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Abstract

Morphological tagging of code-switching (CS)
data becomes more challenging especially
when language pairs composing the CS data
have different morphological representations.
In this paper, we explore a number of ways
of implementing a language-aware morpholog-
ical tagging method and present our approach
for integrating language IDs into a transformer-
based framework for CS morphological tag-
ging. We perform our set of experiments on
the Turkish-German SAGT Treebank. Exper-
imental results show that including language
IDs to the learning model significantly im-
proves accuracy over other approaches.

1 Introduction

Morphological tagging is a well known sequence la-
belling task in Natural Language Processing (NLP).
It is the task of finding the correct morphological
analysis for a given word form. The analysis is
usually represented with a set of morphological
features. Tagging these features is beneficial in
solving most NLP tasks since having knowledge
about the morphological analysis of natural lan-
guage words gives clues about their syntactic na-
ture and their roles in context (Müller and Schütze,
2015). Morphological tagging becomes more im-
portant when the language in question is a mor-
phologically rich one and the part-of-speech (POS)
information about word forms is not sufficient to
syntactically classify them (Tsarfaty et al., 2013).

Morphological tagging is challenging in itself1

and it becomes more challenging when the pro-
cessed language is code-switched, a phenomenon
that occurs when bilingual speakers frequently
switch between languages and produce utterances

1For instance, in the CoNLL 2018 Shared Task of Multilin-
gual Parsing from Raw Text to Universal Dependencies, mor-
phological tagging has the lowest range of scores among sen-
tence segmentation, word segmentation, tokenisation, lemma-
tisation, and POS tagging. universaldependencies.
org/conll18/results.html

Form POS Morphological features

(a) In German:

in ADP _

Autos NOUN Case=Dat | Gender=Neut | Number=Plur

(b) In Turkish:

arabalarda NOUN Case=Loc | Number=Plur

Figure 1: The morphological analyses of German (a)
and Turkish (b) translations of the phrase in cars.

that include word forms and phrases from both lan-
guages. The challenge amplifies as the linguistic
difference between the composing languages in-
creases. This is because unlike POS annotation
that can be made common across languages (e.g.
Universal Dependencies (Nivre et al., 2016)), mor-
phological annotation is more language-specific.
The example in Figure 1 shows this difference ex-
plicitly. Even though both Autos in German and
arabalarda in Turkish share the same POS tag as
NOUN, they have different morphological analyses.
This difference stems from inherent properties of
these languages. German employs grammatical
gender while Turkish does not. Additionally in the
example, the Turkish locative case corresponds to
German dative. Such structural differences, com-
bined with the rich morphology of individual lan-
guages taking part in CS data, make CS morpho-
logical tagging even more challenging with respect
to CS POS tagging, a task that is a more common
and more studied NLP task (cf. Section 2). In
fact, there has not been any research focused on CS
morphological tagging before.

We hypothesise that the language-dependent na-
ture of morphological tagging can be solved more
successfully for the case of CS data when the learn-
ing model has the knowledge of which language a
word form belongs to. Starting from this hypoth-
esis, we search ways of including the language
ID (LID) information to tagging and present a
language-aware approach. The proposed approach

universaldependencies.org/conll18/results.html
universaldependencies.org/conll18/results.html
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integrates LIDs to the dense representation of in-
put tokens in a transformer-based learning model.
We conducted experiments on the only CS dataset
with complete morphological annotation (Turkish-
German SAGT Treebank (Çetinoğlu and Çöltekin,
2019)).2 Results show that the proposed approach
outperforms all of the baselines significantly and
the use of LIDs is beneficial in tagging morphol-
ogy for CS data. Our contributions are twofold:
We present the first study on CS morphological
tagging, and our data-driven method of integrating
LIDs is applicable to any CS dataset and task that
can exploit language IDs.

2 Related Work

Although there does not exist any prior study on
CS morphological tagging, utilising language IDs
in other CS tasks has been quite common. We
divide how LID is utilised into three methods: as
part of a pipeline, as part of joint processing, and
as Machine Learning (ML) features. While one or
more of these techniques have been applied to many
CS tasks, e.g. parsing (Bhat et al., 2017), sentiment
analysis (Vilares et al., 2016), and normalisation
(van der Goot and Çetinoğlu, 2021), we focus here
mainly on POS tagging, as it is a sequence labelling
task and the closest one to morphological tagging.

