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Abstract

The success of pre-trained transformer lan-
guage models has brought a great deal of in-
terest on how these models work, and what
they learn about language. However, prior re-
search in the field is mainly devoted to En-
glish, and little is known regarding other lan-
guages. To this end, we introduce RuSentE-
val, an enhanced set of 14 probing tasks for
Russian, including ones that have not been ex-
plored yet. We apply a combination of com-
plementary probing methods to explore the
distribution of various linguistic properties in
five multilingual transformers for two typolog-
ically contrasting languages – Russian and En-
glish. Our results provide intriguing findings
that contradict the common understanding of
how linguistic knowledge is represented, and
demonstrate that some properties are learned
in a similar manner despite the language dif-
ferences.

1 Introduction

Transformer language models (Vaswani et al.,
2017) have achieved state-of-the-art results on a
wide range of NLP tasks in multiple languages,
demonstrated strong performance in zero-shot
cross-lingual transfer (Pires et al., 2019), and even
surpassed human solvers in NLU benchmarks such
as SuperGLUE (Wang et al., 2019). The success
has stimulated research in how these models work,
and what they acquire about language. The ma-
jority of the introspection techniques are based on
the concept of probing tasks (Adi et al., 2016; Shi
et al., 2016; Conneau et al., 2018) which allow
analyzing what linguistic properties are encoded
in the intermediate representations. A rich vari-
ety of tasks has been introduced so far, ranging
from token-level and sub-sentence probing (Liu
et al., 2019; Tenney et al., 2019) to sentence-level
probing (Alt et al., 2020). A prominent method

to explore the inner workings of the models in-
volves training a lightweight classifier to solve a
probing task over features produced by them, and
assess their knowledge by the classifier’s perfor-
mance. Recently, the methods have been greatly
extended to latent subclass learning (Michael et al.,
2020), correlation similarity measures (Wu et al.,
2020), information-theoretic probing (Voita and
Titov, 2020), investigation of individual neurons
(Durrani et al., 2020; Suau et al., 2020), and many
more.

Despite growing interest in the field, English re-
mains the focal point of prior research (Belinkov
and Glass, 2019; Rogers et al., 2021) leaving other
languages understudied. To this end, several mono-
lingual and cross-lingual probing suites have been
assembled (see Section 2), with a few of them fol-
lowing SentEval toolkit (Conneau et al., 2018; Con-
neau and Kiela, 2018). However, most of them
directly apply an English-oriented method which is
not guaranteed to be universal across languages, or
use the Universal Dependencies (UD) Treebanks
(Nivre et al., 2016) which tend to be inconsistent
(Alzetta et al., 2017; de Marneffe et al., 2017;
Droganova et al., 2018).

This work proposes RuSentEval, a probing
suite for evaluation of sentence embeddings for
the Russian language. We adapted the method for
English (Conneau et al., 2018) to complement the
peculiarities of Russian. In contrast to closely re-
lated datasets (Ravishankar et al., 2019; Eger et al.,
2020), RuSentEval is fully guided by linguistic ex-
pertise, relies on annotations obtained with the cur-
rent state-of-the-art model for Russian morphosyn-
tactic analysis (Anastasyev, 2020), and includes
tasks that have not been explored yet.

The contributions are summarized as three-fold.
First, we present an enhanced set of 14 probing
tasks for Russian, organized by the type of linguis-
tic properties. Second, we carry out a series of
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probing experiments on two typologically different
languages: English, which is an analytic Germanic
language, and Russian, which is a fusional Slavic
one. Keeping in mind that the English (Conneau
et al., 2018) and Russian datasets are combined
from different annotation schemas, we introspect
five multilingual transformer-based encoders, in-
cluding their distilled versions. We apply several
probing methods to conduct the analysis from dif-
ferent perspectives, and support the findings with
statistical significance. Besides, we establish count-
based and neural-based baselines for the tasks. Fi-
nally, RuSentEval is publicly available1, and we
hope it will be used for evaluation and interpreta-
tion of language models and sentence embeddings
for Russian.

2 Related Work

Introspection of pre-trained language models for
languages other than English, specifically Russian,
is usually conducted in the cross-lingual setting.
The primary goal of such experiments is to explore
how particular linguistic properties are distributed
in a given collection of multilingual embedding
and language models. LINSPECTOR (Şahin et al.,
2020) is one of the first probing suites that covers
a wide range of linguistic phenomena in 24 lan-
guages. The benchmark uses UniMorph 2.0 (Kirov
et al., 2018) to design the tasks since UD do not pro-
vide a sufficient amount of data for the considered
languages. Despite this, UD Treebanks have be-
come the main source for collection of multilingual
probing tasks, limiting the scope to morphology
and syntax (Krasnowska-Kieraś and Wróblewska,
2019). Other sources for the assembly include
multilingual datasets created by means of machine
translation, such as XNLI (Conneau et al., 2020b),
or datasets that labelled with similar annotation
schemes for named entity recognition (NER) and
semantic role labelling (SRL) tasks (Şahin et al.,
2020).

A few prior works (Ravishankar et al., 2019;
Eger et al., 2020) that follow SentEval toolkit (Con-
neau and Kiela, 2018) directly apply the method de-
signed for English to multiple typologically diverse
languages, which raises doubts if such strategy is
universal across languages that exhibit unique pecu-
liarities, e.g. a free word order and rich inflectional
morphology. This can lead to low quality of the

1https://github.com/RussianNLP/
rusenteval

datasets and unreliable experimental results, par-
ticularly for Russian. Consider a few examples
for (BShift) task in Russian: Fedra zatem povesi-
las’, a Tesey uznal pravdu. “Phaedra later hanged
herself, and Theseus unraveled the truth.” (Rav-
ishankar et al., 2019), and Shestoe – zanimatsya
nado svoim obrazovaniem “The sixth point is that
you to take care need of your education” (Eger
et al., 2020). The sentences are labelled as posi-
tive, meaning that they exhibit incorrect word or-
der. While the word order changes can lead to the
syntax perturbations for English, both sentences
are still acceptable in terms of syntax for Russian.
Moreover, the dataset sizes tend to be inconsistent
across languages due to using UD Treebanks which
makes it difficult to compare the results (Eger et al.,
2020).

