
Proceedings of the 8th BSNLP Workshop on Balto-Slavic Natural Language Processing, pages 1–10
April 20, 2021. ©2021 Association for Computational Linguistics

1

HerBERT: Efficiently Pretrained Transformer-based
Language Model for Polish

Robert Mroczkowski1 Piotr Rybak1 Alina Wróblewska2 Ireneusz Gawlik1,3

1ML Research at Allegro.pl
2Institute of Computer Science, Polish Academy of Sciences

3Department of Computer Science, AGH University of Science and Technology
{firstname.lastname}@allegro.pl, alina@ipipan.waw.pl

Abstract

BERT-based models are currently used for
solving nearly all Natural Language Process-
ing (NLP) tasks and most often achieve state-
of-the-art results. Therefore, the NLP com-
munity conducts extensive research on under-
standing these models, but above all on design-
ing effective and efficient training procedures.
Several ablation studies investigating how to
train BERT-like models have been carried out,
but the vast majority of them concerned only
the English language. A training procedure de-
signed for English does not have to be univer-
sal and applicable to other especially typolog-
ically different languages. Therefore, this pa-
per presents the first ablation study focused on
Polish, which, unlike the isolating English lan-
guage, is a fusional language. We design and
thoroughly evaluate a pretraining procedure of
transferring knowledge from multilingual to
monolingual BERT-based models. In addition
to multilingual model initialization, other fac-
tors that possibly influence pretraining are also
explored, i.e. training objective, corpus size,
BPE-Dropout, and pretraining length. Based
on the proposed procedure, a Polish BERT-
based language model – HerBERT – is trained.
This model achieves state-of-the-art results on
multiple downstream tasks.

1 Introduction

Recent advancements in self-supervised pretrain-
ing techniques drastically changed the way we de-
sign Natural Language Processing (NLP) systems.
Even though, pretraining has been present in NLP
for many years (Mikolov et al., 2013; Pennington
et al., 2014; Bojanowski et al., 2017), only recently
we observed a shift from task-specific to general-
purpose models. In particular, the BERT model
(Devlin et al., 2019) proved to be a dominant ar-
chitecture and obtained state-of-the-art results for
a variety of NLP tasks.

While most of the research related to analyzing
and improving BERT-based models focuses on En-
glish, there is an increasing body of work aimed
at training and evaluation of models for other lan-
guages, including Polish. Thus far, a handful of
models specific for Polish has been released, e.g.
Polbert1, first version of HerBERT (Rybak et al.,
2020), and Polish RoBERTa (Dadas et al., 2020).

Aforementioned works lack ablation studies,
making it difficult to attribute hyperparameters
choices to models performance. In this work, we
fill this gap by conducting an extensive set of exper-
iments and developing an efficient BERT training
procedure. As a result, we were able to train and
release a new BERT-based model for Polish lan-
guage understanding. Our model establishes a new
state-of-the-art on the variety of downstream tasks
including semantic relatedness, question answer-
ing, sentiment analysis and part-of-speech tagging.

To summarize, our contributions are:

1. development and evaluation of an efficient
pretraining procedure for transferring knowl-
edge from multilingual to monolingual lan-
guage models based on work by Arkhipov
et al. (2019),

2. detailed analysis and an ablation study chal-
lenging the effectiveness of Sentence Struc-
tural Objective (SSO, Wang et al., 2020), and
Byte Pair Encoding Dropout (BPE-Dropout,
Provilkov et al., 2020),

3. release of HerBERT2 – a BERT-based model
for Polish language understanding, which
achieves state-of-the-art results on KLEJ
Benchmark (Rybak et al., 2020) and POS tag-
ging task (Wróblewska, 2020).

1https://github.com/kldarek/polbert
2https://huggingface.co/allegro/

herbert-large-cased

https://github.com/kldarek/polbert
https://huggingface.co/allegro/herbert-large-cased
https://huggingface.co/allegro/herbert-large-cased
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The rest of the paper is organized as follows. In
Section 2, we provide an overview of related work.
After that, Section 3 introduces the BERT-based
language model and experimental setup used in this
work. In Section 4, we conduct a thorough ablation
study to investigate the impact of several design
choices on the performance of downstream tasks.
Next, in Section 5 we apply drawn conclusions
and describe the training of HerBERT model. In
Section 6, we evaluate HerBERT on a set of eleven
tasks and compare its performance to other state-
of-the-art models. Finally, we conclude our work
in Section 7.