One of the most commonly used pipeline ap-
proach is processing the data as monolingual frag-
ments (Vyas et al., 2014; Jamatia et al., 2015; Bar-
man et al., 2016; Bhat et al., 2017; AlGhamdi et al.,
2016). For each language in the mixed data, a
monolingual model is trained. During prediction,
the input is split into fragments according to their
language IDs and each fragment is processed by
the respective monolingual model. The output is
then merged into its original form. The advantage
of this approach is to eliminate the need of CS data
for training. However, context information is lost.

The other common pipeline approach is using
LIDs in decision-making after getting predictions
from monolingual models. In this setup the mixed
input is given to both monolingual models. The
predicted LID is then used to select the model
output of the corresponding language. Solorio
and Liu (2008) is the first to use this approach
on English-Spanish POS tagging. Later Barman

2There is also the NArabizi Treebank (Seddah et al., 2020)
which includes partial morphological annotation where the to-
tal number of unique annotations is 46 in contrast to the SAGT
Treebank which has 795 unique morphological annotations.
Hence, we did not use this treebank in our study.

et al. (2016) and AlGhamdi et al. (2016) used this
setup for English-Bengali-Hindi, and for English-
Spanish and Modern Standard Arabic-Egyptian
Arabic, as well as the first pipeline technique.
While in Barman et al.’s (2016) case using the sec-
ond pipeline method slightly outperforms the first
one, AlGhamdi et al. (2016) show the first pipeline
outperforms by a large margin. Thus we opted for
the first architecture as one of our baselines.

Another model of Barman et al.’s (2016) was
jointly trained LID and POS taggers that achieve a
quite large improvement over their pipeline models.
Soto and Hirschberg (2018) also trained LID and
POS taggers together in their BiLSTM architecture.
AlGhamdi and Diab (2019) choose joint LID and
POS tagging as one of their architectures and show
that distant language pairs Spanish-English and
Hindi-English benefit from multi-task learning.

In many work from pre-neural era, LIDs are
given as one of the features to ML models. While
Solorio and Liu (2008) did not observe any signifi-
cant improvement in doing so, Jamatia et al. (2015)
shows that adding the LID of a token improves
its POS tagging for English-Hindi. Sequiera et al.
(2015) and Bhat et al. (2017) also inserted LID as
a feature into their ML models. As a neural ap-
proach, Soto and Hirschberg (2018) represented
the six LID labels existing in their data as boolean
features and concatenated them with word vectors
in a BiLSTM along with other features they used.

Different from the previous approaches, Aguilar
and Solorio (2020) use language identification to
create a code-switching ELMo from English ELMo
(Peters et al., 2018). Later they show the effective-
ness of their CS-ELMo by achieving state-of-the-
art POS tagging results on a Hindi-English dataset
(Singh et al., 2018). They also employ multi-task
learning where their auxiliary task is language iden-
tification with a simplified LID tag set for LID,
POS, and NER tagging.

3 Methodology

For morphological tagging of CS data, we chose
to use STEPS3 (Grünewald et al., 2020) as our
framework. STEPS is an NLP tool for tagging
and syntactic parsing in Universal Dependencies
(UD) style (Nivre et al., 2016). Our motivation be-
hind deciding on STEPS as our framework is based
on two reasons. First, for token representation it
utilises transformer-based language models, which

3github.com/boschresearch/steps-parser

github.com/boschresearch/steps-parser
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have recently become famous for their outstand-
ing success in various NLP tasks (Kondratyuk and
Straka, 2019; Hoang et al., 2019). Second, STEPS
is an open-source system with a minimum use of
black-box modules that make the modification of
the source codes very challenging, if not impossi-
ble. Moreover, STEPS is a current state-of-the-art
NLP tool that outperformed other state-of-the-art
tools Udify (Kondratyuk and Straka, 2019) and UD-
Pipe 2.0 (Straka et al., 2019) in tagging and parsing
of several languages (Grünewald et al., 2020).

Section 3.1 gives a brief description about
STEPS. Sections 3.2 and 3.3 describe the baseline
methods and our proposed approach for integrating
LIDs to CS morphological tagging, respectively.