Another line of research includes probing ma-
chine translation models (Mareček et al., 2020)
over multiple languages, and probing for cross-
lingual similarity by utilizing paired sentences
in mutually intelligible languages (Choenni and
Shutova, 2020a,b). Last but not least, such
benchmarks as XGLUE (Liang et al., 2020) and
XTREME (Hu et al., 2020) allow evaluating the
current state of language transferring methods.

3 Probing Tasks

Data The sentences for our probing tasks were
extracted from the following publicly available re-
sources: Russian Wikipedia articles2 and news cor-
pora such as Lenta.ru3 and the news segment of
Taiga corpus (Shavrina and Shapovalova, 2017).
We used rusenttokenize library4, a rule-based sen-
tence segmenter for Russian, to split texts into sen-
tences. Each sentence was tokenized with spaCy
Russian Tokenizer5. The sentences were filtered
by the 5-to-25 token range and annotated with the
current state-of-the-art model for joint morphosyn-
tactic analysis in Russian (Anastasyev, 2020). Be-
sides, we performed two additional preprocessing
steps. (1) We computed the IPM frequency of each
sentence using the New Frequency Vocabulary of
Russian Words (Lyashevskaya and Sharov, 2009)
to control the word frequency distribution. The

2https://dumps.wikimedia.org/ruwiki/
latest/

3https://github.com/yutkin/Lenta.
Ru-News-Dataset

4https://pypi.org/project/
rusenttokenize

5https://github.com/aatimofeev/spacy_
russian_tokenizer

https://github.com/RussianNLP/rusenteval
https://github.com/RussianNLP/rusenteval
https://dumps.wikimedia.org/ruwiki/latest/
https://dumps.wikimedia.org/ruwiki/latest/
https://github.com/yutkin/Lenta.Ru-News-Dataset
https://github.com/yutkin/Lenta.Ru-News-Dataset
https://pypi.org/project/rusenttokenize
https://pypi.org/project/rusenttokenize
https://github.com/aatimofeev/spacy_russian_tokenizer
https://github.com/aatimofeev/spacy_russian_tokenizer
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IPM values of each token lemma in the sentence
(if present in the vocabulary) were averaged over a
total number of token lemmas. The sentences with
the IPM frequency of lower than 0.9 were filtered
out. This allows discarding the majority of sen-
tences that contain rare words, acronyms, abbrevia-
tions, or loanwords. (2) Syncretism is peculiar to
fusional languages, that is, when a word can belong
to multiple part-of-speech tags, or express multi-
ple ambiguous morphosyntactic features (Baerman,
2007). Following (Şahin et al., 2020), we removed
sentences in the semantic tasks (described below)
where the target word has multiple part-of-speech
tags. This step allows simplifying the probe inter-
pretation and ensuring a fairer experimental setup
in terms of the language comparison.

The total number of the annotated sentences after
filtering is 3.6 mln, and they are publicly available.
Each task consists of a 100k-sentence training set
and 10k-sentence validation and test sets. There is
no sentence overlap across the splits, and all sets
are balanced by the number of instances per target
class.

Surface properties tasks test if it is possible to
recover information about surface properties from
the contextualized representations. (SentLen) is a
6-way classification task aimed to predict a number
of tokens given a sentence representation. Sim-
ilar to (Adi et al., 2016; Conneau et al., 2018),
we grouped sentences into 6 equal-width bins by
length. The word content (WC) task tests if the
information on the original words in a sentence can
be inferred from its representation. We selected 1k
lemmas from the source corpus vocabulary within
the 1.5k-3k rank range when sorted by frequency,
and sampled equal numbers of sentences that con-
tain only one of these lemmas. The task is treated
as a 1k-way classification that requires knowledge
about lexical items and their inflectional paradigms.

Syntactic properties is a group of tasks that probe
the encoder representations for syntactic properties.
In the (ConjType) task, the sentences must be clas-
sified in terms of the type of connection between
complex clauses. The objective of the classifier is
to tell whether a sentence involves coordination or
subordination.

(ImpersonalSent) is a binary classification task
that aims to define if there is a lack of a grammat-
ical subject in the main clause of a sentence. It is
usually expressed by a singular third-person, reflex-
ive, singular neuter, or invariable predicate form

(smerkaetsya “it is getting dark”; zharko “it is hot”;
pora idti “it is time to go”), an adverbial predicate
phrase (bylo sovershenno tikho “it was absolutely
quiet”), and intransitive verbs typically combined
with a noun phrase in the instrumental (zapahlo
rozami “it smells roses”).

(TreeDepth) task tests whether the encoder rep-
resentations store the information on the hierarchi-
cal and syntactic structure of sentences. Specifi-
cally, the goal is to probe for knowledge about the
depth of the longest path from the root node to any
leaf in the syntax tree. Similar to (Conneau et al.,
2018), we obtained sentences where the tree depth
and the sentence length are de-correlated. The
tree depth values range from 5 to 9 which makes
(TreeDepth) a 5-way classification task.

(Gapping) task deals with the detection of syn-
tactic gapping that occurs in coordinated structures
and elides a repeated predicate, typically from the
second clause. We used data provided in the Shared
Task on Automatic Gapping Resolution for Rus-
sian, or AGRR-2019 (Ponomareva et al., 2019).
For instance, the sentence Odin imel silu solntsa,
drugoy – luny. “One had the power of the Sun, the
other (had the power of) the Moon.” comprises an
omission of a repeating predicate in the non-initial
clause with its semantics remaining expressed.

The N-gram shift task (NShift) is analogous to
SentEval’s (Bshift) that tests the encoder’s sen-
sitivity to incorrect word order. As opposed to
English, only specific cases of word inversion in
Russian lead to syntax perturbation. We, therefore,
perturbed N-grams that correspond to a set of pre-
defined morphosyntactic patterns. We used TF-IDF
method from scikit-learn library (Pedregosa et al.,
2011) to build an N-gram feature matrix that was
further applied for the word order perturbation. For
instance, we reversed adjacent words in preposi-
tional phrases, numeral phrases, compound noun
phrases, etc. Below is an example where the head
of the prepositional phrase v schkolu ’to school’ is
inverted with the dependent noun:

Segodnya on ne poshel shkolu v.