2 Related Work

The first significant ablation study of BERT-based
language pretraining was described by Liu et al.
(2019). Authors demonstrated the ineffectiveness
of Next Sentence Prediction (NSP) objective, the
importance of dynamic token masking, and gains
from using both large batch size and large training
dataset. Further large-scale studies analyzed the
relation between the model and the training dataset
sizes (Kaplan et al., 2020), the amount of compute
used for training (Brown et al., 2020) and training
strategies and objectives (Raffel et al., 2019).

Other work focused on studying and improv-
ing BERT training objectives. As mentioned be-
fore, the NSP objective was either removed (Liu
et al., 2019) or enhanced either by predicting the
correct order of sentences (Sentence Order Pre-
diction (SOP), Lan et al., 2020) or discriminat-
ing between previous, next and random sentence
(Sentence Structural Objective (SSO), Wang et al.,
2020). Similarly, the Masked Language Modelling
(MLM) objective was extended to either predict
spans of tokens (Joshi et al., 2019), re-order shuf-
fled tokens (Word Structural Objective (WSO),
Wang et al., 2020) or replaced altogether with a
binary classification problem using mask genera-
tion (Clark et al., 2020).

For tokenization, the Byte Pair Encoding algo-
rithm (BPE, Sennrich et al., 2016) is commonly
used. The original BERT model used WordPiece
implementation (Schuster and Nakajima, 2012),
which was later replaced by SentencePiece (Kudo
and Richardson, 2018). Gong et al. (2018) dis-
covered that rare words lack semantic meaning.
Provilkov et al. (2020) proposed a BPE-Dropout
technique to solve this issue.

All of the above work was conducted for En-

glish language understanding. There was little re-
search into understanding how different pretrain-
ing techniques affect BERT-based models for other
languages. The main research focus was to train
BERT-based models and report their performance
on downstream tasks. The first such models were
released for German3 and Chinese (Devlin et al.,
2019), recently followed by Finnish (Virtanen et al.,
2019), French (Martin et al., 2020; Le et al., 2020),
Polish (Rybak et al., 2020; Dadas et al., 2020),
Russian (Kuratov and Arkhipov, 2019), and many
other languages4. Research on developing and in-
vestigating an efficient procedure of pretraining
BERT-based models was rather neglected in these
languages.

Language understanding for low-resource lan-
guages has also been addressed by training jointly
for several languages at the same time. That ap-
proach improves performance for moderate and
low-resource languages as showed by Conneau and
Lample (2019). The first model of this kind was the
multilingual BERT trained for 104 languages (De-
vlin et al., 2019) followed by Conneau and Lample
(2019) and Conneau et al. (2020).

3 Experimental Setup

In this section, we describe the experimental setup
used in the ablation study. First, we introduce the
corpora we used to train models. Then, we give an
overview of the language model architecture and
training procedure. In particular, we describe the
method of transferring knowledge from multilin-
gual to monolingual BERT-based models. Finally,
we present the evaluation tasks.

3.1 Training Data
We gathered six corpora to create two datasets
on which we trained HerBERT. The first dataset
(henceforth called Small) consists of corpora of
the highest quality, i.e. NKJP, Wikipedia, and
Wolne Lektury. The second dataset (Large) is over
five times larger as it additionally contains texts of
lower quality (CCNet and Open Subtitles). Below,
we present a short description of each corpus. Ad-
ditionally, we include the basic corpora statistics in
Table 1.

NKJP (Narodowy Korpus Języka Polskiego, eng.
National Corpus of Polish) (Przepiórkowski, 2012)
is a well balanced collection of Polish texts. It

3https://deepset.ai/german-bert
4https://huggingface.co/models

https://deepset.ai/german-bert
https://huggingface.co/models
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Corpus Tokens Documents Avg len

Source Corpora

NKJP 1357M 3.9M 347
Wikipedia 260M 1.4M 190
Wolne Lektury 41M 5.5k 7447

CCNet Head 2641M 7.0M 379
CCNet Middle 3243M 7.9M 409
Open Subtitles 1056M 1.1M 961

Final Corpora

Small 1658M 5.3M 313
Large 8599M 21.3M 404

Table 1: Overview of all data sources used to train Her-
BERT. We combine them into two corpora. The Small
corpus consists of the highest quality text resources:
NKJP, Wikipedia, and Wolne Lektury. The Large cor-
pus consists of all sources. Avg len is the average num-
ber of tokens per document in each corpus.

consists of texts from many different sources, such
as classic literature, books, newspapers, journals,
transcripts of conversations, and texts crawled from
the internet.