3.1 Framework

STEPS is mainly developed as a multilingual sys-
tem for parsing. It also performs sequence labelling
tasks such as POS and morphological tagging in a
multi-task learning (MTL) setup. For our purposes,
we adapted STEPS to solely perform sequence la-
belling. When this adapted version is used stan-
dalone, it becomes a baseline for our task. We men-
tion this version as the Standalone approach
throughout the paper.

The STEPS architecture follows Kondratyuk and
Straka (2019) for computing token embeddings
from the transformer-based language model and
performing tagging and parsing. Token embed-
dings are calculated as a weighted sum of all in-
termediate outputs of the transformer layers. Co-
efficients of this weighted sum are learned during
training. For sequence labelling, STEPS utilises
a single-layer feed-forward neural network on top
of token representations to extract the logit vectors
for respective label vocabularies. More detailed
information about the STEPS architecture can be
found in (Grünewald et al., 2020).

3.2 Baselines for Language ID Integration

In a given dataset, the language-dependent mor-
phological annotation of words that share the same
POS tag gives us the intuition that feeding a model
with token-wise LID information can help improve
its accuracy for CS morphological tagging. Start-
ing from this hypothesis, we designed and experi-
mented with three ways of using token-level LID
information in the model.

3.2.1 Data Split (DSplit)
One of the first methods that come to mind when
dealing with CS data is splitting the data from CS
points and treating the split parts as monolingual
data as in the first pipeline method mentioned in
Section 2. For our case, this method consists of
three steps. First, input data is split to sub-parts
containing monolingual data only. Second, mono-
lingual models for each sub-part are trained. Each
trained model processes its corresponding sub-part
separately. In the last step, the output of models are
joined to reach the processed version of the data.

To achieve the split of CS data into monolin-
gual parts, we created a simple algorithm. Starting
from the first token in a sentence, the algorithm
creates sentence fragments whenever it encoun-
ters a switch between tokens with LIDs denoting
one of the main languages in the CS data. Tokens
with other LIDs (e.g., punctuation or mixed tokens
where intra-word CS occurs) stay in the fragment
created at that moment. Figure 2 depicts this pro-
cess on a Turkish-German sentence.

3.2.2 Multi-Task Learning (MTL)
Another frequently applied method is the multi-task
learning approach when two or more related tasks
have the potential of benefitting each other through
the domain information they contain. The main
idea of this approach is improving the learning of
a model for a task with the help of the knowledge
contained by another task (Zhang and Yang, 2017).
MTL has been shown effective in various areas
in NLP (Collobert and Weston, 2008; Fang et al.,
2019), especially in low-resource scenarios, usu-
ally as a way of transferring knowledge from a
high-resource auxiliary task to a low-resource tar-
get task as in Lin et al. (2018). Our case is also a
low-resource scenario where we have two related
tasks, morphological tagging as the target and LID
tagging as a simpler auxiliary task. In our setup,
these two tasks are trained together with the same
model and the loss is computed by summing losses
of each task. The loss for LID tagging is scaled
down 5% in training, as it was done for simpler
tasks in (Grünewald et al., 2020). This loss scaling
is for preventing the validation accuracy for LID
tagging to go up too quickly and cause an underfit-
ting for morphological tagging.

3.3 Proposal: LID Vectors (LIDVec)
Our proposal to integrate LIDs to the model is via
creating LID embeddings and concatenating them
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1 Abendgymnasiumdan MIXED
2 sonra TR
3 da TR
4 Evangelische DE
5 Hochschule’de MIXED
6 zaten TR
7 Soziale DE
8 Arbeit DE
9 okudum TR
10 . OTHER

CS sentence
1 Abendgymnasiumdan MIXED
2 sonra TR
3 da TR
6 zaten TR
9 okudum TR
10 . OTHER

TR fragments

4 Evangelische DE
5 Hochschule’de MIXED
7 Soziale DE
8 Arbeit DE

DE fragments

Figure 2: Splitting an example code-switching sentence to Turkish (TR) and German (DE) fragments. German
tokens and token parts are shown in bold. (Sentence translation: After the night school, I studied Social Work in
the Protestant University.)

to the embeddings of input tokens. The motivation
behind this approach is to directly encode the LID
information to each token inside the learning model
and by this way to lessen the model’s confusion
caused by the tokens with different LIDs having dif-
ferent morphological annotations. Moreover, this
way we can represent each LID label in contrast to
DSplit that uses only main LID labels.