“He did not go school to today.’

Semantic properties tasks rely on both syntac-
tic and semantic structure of a sentence to re-
cover a higher-level property. (SubjNumber) and
(SubjGender) probe for the number and gender
features of the subject in the main clause. Sim-
ilarly, (ObjNumber) and (ObjGender) focus on
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the number and gender of direct object in the main
clause. In the following tasks, the aim is to probe
for the morphosyntactic features of the predicate
or the head of a predicative construction of the
main clause: predicate voice (PV), predicate as-
pect (PA), and predicate tense (PT). The latter is
analogous to SentEval’s (Tense) task.

The semantic tasks test if the contextualized rep-
resentations not only capture the morphosyntactic
features but also encode higher-level, structural and
syntactic-semantic information (namely, the syntax
tree hierarchy and the actant structure of a predi-
cate). Note that the boundary between the surface,
syntactic and semantic tasks is relatively blurred.

4 Experimental Setup

4.1 Encoders
We run the experiments on the following 12-layer
multilingual transformer encoders released by Hug-
gingFace (Wolf et al., 2019):

M-BERT (Devlin et al., 2019) is trained on masked
language modeling (MLM) and next sentence
prediction tasks, over concatenated monolingual
Wikipedia corpora in 104 languages.

XLM-R (Conneau et al., 2020a) is trained on ’dy-
namic’ MLM task, over filtered CommonCrawl
data in 100 languages (Wenzek et al., 2020).

MiniLM (Wang et al., 2020) is a distilled trans-
former of BERT architecture, but uses the XLM-
RoBERTa tokenizer.

LABSE (Feng et al., 2020) employs a dual-encoder
architecture that combines MLM and translation
language modeling (Conneau and Lample, 2019).

M-BART (Liu et al., 2020) is a sequence-to-
sequence transformer model with a BERT encoder,
and an autoregressive GPT-2 decoder (Radford
et al., 2019). We used only the encoder in the
experiments.

4.2 Methods
Probing Classifiers We trained linear and non-
linear classifiers over intermediate representations
produced by the encoders6, using categorical cross-
entropy loss, and Adam optimizer (Kingma and
Ba, 2015). For the non-linear classifier (MLP), we
used the Sigmoid activation function, the number
of hidden states of 250, and the dropout rate of

6We used mean-pooled sentence representations to train
the classifiers.

0.2. Training is run over 5 iterations with the L2-
regularization parameter ∈ [0.1, ..., 1e−5] tuned on
the validation set, and the best classifier selected.
The performance is evaluated by accuracy score.

Individual Neuron Analysis Neuron-level intro-
spection technique (Durrani et al., 2020) allows
identifying top neurons that contribute most to a
probing task and observe how these neurons are dis-
tributed across layers of the encoder. Similarly, we
trained a linear probing classifier over concatenated
sentence representations and used the weights to
measure the importance of each neuron. The classi-
fier is trained using Elastic-net regularization with
L1 and L2 λ’s ∈ [0.1, . . . , 1e−5] tuned on the val-
idation set. Refer to (Dalvi et al., 2019; Durrani
et al., 2020) for more details.

Correlation Analysis Correlation-based analy-
sis techniques posed in (Wu et al., 2020) allow mea-
suring similarity of the encoder intermediate rep-
resentations without any linguistic annotation. We
apply neuron-level (maxcorr) and representation-
level (lincka) similarity measures to investigate
the encoders. maxcorr identifies pairs of neurons
of the maximum correlation from two different
layers. It is high when two layers have pairs of
neurons with similar behavior. lincka provides
a comparison of representations from different lay-
ers in a given collection of models. Two layers are
assigned a high similarity if their representations
behave similarly over all the neurons.

4.3 Baselines

We established a number of count-based and non-
contextualized baseline features to train the probing
classifiers as outlined in Section 4.2. We used N-
gram range ∈ [1, 4] and top-150k features in the
vocabularies for each count-based baseline. The
count-based features include TF-IDF over char-
acter N-grams, TF-IDF over BPE tokens (Sen-
nrich et al., 2016), and TF-IDF over Sentence-
Piece tokens (Kudo and Richardson, 2018). We ap-
plied multilingual BertTokenizer and XLMRober-
taTokenizer by HuggingFace to segment sentences
into BPE and SentencePiece tokens. The non-
contextualized features are mean-pooled monolin-
gual fastText sentence embeddings (Bojanowski
et al., 2017). We used monolingual fastText models
for English7 and Russian. The latter was trained

7https://fasttext.cc/docs/en/
crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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Probing Task Language M-BERT LABSE XLM-R MiniLM M-BART

Nshift Ru
En

84.8 [8]
81.8 [10]

82.6 [5]
84.4 [5]

86.9 [9]
85.7 [10]

80.5 [9]
79.3 [8]

78.6 [12]
83.8 [12]

ObjNumber Ru
En

82.8 [6]
86.2 [6]

82.5 [2]
85.4 [3]

83.7 [10]
86.0 [8]

77.8 [10]
85.2 [6]

81.5 [7]
85.9 [9]

SentLen Ru
En

91.3 [2]
96.3 [2]

93.3 [1]
96.6 [1]

94.5 [2]
95.8 [2]

94.1 [2]
96.1 [3]

96.2 [4]
97.3 [3]

SubjNumber Ru
En

90.5 [7]
87.8 [7]

92.9 [3]
90.7 [12]

94.9 [11]
86.9 [10]

94.2 [12]
85.6 [6]

93.1 [10]
87.3 [9]

Tense Ru
En

99.5 [8]
88.9 [8]

99.8 [5]
88.8 [6]

99.8 [5]
88.8 [9]

98.2 [7]
87.3 [5]

99.6 [7]
89.1 [9]

TreeDepth Ru
En

44.7 [6]
41.2 [5]

46.1 [4]
42.7 [5]

46.5 [5]
41.8 [7]

44.8 [7]
40.9 [7]

45.8 [11]
41.2 [12]

WC Ru
En

84.8 [2]
92.6 [1]

85.8 [1]
93.7 [1]

82.6 [1]
89.8 [1]

72.8 [1]
82.3 [1]

88.0 [1]
93.8 [1]

Table 1: Results of Logistic Regression classifier for each encoder over the shared English and Russian tasks.
Languages: Ru=Russian, En=English.

over joint Russian Wikipedia and Lenta.ru news,
and released by DeepPavlov (Burtsev et al., 2018).

