat Gupta, Sai Krishna Rallabandi, and Alan Black.
2021. Task-specific pre-training and cross lingual
transfer for code-switched data. arXiv preprint
arXiv:2102.12407.

Martin Haselmayer and Marcelo Jenny. 2017. Senti-
ment analysis of political communication: combin-
ing a dictionary approach with crowdcoding. Qual-
ity & quantity, 51(6):2623-2646.

Sai Muralidhar Jayanthi and Akshat Gupta. 2021.
Sj_aj@ dravidianlangtech-eacl2021: Task-adaptive
pre-training of multilingual bert models for of-
fensive language identification. arXiv preprint
arXiv:2102.01051.

111

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhu Nanli, Zou Ping, Li Weiguo, and Cheng Meng.
2012. Sentiment analysis: A literature review. In
2012 International Symposium on Management of

Technology (ISMOT), pages 572-576. IEEE.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Bjorn Gambick, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. arXiv e-prints, pages
arXiv—2008.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu
Ma. 2020. Theoretical analysis of self-training with
deep networks on unlabeled data. arXiv preprint
arXiv:2010.03622.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189-196.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning lit-
erature survey.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin D Cubuk, and Quoc V Le. 2020a.
Rethinking pre-training and self-training. arXiv
preprint arXiv:2006.06882.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin D Cubuk, and Quoc V Le. 2020b.
Rethinking pre-training and self-training. arXiv
preprint arXiv:2006.06882.

A Implementation Details

We use the RoOBERTa-base based model pre-trained
on a large English Twitter corpus for initialization,
which has about 125M paramters. The model was
fine-tuned using the NVIDIA GeForce GTX 1070
GPU using python3.6. The Tanglish dataset was
the biggest dataset which required approximately 3
minutes per iteration. One pass through the entire
dataset required 20 iterations for the Vanilla selec-
tion strategy and about 30 iterations for the Ratio
selection strategy. The time required per iteration
was lower for the the other three datasets, with
about 100 seconds per iteration for the Malaylam-
English datasets.

112