Wikipedia is an online encyclopedia created by
the community of Internet users. Even though it is
crowd-sourced, it is recognized as a high-quality
collection of articles.

Wolne Lektury (eng. Free Readings)5 is a col-
lection of over five thousand books and poems,
mostly from 19th and 20th century, which have
already fallen in the public domain.

CCNet (Wenzek et al., 2020) is a clean mono-
lingual corpus extracted from Common Crawl6

dataset of crawled websites.

Open Subtitles is a popular website offering
movie and TV subtitles, which was used by Lison
and Tiedemann (2016) to curate and release a mul-
tilingual parallel corpus from which we extracted
its monolingual Polish part.

3.2 Language Model
Tokenizer We used Byte-Pair Encoding (BPE)
tokenizer (Sennrich et al., 2016) with the vocabu-
lary size of 50k tokens and trained it on the most

5https://wolnelektury.pl
6http://commoncrawl.org/

representative parts of our corpus, i.e annotated
subset of the NKJP, and the Wikipedia.

Subword regularization is supposed to empha-
size the semantic meaning of tokens (Gong et al.,
2018; Provilkov et al., 2020). To verify its im-
pact on training language model we used a BPE-
Dropout (Provilkov et al., 2020) with a probability
of dropping a merge equal to 10%.

Architecture We followed the original BERT
(Devlin et al., 2019) architectures for both BASE
(12 layers, 12 attention heads and hidden dimen-
sion of 768) and LARGE (24 layers, 16 attention
heads and hidden dimension of 1024) variants.

Initialization We initialized models either ran-
domly or by using weights from XLM-RoBERTa
(Conneau et al., 2020). In the latter case, the pa-
rameters for all layers except word embeddings and
token type embeddings were copied directly from
the source model. Since XLM-RoBERTa does not
use the NSP objective and does not have the token
type embeddings, we took them from the original
BERT model.

To overcome the difference in tokenizers vocabu-
laries we used a method similar to (Arkhipov et al.,
2019). If a token from the target model vocabu-
lary was present in the source model vocabulary
then we directly copied its weights. Otherwise, it
was split into smaller units and the embedding was
obtained by averaging sub-tokens embeddings.

Training Objectives We trained all models with
an updated version of the MLM objective (Joshi
et al., 2019; Martin et al., 2020), masking ranges
of subsequent tokens belonging to single words in-
stead of individual (possibly subword) tokens. We
replaced the NSP objective with SSO. The other
parameters were kept the same as in the original
BERT paper. Training objective is defined in Equa-
tion 1.

L = LMLM(θ) + α · LSSO(θ) (1)

where α is the SSO weight.

3.3 Tasks
KLEJ Benchmark The standard method for
evaluating pretrained language models is to use
a diverse collection of tasks grouped into a sin-
gle benchmark. Such benchmarks exist in many
languages, e.g. English (GLUE, Wang et al.,
2019), Chinese (CLUE, Xu et al., 2020), and Polish
(KLEJ, Rybak et al., 2020).

https://wolnelektury.pl
http://commoncrawl.org/
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Following this paradigm we first verified the
quality of assessed models with KLEJ. It consists
of nine tasks: name entity classification (NKJP-
NER, Przepiórkowski, 2012), semantic relatedness
(CDSC-R, Wróblewska and Krasnowska-Kieraś,
2017), natural language inference (CDSC-E,
Wróblewska and Krasnowska-Kieraś, 2017), cyber-
bullying detection (CBD, Ptaszynski et al., 2019),
sentiment analysis (PolEmo2.0-IN, PolEmo2.0-
OUT, Kocoń et al., 2019, AR, Rybak et al., 2020),
question answering (Czy wiesz?, Marcinczuk et al.,
2013), and text similarity (PSC, Ogrodniczuk and
Kopeć, 2014).