5 Results

How is the linguistic knowledge of two con-
trasting languages distributed in pre-trained mul-
tilingual encoders? This section describes the
results for shared English and Russian prob-
ing tasks, covering surface properties (SentLen,
WC), syntax (TreeDepth, NShift), and semantics
(ObjNumber, SubjNumber, and Tense). We also
report the results for the remaining tasks and the
baselines in Appendix B.

5.1 Layer-wise Supervised Probing

Table 1 presents the results of the linear classifier
performance over the shared tasks. For the sake of
space, we omit the results of the non-linear clas-
sifier and provide them in Appendix B. The best
score for each task in each language is highlighted
in grey, and the index number of the layer achiev-
ing the score is enclosed in square brackets. We
observe that the surface and syntax tasks show sim-
ilar trends for both languages, while a few semantic
tasks reveal some differences. The overall pattern
for the surface-level tasks (SentLen, WC) is that

the probing curves8 for both languages tend to be
decaying after reaching the peak at the lower layers
[1 − 4]. The exception is provided by M-BART
which keeps the surface properties across the ma-
jority of layers. The baselines mostly perform on
par with one another, with fastText and TF-IDF
Char receiving the best score (see Appendix B).

(Nshift, TreeDepth) tasks demonstrate interest-
ing distinctive features of LABSE and M-BART
encoders with respect to the syntactic properties.
Figure 1 depicts the probing curves over (Nshift)
and (Bshift) tasks. First, LABSE is at most sen-
sitive to the incorrect word order at the lower-to-
middle layers [2− 8], as opposed to other encoders
which distribute the information at the middle-to-
higher layers [8 − 12]. Second, M-BART shows
confident knowledge in TreeDepth task for both
languages at the middle-to-higher layers [7− 12]
and reaches the peak at layer 12, in contrast to
the rest of the encoders which generally distribute
the property at the middle layers [5 − 7] (see Ap-
pendix B). The baselines performance varies from
achieving a low score (TreeDepth) to being close
to random choice (Nshift).

The probing curves for (PT) and (Tense) tasks
illustrate that the models encode the property in a

8We refer to probing curves as to the performance trajec-
tory of a probing classifier
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Figure 1: The probing results for each encoder on NShift (Ru, left) and Bshift (En, right) tasks. X-axis=Layer
index number, Y-axis=Accuracy score.

very similar fashion, achieving the peak score at the
middle layers [4, 5], and flattening the curves until
the output layer (see Appendix B). In contrast, the
behavior of the encoders on (SubjNumber) and
(ObjNumber) is slightly different. The number of
the subject for English is predominantly distributed
at the middle-to-higher levels [5 − 12], while for
Russian it is either at a steady pace from the very
first layer (M-BART, M-BERT), or decaying at
the lower and middle layers [3− 5], and further in-
creasing close to the higher levels [8−12] (LABSE,
MiniLM). Other differences are found in the re-
sults for (ObjNumber) task. Specifically, the num-
ber of direct object for English is best inferred at the
lower layers of LABSE [2, 3], as compared to the
middle-to-higher layers of other encoders [6− 9].
Despite this, the property is similarly distributed
across the layers of the models. In the same man-
ner as for English, LABSE concentrates the knowl-
edge for the Russian task in layer 2 but decays once
reaching the peak. However, the other models ex-
hibit a distinct behavior as well, with the property
best encoded at the middle layers [6, 7] (M-BERT,
M-BART), or at layer 10 (XLM-R, MiniLM). No-
tably, the baselines receive a strong performance
over the majority of the semantic tasks for both
languages, meaning that they can be solved using
sub-word features that can capture lexical, or mor-
phosyntactic information.

Bootstrap We estimate statistical significance of
the supervised probing by means of layer-wise
bootstrap procedure (Berg-Kirkpatrick et al., 2012).
Typically, we observe that when the probing curve
rises, the layer-wise difference is statistically sig-

nificant, while at the peak of the probing curve it
turns insignificant. We can treat these observations
in the following way: starting from the peak of the
probing curve, the models acquire the knowledge
needed for the task, and do not generally lose it in
the higher layers.

5.2 Neuron-level Analysis

In contrast to layer-wise supervised probing (Sec-
tion 5.1) which introspects each layer indepen-
dently, individual neuron analysis allows exploring
the distribution of top neurons selected from the
entire encoder. This provides an alternative per-
spective to which layers contribute predominantly
towards the probing tasks. Note that we trained dis-
tinct classifiers regularized with Elastic-net (Zou
and Hastie, 2005) to estimate the importance of
the neurons9. Figure 2 presents the results for
(SentLen) tasks in Russian and English. Different
from other models which predominantly capture
the property by neurons at the lower layers [1− 4],
M-BART distributes the information across all the
layers. Let us analyze the results with respect to
some syntactic and semantic levels. A similar be-
havior of the encoders by language is observed over
(NShift) and (TreeDepth) tasks (see Appendix C).
M-BERT, XLM-R, and MiniLM generally cap-
ture the sensitivity to illegal word order by neurons
at the middle and higher layers, while it is con-
tributed by fewer layers of LABSE (Ru: [2 − 4];
En: [4 − 7]), and M-BART which surprisingly
stores the property at layer 12 for each language.
Another interesting finding is that the depth of the

9We selected top-20% neurons from each encoder using
neuron ranking algorithm described in (Durrani et al., 2020)
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Figure 2: The distribution of top neurons over SentLen tasks for both languages: Ru=Russian, En=English. X-
axis=Layer index number, Y-axis=Number of neurons selected from the layer.

syntax tree is typically spread across most of the
layers of each encoder. An exception to this pattern
is M-BART which locates the knowledge at the
middle-to-higher layers [7− 11].