There are more than one method to represent
LIDs as vectors inside the model. One-hot encod-
ing of each LID is one of them.4 Another method
would be starting from a random embedding for
each LID and training these embeddings with the
rest of the model. Instead of random initialisation,
LID embeddings can also be initialised with the
average vectors of token embeddings in the training
set, calculated for each LID label. Our motivation
behind this clustering method is to see whether
starting the training of the LID vectors from a more
reasonable point will improve accuracy. We ex-
perimented with all of these models and chose to
continue with the randomly initialised LID embed-
dings method based on our observation that this
method works best among others. The comparison
of these methods is discussed in Section 5.

In LIDVec, each LID label is assigned a 100-
dimensional embedding vector at the beginning
of training. The embedding of each input token
is then concatenated with its corresponding LID
embedding. These concatenated vectors are then
given to the model for training. The loss at each
epoch is backpropagated to both the token embed-
dings and the LID embeddings. We apply batch
normalisation to token embeddings right after the
concatenation.

4Soto and Hirschberg (2018) use a similar way. They rep-
resent LIDs as boolean features concatenated to word vectors
in a BiLSTM architecture.

4 Experiments

4.1 Data
We evaluate our approaches on the Turkish-German
SAGT Treebank (Çetinoğlu and Çöltekin, 2019)
UD version 2.7.1.5 It is based on a Turkish-German
code-switching corpus created from conversation
recordings of bilinguals. Although the treebank
consists of spoken sentences, the transcriptions are
normalised and hence the orthography does not
pose a challenge in terms of morphological tagging.
The SAGT Treebank includes five LID labels: TR
for Turkish, DE for German, LANG3 for tokens
that belong to a third language other than Turkish
and German, OTHER for punctuation, and MIXED
for tokens with intra-word code-switching. Exam-
ple (1) shows the structure of a mixed word from
Figure 2.

(1) Abendgymnasiumdan
night school.from
‘from the night school’

Here the first part (Abendgymnasium) is a Ger-
man noun and the second part (-dan) is a Turkish
suffix. Although they are from different languages,
the token Abendgymnasiumdan has a single lan-
guage ID since the two parts of the token are written
orthographically together.

We use the original training, development, and
test splits in experiments, only further splitting a
small part from the development set as the fine-
tuning set.6 Sentence counts and LID distribution
is given in Table 1. The average sentence length is
15.35 and the average code switches per sentence is

5github.com/UniversalDependencies/UD_
Turkish_German-SAGT/tree/dev

6The fine-tuning set is created by randomly extracting
equal amount of sentences from each document in the devel-
opment set.

github.com/UniversalDependencies/UD_Turkish_German-SAGT/tree/dev
github.com/UniversalDependencies/UD_Turkish_German-SAGT/tree/dev
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Sent Token Count
Count TR DE MIXED LANG3 OTHER Total

Tra 578 3,727 5,149 105 69 1,034 10,084
37% 51% 1% 0.7% 10.3%

FT 101 721 864 21 16 158 1,780
41% 49% 1.2% 0.9% 8.9%

Dev 700 4,389 5,589 122 48 1,128 11,276
39% 49.6% 1% 0.4% 10%

Test 805 5,341 7,139 183 46 1,384 14,093
38% 50,6% 1.3% 0.3% 9.8%

Total 2,184 14,178 18,741 431 179 3,704 37,233
38% 50.3% 1.2% 0.5% 10%

Table 1: Sentence and token counts of the Turkish-
German SAGT Treebank used in the experiments (Tra:
training, FT: fine-tuning, Dev: development).

TR DE MIXED LANG3 OTHER
Tags 526 293 53 5 1
Features 61 37 22 5 1

Table 2: The number of unique morphological tags and
the number of unique morphological features for each
language category in the SAGT Treebank.

2.19 on the whole treebank. The counts of unique
morphological tags and morphological features that
constitute the tags are depicted in Table 2.