POS Tagging and Dependency Parsing All of
the KLEJ Benchmark tasks belong to the classifi-
cation or regression type. It is therefore difficult to
assess the quality of individual token embeddings.
To address this issue, we further evaluated Her-
BERT on part-of-speech tagging and dependency
parsing tasks.

For tagging, we used the manually annotated sub-
set of NKJP (Degórski and Przepiórkowski, 2012),
converted to the CoNLL-U format by Wróblewska
(2020). We evaluated models performance on a test
set using accuracy and F1-Score.

For dependency parsing, we applied Polish De-
pendency Bank (Wróblewska, 2018) from the Uni-
versal Dependencies repository (release 2.5, Zeman
et al., 2019).

In addition to three Transformer-based models,
we also included models trained with static em-
beddings. The first one did not use pretrained
embeddings while the latter utilized fastText (Bo-
janowski et al., 2017) embeddings trained on Com-
mon Crawl.

The models are evaluated with the standard met-
rics: UAS (unlabeled attachment score) and LAS
(labelled attachment score). The gold-standard seg-
mentation was preserved. We report the results on
the test set.

4 Ablation Study

In this section, we analyze the impact of several
design choices on downstream task performance of
Polish BERT-based models. In particular, we focus
on initialization, corpus size, training objective,
BPE-Dropout, and the length of pretraining.

4.1 Experimental Design
Hyperparameters Unless stated otherwise, in
all experiments we trained BERTBASE model ini-

tialized with XLM-RoBERTa weights for 10k iter-
ations using a linear decay schedule of the learning
rate with a peak value of 7 · 10−4 and a warm-up
of 500 iterations. We used a batch size of 2560.

Evaluation Different experimental setups were
compared using the average score on the KLEJ
Benchmark. The validation sets are used for evalu-
ation and we report the results corresponding to the
median values of the five runs. Since only six tasks
in KLEJ Benchmark have validation sets the scores
are not directly comparable to those reported in
Section 6. We used Welch’s t-test (Welch, 1947)
with a p-value of 0.01 to test for statistical differ-
ences between experimental variants.

4.2 Results

Initialization One of the main goals of this work
is to propose an efficient strategy to train a monolin-
gual language model. We began with investigating
the impact of pretraining the language model itself.
For this purpose, the following experiments were
designed.

Init Pretraining BPE Score

Ablation Models

Random No - 58.15 ± 0.33
XLM-R No - 83.15 ± 1.22

Random Yes No 85.65 ± 0.43
XLM-R Yes No 88.80 ± 0.15

Random Yes Yes 85.78 ± 0.23
XLM-R Yes Yes 89.10 ± 0.19

Original Models

XLM-R - - 88.82 ± 0.15

Table 2: Average scores on KLEJ Benchmark depend-
ing on the initialization scheme: Random – initializa-
tion with random weights, XLM-R – initialization with
XLM-RoBERTa weights. We used BERTBASE model
trained for 10k iterations with the SSO weight equal to
1.0 on the Large corpus. The best score within each
group is underlined, the best overall is bold.

First, we fine-tuned randomly initialized BERT
model on KLEJ Benchmark tasks. Note that this
model is not pretrained in any way. As expected,
the results on the KLEJ Benchmark are really poor
with the average score equal to 58.15.

Next, we evaluated the BERT model initialized
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with XLM-RoBERTa weights (see Table 2). It
achieved much better average score than the ran-
domly initialized model (83.15 vs 58.15), but it was
still not as good as the original XLM-RoBERTa
model (88.82%). The difference in the performance
can be explained by the transfer efficiency. The
method of transferring token embeddings between
different tokenizers proves to retain most informa-
tion, but not all of it.

To measure the impact of initialization on pre-
training optimization, we trained the aforemen-
tioned models for 10k iterations. Beside MLM
objective, we used SSO loss with α = 1.0 and
conducted experiments with both enabled and dis-
abled BPE-Dropout. Models initialized with XLM-
RoBERTa achieve significantly higher results than
models initialized randomly, 89.10 vs 85.78 and
88.80 vs 85.65 for pretraining with and without
BPE-Dropout respectively.