The neuron distributions for (ObjNumber) task
are akin by language and slightly different by en-
coder, showing that the number of the direct ob-
ject is learned by at least 5-7 layers of different
encoder depth. At the same time, the properties
for (SubjNumber) and (PT, Tense) tasks are cap-
tured differently by the encoders. M-BERT, XLM-
R and MiniLM reveal similar behavior by task,
whereas LABSE specializes the knowledge at ei-
ther the lower layers (Ru, SubjNumber; and En,
Tense: [1− 4]), or the higher ones (En, SubjNum-
ber; and Ru, PT: [10 − 12]). On the other hand,
the most contributing neurons of M-BART are pre-
dominantly spread across all the layers.

5.3 Correlation Analysis

For analyzing the encoders by means of the
correlation-based techniques, we used 1k stratified
sentences from each test set of the shared tasks.
We obtained the sentence representations and com-
puted the measures applying the publicly-available
code (Wu et al., 2020). Figure 3 shows heatmaps
of similarities between layers of the encoders un-
der neuron-level and representation-level measures
for English. Notably, the heatmaps are very alike
to the ones for Russian, which we enclose in Ap-
pendix D. maxcorr (Figure 3a) demonstrates that
different layers of a single encoder have similar in-
dividual neurons, but the inter-encoder neuron sim-
ilarities are greatly low. On the contrary, lincka
(Figure 3b) induces considerably high similarities
across the encoders, meaning that they produce sim-

ilar sentence representations. However, M-BERT
and M-BART show lower similarity with other en-
coders, particularly at the lower and higher layers
(M-BERT: [1− 3], [10− 12]; M-BART: [10, 11]).
Besides, M-BART and M-BERT demonstrate low
pairwise similarity, being fairly different at the
lower-to-higher layers [3− 11].

6 Discussion

Three encoders exhibit similar behavior, but
two other differ from them in capturing lin-
guistic properties The most striking distinc-
tion based upon the results is that M-BART and
LABSE exhibit different behavior for both lan-
guages, as opposed to M-BERT, XLM-R, and
MiniLM (Section 5.1, 5.2). Specifically, M-
BART generally tends to distribute the surface
properties across all the layers, unlike other en-
coders where the information is specialized by
the lower ones. The syntactic properties tend to
be localized at the higher layers [11 − 12] which
is as well demonstrated in other Russian tasks
(Gapping, ImpersonalSent). In contrast to other
models that capture the semantic properties at the
middle-to-higher layers, LABSE typically displays
the knowledge at the lower-to-middle layers. The
analysis of the understudied encoders contradicts
the common findings on transformer models that
syntactic information is stored at the middle layers,
while semantic knowledge is most prominent at
the higher layers (Rogers et al., 2021). Therefore,
there is still room for exploring transformer-based
models that differ by architecture type, or by a set
of pre-training objectives.
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(a) maxcorr (b) lincka

Figure 3: Similarity heatmaps of layers in the encoders under neuron-level (maxcorr) and representation-level
(lincka) measures.

MiniLM inherits linguistic properties from M-
BERT Teacher models are usually compared
with their distilled versions on a range of down-
stream tasks (Tsai et al., 2019), and little is ex-
plored on what language properties they bequeath
to their students. We find that MiniLM is likely
to mimic the behavior of XLM-R rather than of
M-BERT, most probably due to using the same to-
kenization method. The similarity is most demon-
strated by the individual neuron analysis (see Ap-
pendix C) and lincka (see Figure 3b). Along
with that, the model receives comparative perfor-
mance under layer-wise supervised probing (see
Appendix B).

Surface and syntactic information is learned in
a similar manner The probing curves demon-
strate that the surface and semantic properties of
the two languages are similarly distributed in the
encoders. The surface properties are generally cap-
tured at the lower layers, and the pattern of the
curves is decaying towards the output layer. The
syntactic properties are predominantly inferred at
the middle or higher layers, and the semantic tasks
reveal a number of differences described in Section
5. Notably, the results obtained under layer-wise
supervised probing (Section 5.1) are supported by
the individual neuron analysis (Section 5.2), and
the representation-level analysis (Section 5.3).

Encoders may have similar distributions of neu-
rons by task, but different individual neurons
Two neuron-level introspection methods allow

drawing the following finding. Despite that top-
neuron distributions in the encoder layers share sim-
ilar patterns in the majority of probing tasks (Sec-
tion 5.2), maxcorr induces high intra-encoder
similarities and low inter-encoder similarities (Sec-
tion 5.3). In other words, the neurons can similarly
localize particular properties in the layers and yet
behave differently across the models.

7 Conclusion

This paper introduces RuSentEval, an enhanced
probing suite of 14 probing tasks that cover vari-
ous linguistic phenomena of the Russian language.
We explored five multilingual transformer encoders
over the probing tasks on two typologically con-
trasting languages – Russian and English. The
experiments are conducted using a combination
of complementary probing methods, including
layer-wise supervised probing, individual neuron-
analysis, neuron- and representation-level similar-
ity measures. Particularly, the behavior of the en-
coders under probing classifiers is reflected in dis-
tributions of top neurons with respect to a task,
and the similarity is supported by linear centered
kernel alignment method. We found that despite
the language distinctions, the surface and syntactic
properties are learned in a fairly similar manner,
and the semantic knowledge is captured differently
in a majority of tasks. We believe that the findings
make the ongoing studies on cross-lingual transfer
even more promising, specifically from English to
Russian or vice versa. In contrast to prior works on
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how linguistic knowledge is represented in trans-
formers, the analysis of the understudied models
reveals that syntax and semantics can be differently
represented across the layers. Besides, we found
that different encoders often have similar distribu-
tions of neurons that contribute most to a probing
task, and yet differ under neuron-level similarities.
We also observed that distilled models inherit lin-
guistic properties from their teachers, and receive
comparative performance on a number of probing
tasks. An exciting direction for future work is to
investigate the correlation between probing and
high-level downstream tasks, in order to identify
which linguistic properties anticipate the behavior
of a model in action.
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2019. Empirical Linguistic Study of Sentence Em-
beddings. pages 5729–5739.

Taku Kudo and John Richardson. 2018. SentencePiece:
A Simple and Language Independent Subword Tok-
enizer and Detokenizer for Neural Text Processing.
pages 66–71.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fen-
fei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, et al. 2020. XGLUE:
A New Benchmark Datasetfor Cross-lingual Pre-
training, Understanding and Generation. pages
6008–6018.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Lin-
guistic Knowledge and Transferability of Contextual
Representations. pages 1073–1094.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Olga Lyashevskaya and Sergey Sharov. 2009. The
Frequency Dictionary of Modern Russian Language.
Azbukovnik, Moscow.