Note that previous studies that follow a similar
approach to DSplit use monolingual data that are
usually available in large amounts in training (Vyas
et al., 2014; Jamatia et al., 2015; Barman et al.,
2016; Bhat et al., 2017; AlGhamdi et al., 2016).
However we do not utilise monolingual Turkish
and German data in the current setting of DSplit
experiments. We experimented with using morpho-
logical features of two Turkish treebanks – IMST
(Sulubacak et al., 2016) and BOUN (Türk et al.,
2020) and two German treebanks – GSD (McDon-
ald et al., 2013) and HDT (Borges Völker et al.,
2019) as additional monolingual data but this re-
sulted in a decrease in DSplit’s accuracy possi-
bly due to conflicting morphological annotations of
these treebanks. So, we only use the corresponding
parts of the SAGT Treebank in training and evalu-
ation of DSplit. We also experimented with the
second pipeline approach mentioned in Section 2.
In line with our expectations, it gives worse per-
formance. So, we stick to our current DSplit
method (cf. Table 8 in Appendix A for a compari-
son of two approaches).

4.2 Model Configuration

STEPS can be used with both BERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020). We
chose to use multilingual XLM-R observing it out-
performs multilingual BERT in our preliminary

experiments, which is in line with previous find-
ings (Liang et al., 2020; Conneau et al., 2020). We
use XLM-RBase with 12 layers and 768 hidden
states in all the experiments. We stick to the default
configuration of STEPS (Grünewald et al., 2020)
for all the models except LIDVec. For LIDVec,
token embedding size was changed from 768 to
868 since embeddings are expanded with the con-
catenation of 100-dimensional LID embeddings.

4.3 Predicted Language IDs

DSplit and LIDVec need LIDs; the former dur-
ing splitting the dataset into languages, the latter
during the concatenation of a token embedding
with its corresponding LID vector. We evaluate
these models with both gold and predicted LIDs.
Predicted labels are obtained by training the STEPS
Standalone model for LID tagging.

4.4 Metrics

We use accuracy as the evaluation metric. We count
a morphological tag prediction of a token correct
only when it is an exact match with the gold one.
In addition to reporting the overall accuracy, we
also provide accuracy on each LID label separately.
This enables us to easily observe the parts each
model has the most difficulty with. The signifi-
cance between the performance of the models is
measured using the randomisation test (van der
Voet, 1994). When we mention a performance dif-
ference being significant, it means the difference is
found statistically significant with p < 0.05.

4.5 Results

Table 3 shows experimental results for each model
on the development and test sets.7 It also demon-
strates the evaluation of another baseline – Udify,
a well-known, state-of-the-art transformer-based
multi-task tool, which uses multilingual BERT as
its language model (Kondratyuk and Straka, 2019).

We see that all three models that utilise
LIDs outperform Standalone as well as Ud-
ify on both development and test sets. Although
Standalone and Udify have similar architec-
tures, the performance of the former surpasses that
of the latter in terms of accuracy. Besides some de-
sign decisions, the main difference between these
two models is the choice of the pretrained lan-

7The scores on the development set are the average of three
separate runs while the scores on the test set are obtained by
using the run that gives the best result in the development set.
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Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

Udify (mBERT) 74.64 82.18 44.26 52.08 99.91 80.48
STEPS - Standalone 79.37 81.18 66.39 43.75 99.91 82.03
STEPS - MTL 79.94 82.05 71.04 43.75 99.91 82.74
STEPS - DSplit (w. gold LIDs) 81.17 83.03 69.67 52.78 99.91 83.72
STEPS - LIDVec (w. gold LIDs) 81.87 83.54 73.22 50.00 99.17 84.20

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

Udify (mBERT) 71.95 79.21 39.34 34.78 99.86 77.83
STEPS - Standalone 76.15 77.15 61.75 47.83 99.93 78.71
STEPS - MTL 76.47 79.04 68.31 45.65 99.93 79.87
STEPS - DSplit (w. gold LIDs) 78.04 80.12 65.03 50.00 99.93 80.98
STEPS - LIDVec (w. gold LIDs) 79.20 80.77 78.69 34.78 98.77 81.76

Table 3: Morphological tagging accuracy of the models on the Turkish-German SAGT Treebank.

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

STEPS - DSplit (w. pred. LIDs) 80.66 82.95 70.43 41.50 100.0 83.43
STEPS - LIDVec (w. pred. LIDs) 81.85 83.53 73.22 49.31 99.17 84.18

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

STEPS - DSplit (w. pred. LIDs) 77.65 80.01 65.59 48.78 100.0 80.78
STEPS - LIDVec (w. pred. LIDs) 79.22 80.73 78.69 34.78 98.77 81.75

Table 4: Morphological tagging accuracy of DSplit and LIDVec when predicted LID labels were used.