Models initialized with XLM-RoBERTa
achieved similar results to the original XLM-
RoBERTa (the differences are not statistically
significant). It proves that it is possible to quickly
recover from the performance drop caused by a
tokenizer conversion procedure and obtain a much
better model than the one initialized randomly.

Corpus Size As mentioned in Section 2, previ-
ous research show that pretraining on a larger cor-
pus is beneficial for downstream task performance
(Kaplan et al., 2020; Brown et al., 2020). We in-
vestigated this by pretraining BERTBASE model on
both Small and Large corpora (see Section 3.1). To
mitigate a possible impact of confounding variable,
we also vary the weight of SSO loss and usage of
BPE-Dropout (see Table 3).

As expected, the model pretrained on a Large
corpus performs better on downstream tasks. How-
ever, the difference is statistically significant only
for the experiment with SSO weight equal to 1.0
and BPE-Dropout enabled. Therefore it’s not obvi-
ous whether a larger corpus is actually beneficial.

Sentence Structural Objective Subsequently,
we tested SSO, i.e. the recently introduced replace-
ment for the NSP objective, which proved to be in-
effective. We compared models trained with three
values of SSO weight α (see Section 3.2): 0.0 (no
SSO), 0.1 (small impact of SSO), and 1.0 (SSO
equally important as MLM objective) (see Table
4).

The experiment showed, that SSO actually hurts

Corpus SSO BPE Score

Small 1.0 Yes 88.73 ± 0.08
Large 1.0 Yes 89.10 ± 0.19

Small 0.1 Yes 88.90 ± 0.24
Large 0.1 Yes 89.37 ± 0.25

Small 0.0 Yes 89.18 ± 0.15
Large 0.0 Yes 89.25 ± 0.21

Small 0.0 No 89.12 ± 0.29
Large 0.0 No 89.28 ± 0.26

Table 3: Average scores on KLEJ Benchmark depend-
ing on a corpus size. We used BERTBASE model trained
for 10k iterations with or without BPE-Dropout and
with various SSO weights. The best score within each
group is underlined, the best overall is bold.

downstream task performance. The differences
between enabled and disabled SSO are statistically
significant for two out of three experimental setups.
The only scenario for which the negative effect
of SSO is not statistically significant is using the
Large corpus and BPE-dropout. Overall, the best
results are achieved using a small SSO weight but
the differences are not significantly different from
disabling SSO.

SSO Corpus BPE Score

0.0 Small Yes 89.18 ± 0.15
0.1 Small Yes 88.90 ± 0.24
1.0 Small Yes 88.73 ± 0.08

0.0 Large Yes 89.25 ± 0.21
0.1 Large Yes 89.37 ± 0.25
1.0 Large Yes 89.10 ± 0.19

0.0 Large No 89.28 ± 0.26
0.1 Large No 89.45 ± 0.18
1.0 Large No 88.80 ± 0.15

Table 4: Average scores on KLEJ Benchmark depend-
ing on a SSO weight. We used BERTBASE model
trained for 10k iterations with BPE-Dropout. The best
score within each group is underlined, the best overall
is bold.

BPE-Dropout The BPE-Dropout could be ben-
eficial for downstream task performance, but its
impact is difficult to assess due to many confound-
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ing variables.
The model initialization with XLM-RoBERTa

weights means that token embedding is already
semantically meaningful even without additional
pretraining. However, for both random and XLM-
RoBERTa initialization the BPE-Dropout is benefi-
cial.

BPE Init SSO Corpus Score

No Random 1.0 Large 85.65 ± 0.43
Yes Random 1.0 Large 85.78 ± 0.23

No XLM-R 1.0 Large 88.80 ± 0.15
Yes XLM-R 1.0 Large 89.10 ± 0.19

No XLM-R 0.0 Large 89.28 ± 0.26
Yes XLM-R 0.0 Large 89.25 ± 0.21

No XLM-R 0.0 Small 89.12 ± 0.29
Yes XLM-R 0.0 Small 89.18 ± 0.15

Table 5: Average scores on KLEJ Benchmark depend-
ing on usage of BPE-Dropout. We used BERTBASE
model trained for 10k iterations on a large corpus. The
best score within each group is underlined, the best
overall is bold.

According to the results (see Table 5), none of
the reported differences is statistically significant
and we can only conclude that BPE-Dropout does
not influence the model performance.