David Mareček, Hande Celikkanat, Miikka Silfver-
berg, Vinit Ravishankar, and Jörg Tiedemannb.
2020. Are Multilingual Neural Machine Transla-
tion Models Better at Capturing Linguistic Features?
The Prague Bulletin of Mathematical Linguistics,
(115):143–162.

Marie-Catherine de Marneffe, Matias Grioni, Jenna
Kanerva, and Filip Ginter. 2017. Assessing the An-
notation Consistency of the Universal Dependencies
Corpora. pages 108–115.

Julian Michael, Jan A Botha, and Ian Tenney. 2020.
Asking without Telling: Exploring Latent Ontolo-
gies in Contextual Representations. arXiv preprint
arXiv:2004.14513.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal Dependen-
cies v1: A Multilingual Treebank Collection. pages
1659–1666.
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A Examples from RuSentEval Tasks

Table 2 provides with examples from RuSentEval tasks.

Task Example Label

ConjType On otmetil , chto podobnyye progulki nebezopasny . SCONJ
’He noted that such walks are unsafe.’

Gapping Ya yezdila dvazhdy , sestra – trizhdy . 1
’I went [there] twice, my sister [went there] three times’

ImpersonalSent Rabotal takzhe kak kontsertmeyster i lektor . 0
’[He] also worked as an accompanist and lecturer.’

NShift Kogda etogo poluchilos’ ne , on ubezhal . I
’When it work out didn’t, he ran away’

ObjGender Rossiyskiy duet dopustil odnu oshibku . F
’The Russian duo made one mistake.’

ObjNumber Serial poluchil neskol’ko prestizhnykh nagrad . NNS
’The series has received several prestigious awards.’

PA On nikak ne ob”yasnil svoyu pozitsiyu . PERF
’He did not explain his position in any way .’

PT
Molodyye spetsialisty poluchayut yezhemesyachnuyu doplatu k

PRESzarplate .
’Young professionals receive a monthly supplement to their salary .’

PV
Srok vozmozhnoy prem’yery lenty poka ne nazyvayetsya

PASS’The date of a possible premiere of the film has not yet been
announced.’

SentLen Ya ne videla boleye zlogo cheloveka . 0
’I haven’t seen a more angry man.’

SubjGender On nosit beluyu dlinnuyu rubashku i dlinnyye seryye bryuki. M
’He wears a white long shirt and long grey trousers.’

SubjNumber
On byl lyubimtsem vsey moskovskoy i peterburgskoy aristokratii .

NN’He was a favorite of the entire Moscow and St. Petersburg
aristocracy.’

TreeDepth I vot v pervuyu ochered’ my khoteli by pogovorit’ ob etom . 5
’And first of all, we would like to talk about this.’

WC Proshluyu noch’ ya sovsem ne spal . spat’
’I didn’t sleep at all last night.’ ’to sleep’

Table 2: Examples from RuSentEval tasks.
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B Layer-wise Supervised Probing

B.1 Results on All Tasks
The results reported in the main body of the paper are obtained with Logistic Regression classifier over
the shared tasks (see Section 5.1). We present detailed results for both linear and non-linear classifiers
on all Russian and English tasks in Tables 3–6. Tables 7–9 show the results of the baselines. Table 11
outlines statistical description of the tasks.

Probing Task M-BERT LABSE XLM-R MiniLM M-BART

ConjType 98.8 [7] 99.3 [4] 99.3 [6] 98.6 [5] 98.8 [7]
Gapping 85.2 [7] 89.7 [8] 94.1 [8] 91.1 [9] 85.6 [12]

ImpersonalSent 91.6 [7] 92 [6] 92.6 [4] 88.4 [6] 85.7 [12]
NShift 81.8 [10] 82.6 [5] 86.9 [9] 80.5 [9] 78.6 [12]

ObjGender 70.1 [6] 70.4 [2] 69.4 [5] 64.1 [9] 71.8 [1]
ObjNumber 82.8 [6] 82.5 [2] 83.7 [10] 77.8 [10] 81.5 [7]

PA 91.2 [6] 93.8 [4] 94.4 [5] 89.4 [5] 95.9 [10]
PT 99.5 [8] 99.8 [5] 99.8 [5] 98.2 [7] 99.6 [7]
PV 77.5 [5] 76.3 [5] 76.8 [5] 71.4 [3] 77.7 [3]

SentLen 91.3 [2] 93.3 [1] 94.5 [2] 94.1 [2] 96.2 [4]
SubjGender 79.1 [9] 79.2 [2] 79.4 [11] 78.7 [10] 77.7 [7]
SubjNumber 90.5 [7] 92.9 [3] 94.9 [11] 94.2 [12] 93.1 [10]

TreeDepth 44.7 [6] 46.1 [4] 46.5 [5] 44.8 [7] 45.8 [11]
WC 84.8 [2] 85.8 [1] 82.6 [1] 72.8 [1] 88.0 [1]

Table 3: Results of Logistic Regression classifier by the encoder for RuSentEval tasks.

Probing Task M-BERT LABSE XLM-R MiniLM M-BART

BShift 84.8 [8] 84.4 [5] 85.7 [10] 79.3 [8] 83.8 [12]
CoordInv 66.0 [8] 68.9 [8] 68.6 [8] 63.3 [8] 69.4 [12]

ObjNumber 86.2 [6] 85.4 [3] 86.0 [8] 85.2 [6] 85.9 [9]
SOMO 57.4 [8] 60.8 [7] 60.0 [8] 56.1 [9] 62.3 [12]
SentLen 96.3 [2] 96.6 [1] 95.8 [2] 96.1 [3] 97.3 [3]

SubjNumber 87.8 [7] 90.7 [12] 86.9 [10] 85.6 [6] 87.3 [9]
Tense 88.9 [8] 88.8 [6] 88.8 [9] 87.3 [5] 89.1 [9]

TopConst 88 [6] 79.9 [5] 78.5 [5] 76.5 [5] 79.5 [8]
TreeDepth 41.2 [5] 42.7 [5] 41.8 [7] 40.9 [7] 41.2 [12]