Accuracy
Development set Test set

TR 99.09 99.42
DE 98.43 98.80
MIXED 90.16 92.90
LANG3 52.08 67.39
OTHER 99.91 99.86
ALL 98.55 98.96

Table 5: LID prediction accuracy of STEPS on the de-
velopment and test sets of the SAGT Treebank.

guage model. While Udify uses multilingual BERT,
Standalone utilises XLM-R.

The best performing model is LIDVec as we
expected. It outperforms Standalone more
than 2 and 3 points on the development and test
sets, respectively. The two baselines for LID in-
tegration, DSplit and MTL, perform better than
Standalone although they are less successful
than LIDVec. We observe that integrating LIDs to
the system improves the accuracy in morphological
tagging in all three scenarios, although the amount
of the improvement differs across the models.

To see how LID prediction affects DSplit and
LIDVec, we repeated the same experiments with
predicted LIDs. The results are given in Table
4. As introduced in Section 4.3, Standalone
is used for LID tagging. Its performance on the
development and test sets is shown in Table 5.

In Table 4, we see that LID accuracy has a

stronger influence on DSplit while LIDVec
stays almost unaffected. This might stem from
LIDs playing a key role in DSplit by splitting
the data into monolingual parts that are then used
to train two separate models. So, the errors in LIDs
are more explicitly propagated to the two models
that learn to predict the morphological features
of monolingual data only. However, LIDs have
a more implicit effect in LIDVec. The errors in
LIDs cause the wrong LID vector to be concate-
nated to the embeddings of some tokens but this
error can later be compensated through the train-
ing of the whole model where both token and LID
embeddings being updated at each step. Consider-
ing the high overall accuracy in LID prediction in
Table 5, LIDVec seems to compensate the small
error rate in predicted LIDs. Although LANG3
prediction accuracy is low, this does not cause a
substantial effect in the overall accuracy of LID
prediction since this label is rare in the treebank.

5 Analysis on LID Integration

LID representation and initialisation In Sec-
tion 3.3, we mention two more ways in addition
to our preferred approach for the representation
of LIDs as vectors. The first way is representing
LIDs as one-hot vectors. We define each LID la-
bel as a one-hot vector and concatenate these vec-
tors with token embeddings provided by the lan-
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guage model as in LIDVec. We experimented
with this approach on the development set. How-
ever, this method showed poorer performance than
Standalone which does not utilise LIDs in any
way. We believe that one-hot vector representation
might be too rigid to be used together with token
embeddings due to the fact that the range of the
values in these two representations greatly vary.

The second method for the LID vector represen-
tation includes the initialisation of LID embeddings
by averaging the embeddings of same-LID tokens
in the training set. In the initial experiments we
see that when we use the average initialisation in-
stead of a random initialisation, the training phase
progresses faster and the learning stops early when
the training accuracy is around 85%, in contrast
to the random initialisation in which the training
phase ends after a higher number of epochs and
with a higher training accuracy. So, we extended
the training time by changing the early stop crite-
ria from 15 epochs to 50 epochs to give the aver-
age initialisation an opportunity to show its true
capacity. Figure 3 compares the performance of
these two initialisation methods for two different
early stop criteria on the development set. We see
that the underfitting in the average initialisation
method is eliminated as the number of epochs in-
creases. Overall, the performance of both initiali-
sation methods is the same when they are trained
sufficiently. We conclude that random initialisation
can be preferred if there are time restrictions.

80 82 84 86 88

avg, 50
rand, 50

avg, 15
rand, 15

Accuracy %

Figure 3: Comparison of random vs. average initialisa-
tion in the LIDVec model when the early stop criteria
is 15 epochs vs. 50 epochs.

The impact of LID prediction We proposed
three different approaches for LID integration. In
terms of resources needed, MTL does not need an
external LID prediction by definition, since it pre-
dicts LIDs and morphology jointly. However, it is
also the worst performing one among the three ap-
proaches. DSplit and LIDVec both outperform
MTL, but require predicted LIDs to function.