WC 92.6 [1] 93.7 [1] 89.8 [1] 82.3 [1] 93.8 [1]

Table 4: Results of Logistic Regression classifier by the encoder for SentEval tasks.
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Probing Task M-BERT LABSE XLM-R MiniLM M-BART

ConjType 98.6 [5] 99.4 [4] 99.2 [5] 98.9 [5] 98.8 [7]
Gapping 89.7 [10] 90.0 [9] 96.0 [8] 92.0 [11] 83.1 [9]

ImpersonalSent 93.6 [7] 90.9 [5] 92.4 [7] 88.7 [7] 89.4 [9]
NShift 81.5 [9] 82.7 [5] 87.6 [9] 81.1 [10] 78.8 [12]

ObjGender 69.1 [6] 70.1 [2] 69.5 [9] 65.1 [10] 72.2 [1]
ObjNumber 83.9 [6] 82.5 [2] 84.8 [10] 78.7 [10] 83.0 [7]

PA 90.9 [7] 93.5 [5] 94.6 [5] 89.7 [5] 95.5 [8]
PT 99.4 [4] 99.9 [10] 99.8 [5] 98.4 [6] 99.6 [9]
PV 77.7 [4] 76.5 [5] 78.4 [4] 72.5 [4] 82.2 [1]

SentLen 93.5 [2] 95.2 [1] 97.1 [2] 96.7 [1] 98.2 [5]
SubjGender 79.5 [9] 80.0 [2] 81.0 [11] 80.2 [12] 78.1 [7]
SubjNumber 90.3 [5] 93.0 [3] 96.3 [12] 95.8 [11] 94.5 [7]

TreeDepth 43.6 [6] 45.4 [4] 44.8 [7] 46.7 [8] 46.0 [7]
WC 80.8 [3] 82.7 [1] 78.5 [1] 69.9 [1] 84.4 [1]

Table 5: Results of MLP classifier by the encoder for RuSentEval tasks.

Probing Task M-BERT LABSE XLM-R MiniLM M-BART

BShift 83.1 [8] 84.7 [6] 85.8 [9] 79.4 [7] 84.4 [12]
CoordInv 65.2 [8] 68.1 [8] 68.8 [8] 63.7 [8] 67.8 [10]

ObjNumber 86.5 [6] 86.4 [10] 86.4 [8] 85.0 [6] 86.8 [8]
SOMO 56.5 [8] 60.5 [7] 58.8 [8] 54.8 [9] 61.7 [11]
SentLen 97.0 [2] 98.4 [1] 98.0 [3] 98.5 [1] 98.8 [4]

SubjNumber 86.5 [10] 90.9 [11] 86.6 [6] 86.0 [6] 87.5 [9]
Tense 89.2 [9] 89.0 [6] 88.5 [10] 87.9 [5] 89.4 [9]

TopConst 82.0 [7] 80.6 [5] 79.5 [5] 77.8 [6] 80.6 [8]
TreeDepth 41.9 [6] 43.1 [5] 43.2 [7] 42.3 [6] 45.3 [10]

WC 91.2 [1] 92.7 [1] 88.9 [1] 80.3 [1] 93.0 [1]

Table 6: Results of MLP classifier by encoder for each SentEval task.
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Probing Task fastText TF-IDF Char TF-IDF BPE TF-IDF SP

ConjType 88.1 96.9 95.4 95.5
Gapping 84.1 82.7 80.4 80.6

ImpersonalSent 78.7 69.4 53.8 56.3
NShift 53.2 53.0 51.0 50.5

ObjGender 70.1 71.0 35.4 38.9
ObjNumber 82.3 76.4 56.8 55.0

PA 90.8 80.7 53.4 54.2
PT 95.1 97.7 53.8 53.7
PV 69.2 78.2 36.0 37.0

SentLen 40.4 64.0 42.9 42.2
SubjGender 78.7 74.4 34.8 38.0
SubjNumber 95.0 90.4 63.7 64.4

TreeDepth 35.7 32.7 26.5 24.8
WC 70.8 49.2 22.0 13.0

Table 7: Results of Logistic Regression classifier by the baseline feature for each RuSentEval task.

Probing Task fastText TF-IDF Char TF-IDF BPE TF-IDF SP

BShift 50.0 51.1 49.9 50.1
CoordInv 52.2 54.9 50.2 50.1

ObjNumber 72.8 79.4 68.1 69.0
SOMO 49.9 49.9 50.4 49.7
SentLen 65.2 54.1 42.3 44.6

SubjNumber 76.6 79.2 68.1 71.6
Tense 81.2 84.2 70.8 74.2

TopConst 59.8 58.3 23.0 23.4
TreeDepth 30.0 28.3 23.3 23.2

WC 18.1 47.3 20.0 24.0

Table 8: Results of Logistic Regression classifier by the baseline feature for each SentEval task.
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Probing Task fastText TF-IDF Char TF-IDF BPE TF-IDF SP

ConjType 88.4 97.3 95.6 95.5
Gapping 82.7 86.1 80.2 68.8

ImpersonalSent 78.6 70.5 52.9 56.6
NShift 52.7 52.7 50.0 50.6

ObjGender 70.0 70.9 35.1 37.2
ObjNumber 82.8 77.2 56.6 54.8

PA 91.2 80.9 51.8 53.5
PT 96.0 97.6 54.4 54.1
PV 68.5 78.5 35.3 36.8

SentLen 42.4 73.7 42.7 42.4
SubjGender 80.0 75.2 34.0 38.8
SubjNumber 96.2 90.8 61.8 64.4

TreeDepth 29.5 35.6 32.8 23.9
WC 71.2 53.8 20.0 11.0

Table 9: Results of MLP classifier by the baseline feature for each RuSentEval task.

Probing Task fastText TF-IDF Char TF-IDF BPE TF-IDF SP

BShift 48.2 50.6 50.0 49.3
CoordInv 50.1 54.0 50.0 51.7

ObjNumber 70.9 77.1 68.1 70.0
SOMO 50.1 49.9 50.2 50.2
SentLen 49.1 62.5 41.8 43.5

SubjNumber 72.8 80.5 66.4 71.3
Tense 74.7 85.0 70.5 73.8

TopConst 58.0 59.7 22.2 23.0
TreeDepth 23.0 29.5 23.0 22.1

WC 63.3 54.4 18.0 22.0

Table 10: Results of MLP classifier by the baseline feature for each SentEval task.
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RuSentEval SentEval
Train Dev Test Overall Train Dev Test Overall

SentLen SentLen

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 1.45kk 144.8k 144.8k 1.74kk 1.66kk 165.4k 165.4k 1.99kk

unique tokens 116.7k 34.0k 33.7k 126.5k 34.8k 9.6k 10.0k 36.8k
tokens/sentence 14.47 14.48 14.48 14.47 16.59 16.54 16.55 16.59
label distribution 16.7/16.7/16.7/16.7/16.7/16.7 16.7/16.7/16.7/16.7/16.7/16.7

WC WC

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 1.19kk 117.9k 118.9k 1.43kk 1.5kk 149.2k 149.8k 1.8kk

unique tokens 106.6k 30.6k 30.8k 115.7k 37.4k 13.4k 13.4k 40.1k
tokens/sentence 11.89 11.79 11.89 11.88 15.02 14.92 14.98 15.00
label distribution 0.1/label, 1000 labels 0.1/label, 1000 labels

NShift BShift

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 1.49kk 125.0k 127.4k 1.74kk 1.38kk 137.4k 136.4k 1.65kk

unique tokens 138.2k 29.2k 29.6k 146.9k 36.2k 12.8k 12.7k 38.7k
tokens/sentence 14.88 12.74 12.51 14.51 13.78 13.74 13.64 13.77
label distribution 50/50 50/50

SubjNumber SubjNumber

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 1.04kk 99.9k 103.2k 1.25kk 1.41kk 140.3k 141.7k 1.7kk

unique tokens 100.3k 21.7k 23.1k 108.3k 38.5k 14.4k 14.5k 41.3k
tokens/sentence 10.42 9.99 10.32 10.38 14.14 14.03 14.17 14.13
label distribution 50/50 50/50

ObjNumber ObjNumber

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 946.7k 103.3k 100.2k 1.15kk 1.4kk 140.5k 139.9k 1.68kk

unique tokens 86.0k 23.8k 22.8k 95.7k 38.0k 14.3k 13.9k 40.9k
tokens/sentence 9.47 10.33 10.02 9.59 13.96 14.05 13.99 13.97
label distribution 50/50 50/50

PT Tense
sample size 100k 10k 10k 120k 100k 10k 10k 120k

tokens 1.13kk 112.8k 113.0k 1.36kk 1.32kk 131.1k 129.6k 1.58kk
unique tokens 114.5k 26.8k 26.7k 126.6k 35.9k 13.1k 13.2k 38.6k

tokens/sentence 11.30 11.28 11.30 11.30 13.20 13.11 12.96 13.17
label distribution 50/50 50/50

TreeDepth TreeDepth

sample size 100k 10k 10k 120k 100k 10k 10k 120k
tokens 1.57kk 157.2k 157.6k 1.88kk 1.35kk 135.0k 134.7k 1.62kk

unique tokens 150.3k 38.4k 38.3k 165.7k 34.8k 12.5k 12.6k 37.1k
tokens/sentence 15.72 15.72 15.76 15.73 13.47 13.50 13.47 13.47
label distribution 13.6/22.6/32.9/20.7/10.3 15.4/11.9/7.0/ 13.6/16.5/17.9/17.7

Table 11: Comparative data statistics for the shared Russian and English probing tasks. Label distribution by target
class is presented in %.
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B.2 Probing Trajectories
Figures 4–9 show the probing curves of Logistic Regression classifier over the shared tasks (see Section
5.1). The results obtained with MLP classifier are pretty consistent with the ones presented in this
Appendix.

Figure 4: The probing results of Logistic Regression classifier for each encoder on ObjNumber. Ru is at the left;
and En is at the right. X-axis=Layer number, Y-axis=Accuracy score.

Figure 5: The probing results of Logistic Regression classifier for each encoder on SentLen. Ru is at the left; and
En is at the right. X-axis=Layer number, Y-axis=Accuracy score.



61

Figure 6: The probing results of Logistic Regression classifier for each encoder on SubjNumber. Ru is at the left;
and En is at the right. X-axis=Layer number, Y-axis=Accuracy score.

Figure 7: The probing results of Logistic Regression classifier for each encoder on TreeDepth. Ru is at the left;
and En is at the right. X-axis=Layer number, Y-axis=Accuracy score.
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Figure 8: The probing results of Logistic Regression classifier for each encoder on Tense. Ru (PT) is at the left;
and En (Tense) is at the right. X-axis=Layer number, Y-axis=Accuracy score.

Figure 9: The probing results of Logistic Regression classifier for each encoder on WC. Ru is at the left; and En
is at the right. X-axis=Layer number, Y-axis=Accuracy score.
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C Individual Neuron Analysis

Figures 10–14 depict top neuron distributions for the tasks (see Section 5.2).

Figure 10: The distribution of top neurons over NShift tasks for both languages: Ru=Russian, En=English. X-
axis=Layer index number, Y-axis=Number of neurons selected from the layer.

Figure 11: The distribution of top neurons over ObjNumber tasks for both languages: Ru=Russian, En=English.
X-axis=Layer index number, Y-axis=Number of neurons selected from the layer.



64

Figure 12: The distribution of top neurons over SubjNumber tasks for both languages: Ru=Russian, En=English.
X-axis=Layer index number, Y-axis=Number of neurons selected from the layer.

Figure 13: The distribution of top neurons over TreeDepth tasks for both languages: Ru=Russian, En=English.
X-axis=Layer index number, Y-axis=Number of neurons selected from the layer.

Figure 14: The distribution of top neurons over Tense tasks for both languages: Ru=Russian, En=English. X-
axis=Layer index number, Y-axis=Number of neurons selected from the layer.
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D Correlation Methods

Heatmaps (Figure 15) show similarities of the encoders under neuron-level and representation-level
correlation-based similarity measures on the Russian tasks (see Section 5.3).

(a) maxcorr (b) lincka

Figure 15: Similarity heatmaps of layers in the encoders under neuron-level (maxcorr) and representation-level
(lincka) measures for Russian.