To test how sensitive these models to the LID

prediction accuracy, we evaluated DSplit and
LIDVec with MarMoT, a CRF-based sequence
tagger (Müller et al., 2013) which has ~96% ac-
curacy in LID prediction instead of the STEPS
LID model with ~99% accuracy (cf. Table 9
in Appendix B for complete results). Although
LIDVec’s performance stays almost unaffected by
the accuracy drop in LID prediction, DSplit ac-
curacy drops approximately 1 point and more than
2 points in development and test sets, respectively.
We conclude that DSplit is more vulnerable to
LID accuracy whereas LIDVec can be paired with
a faster and computationally less costly LID model
if needed be. Another disadvantage of DSplit is
the need to train multiple monolingual models to
deal with different languages in CS data, in con-
trast to the single model architecture of LIDVec.
DSplit also requires pre- and post-processing of
the input and output, respectively. Considering its
superior performance, and the robustness and com-
pactness of its architecture, we suggest LIDVec
as the best approach to CS morphological tagging
among the models discussed in this paper.

The impact of LIDs on POS tagging We also
performed experiments for POS tagging, the other
possible sequence labelling task we can employ
LID integration. Table 6 shows the overall accu-
racies for each model on the development and test
sets of the SAGT Treebank. We do not observe any
significant difference between the accuracies of the
models, which is in line with our expectations. This
is because universal POS tags used in the SAGT
treebank are common to all languages in contrast
to morphological tags that include many language-
specific features. Hence, identifying the language
a token belongs to does not add extra benefits in
POS prediction.

Model Accuracy
Dev Test

STEPS - Standalone 93.72 92.27
STEPS - MTL 93.74 92.10
STEPS - DSplit (w. gold LIDs) 93.53 92.07
STEPS - LIDVec (w. gold LIDs) 93.94 92.24

Table 6: The POS tagging accuracy scores of the mod-
els on the development and test sets of the Turkish-
German SAGT Treebank.

6 Qualitative Analysis

Most Common Improvements We observe that
integrating language IDs contributes to a 10% in-
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crease in predicting the presence of possessive
markers in Turkish nouns, which are not a fea-
ture of German nouns. This is something expected
since providing LIDs enables the model to differ-
entiate between the different sets of morphological
features of two languages better. Similarly, the
LID knowledge makes a 4% enhancement in pre-
dicting the existence of the Gender feature that
is present in German nouns but absent in Turkish
ones (cf. Figure 1). To understand this better, we
compared LIDVec and Standalone in terms of
their feature-based success. In this feature-based
performance measurement, partial matches are also
given scores in contrast to the evaluation metric we
adopted, which counts a predicted morphological
tag as correct only if it is an exact match – i.e., all
the features that constitute the morphological tag
are predicted correctly. We measure the feature-
based performance of the models by dividing each
morphological tag into features and counting each
feature match as a point. Table 7 compares feature-
based results of LIDVec and Standalone. We
observe that LIDVec improves both Precision and
Recall by more than 2%. These results suggest
that LIDVec facilitates predicting the full set of
features.

Model Precision Recall F1 Acc
Standalone 87.72 87.19 87.24 82.03
LIDVec 89.96 89.41 89.50 84.20

Table 7: Feature-based partial scores of Standalone
and LIDVec models on the development set of the
Turkish-German SAGT Treebank.

When we look at what categories benefit most
from including LIDs, we see that for Turkish they
are verbs and nouns with an improvement of 11%
and 10%, respectively. For German they are pro-
nouns and nouns with 9% improvement. The suc-
cess of morphology prediction for German verbs
is already high for all models. Hence, there is not
much improvement in German verbs. We observe
that all the nouns and pronouns in both languages
and also the verbal nouns in Turkish which are
derived from verbs have the Case feature in their
morphological analyses.

Confusion in Case feature values Although all
models easily predicted the existence of the Case
feature, they had the most trouble in deciding the
value of it. Hence, we created confusion matri-
ces of Standalone and LIDVec for different
values of the Case feature on the development set

as given in Figure 4. There are only four case
markers in German: nominative, accusative, dative,
and genitive. In Turkish, there are three additional
case markers, namely ablative, instrumental, and
locative. Albeit having a German lemma, MIXED
tokens in the SAGT Treebank are annotated accord-
ing to Turkish morphological annotation style due
to the presence of Turkish suffixes in them. We
observe that the most confusion occurs between
nominative and accusative cases for all three token
types. This confusion in TR and MIXED tokens re-
sults from the fact that the accusative suffix which
makes the case of a word accusative and the pos-
sessive suffix in nominative nouns sometimes cor-
respond to the same form in Turkish. In DE tokens,
the situation is similar in the sense that nominative
and accusative forms of German articles are differ-
ent only for masculine, whereas they have the same
form when their gender is feminine or neutral, or
when they are in plural. LIDVec consistently re-
duces this confusion and predicts correct cases that
plays an important role in its overall performance.

Improvement on MIXED tokens When observ-
ing the results in Tables 3 and 4, the notable suc-
cess of LIDVec on predicting morphological anal-
yses of MIXED tokens caught our attention. Even
when predicted LIDs are used, LIDVec outper-
forms Standalone by a large margin in the de-
velopment and test sets. We observe that MIXED
tokens in the SAGT Treebank are mostly nouns.
Therefore MIXED tokens get their share from over-
all Case improvements. When proportioned to the
total number of cases in each category, the success
of LIDVec is most visible in MIXED tokens.

Performance of LIDVec on LANG3 and OTHER
tokens We observe a pattern in the results that
seems like a trade-off between the success on TR,
DE, and MIXED and the success on LANG3 and
OTHER. This is most visible in LIDVec. We
do not see the consistent improvement trend over
Standalone in LANG3 and OTHER accuracies
as in TR, DE, and MIXED accuracies. To in-
spect this case, we compare confusion matrices
of Standalone and LIDVec in Figure 5 for
LANG3 and OTHER types. Both models confused
LANG3 mostly with DE. We believe this situation
stems from the fact that LANG3 tokens in the tree-
bank are mostly English proper nouns and some
of them are also common in German. Nonethe-
less, the low success rates in this token type by all
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Figure 4: Confusion matrices of Standalone and
LIDVec for different Case values.

models demonstrate once again how important the
amount of training data is for data-driven models.

On the contrary, all models perform very well in
predicting the absence of morphology in OTHER
tokens. However, LIDVec makes a few more false
predictions than Standalone. We believe this
might stem from a slight overfitting of LIDVec
towards TR tokens. Yet, accuracy of all models are
above 98% for this type and we need more data to
justify that there is a difference between the models
for morphology prediction of OTHER tokens.

7 Conclusion

In this paper, we tackle the morphological tag-
ging problem for CS data. We present some chal-
lenging aspects of the task and suggest the use
of token-wise LID information. We experience
with different ways of using LIDs on a transformer-
based model and propose the LID Vectors ap-
proach. Our proposed model outperforms all the
baselines significantly and proves to be a robust
and compact way of LID integration. Being first
on focusing morphological tagging on CS data,

Figure 5: Confusion matrices for the tokens with
LANG3 and OTHER LID labels on the development set.

our study shows that utilising LIDs is an effec-
tive method in this task. We also give the first
results on LID, POS, and morphological tagging
on the Turkish-German SAGT dataset. An imple-
mentation of our model is available at https:
//github.com/sb-b/steps-parser.
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A Comparison of Two Approaches for
the Data Split Method

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

first 81.17 83.03 69.67 52.78 99.91 83.72
second 81.05 82.78 60.93 57.64 99.88 83.48

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

first 78.04 80.12 65.03 50.00 99.93 80.98
second 77.44 79.59 60.11 50.00 99.86 80.42

Model Accuracy on the Development Set
TR DE MIXED LANG3 OTHER ALL

first 80.66 82.95 70.43 41.50 100.0 83.43
second 80.50 82.81 63.44 41.50 99.97 83.23

Accuracy on the Test Set
TR DE MIXED LANG3 OTHER ALL

first 77.65 80.01 65.59 48.78 100.0 80.78
second 77.05 79.54 60.75 48.78 100.0 80.26

Table 8: Morphological tagging accuracy of the two
pipeline approaches for the DSplit method. The first
part shows the scores in the existence of gold LIDs and
the second part demonstrates the results when predicted
LIDs are used instead of gold ones.

B Comparison of MarMoT and STEPS
for LID Prediction

Accuracy
Development set Test set

MarMoT STEPS MarMoT STEPS
TR 96.40 99.09 97.38 99.42
DE 97.84 98.43 97.88 98.80
MIXED 23.77 90.16 27.32 92.90
LANG3 41.67 52.08 0.0 67.39
OTHER 98.23 99.91 99.06 99.86
ALL 96.12 98.55 96.57 98.96

Table 9: Comparsion of MarMoT and STEPS tools for
LID prediction on the development and test sets of the
SAGT Treebank.