Length of Pretraining The length of pretraining
in terms of the number of iterations is commonly
considered an important factor of the final quality
of the model (Kaplan et al., 2020). Even though it
seems straightforward to validate this hypothesis
in practice it is not so trivial.

When pretraining Transformer-based models lin-
ear decaying learning rate is typically used. There-
fore, increasing the number of training iterations
changes the learning rate schedule and impacts the
training. In our initial experiments usage of the
same learning rate caused the longer training to
collapse. Instead, we chose the learning rate for
which the value of loss function after 10k steps was
similar. We found that the learning rate equal to
3 · 10−4 worked best for training in 50k steps.

Using the presented experiment setup, we tested
the impact of pretraining length for two values
of SSO weight: 1.0 and 0.1. In both cases, the
model pretrained with more iterations achieves

# Iter LR SSO Score

10k 7 · 10−4 1.0 89.10 ± 0.19
50k 3 · 10−4 1.0 89.43 ± 0.10

10k 7 · 10−4 0.1 89.37 ± 0.25
50k 3 · 10−4 0.1 89.87 ± 0.22

Table 6: Average scores on KLEJ Benchmark depend-
ing training length. We used BERTBASE model trained
on a large corpus with BPE-Dropout. The best score
within each group is underlined, the best overall is bold.

only slightly better but statistically significant re-
sults (see Table 6).

5 HerBERT

In this section, we apply conclusions drawn from
the ablation study (see Section 4) and describe the
final pretraining procedure used to train HerBERT
model.

Pretraining Procedure HerBERT was trained
on the Large corpus. We used Dropout-BPE in
tokenizer with a probability of a drop equals to 10%.
Finally, HerBERT models were initialized with
weights from XLM-RoBERTa and were trained
with the objective defined in Equation 1 with SSO
weight equal to 0.1.

Optimization We trained HerBERTBASE using
Adam optimizer (Kingma and Ba, 2014) with pa-
rameters: β1 = 0.9, β2 = 0.999, ε = 10−8 and
a linear decay learning rate schedule with a peak
value of 3 · 10−4. Due to the initial transfer of
weights from the already trained model, the warm-
up stage was set to a relatively small number of 500
iterations. The whole training took 50k iterations.

Training of HerBERTLARGE was longer (60k iter-
ations) and had a more complex learning rate sched-
ule. For the first 15k we linearly decayed the learn-
ing rate from 3 · 10−4 to 2.5 · 10−4. We observed
the saturation of evaluation metrics and decided to
drop the learning rate to 1 · 10−4. After training
for another 25k steps and reaching the learning rate
of 7 · 10−5 we again reached the plateau of eval-
uation metrics. In the last phase of training, we
dropped the learning rate to 3 · 10−5 and trained
for 20k steps until it reached zero. Additionally,
during the last phase of training, we disabled both
BPE-Dropout and dropout within the Transformer
itself as suggested by Lan et al. (2020).



7

Model AV
G

N
K

JP
-N

E
R

C
D

SC
-E

C
D

SC
-R

C
B

D

Po
lE

m
o2

.0
-I

N

Po
lE

m
o2

.0
-O

U
T

C
zy

w
ie

sz
?

PS
C

A
R

Base Models

XLM-RoBERTa 84.7 ± 0.29 91.7 93.3 93.4 66.4 90.9 77.1 64.3 97.6 87.3
Polish RoBERTa 85.6 ± 0.29 94.0 94.2 94.2 63.6 90.3 76.9 71.6 98.6 87.4
HerBERT 86.3 ± 0.36 94.5 94.5 94.0 67.4 90.9 80.4 68.1 98.9 87.7

Large Models

XLM-RoBERTa 86.8 ± 0.30 94.2 94.7 93.9 67.6 92.1 81.6 70.0 98.3 88.5
Polish RoBERTa 87.5 ± 0.29 94.9 93.4 94.7 69.3 92.2 81.4 74.1 99.1 88.6
HerBERT 88.4 ± 0.19 96.4 94.1 94.9 72.0 92.2 81.8 75.8 98.9 89.1

Table 7: Evaluation results on KLEJ Benchmark. AVG is the average score across all tasks. Scores are reported for
test set and correspond to median values across five runs. The best scores within each group are underlined, the
best overall are in bold.

Both HerBERTBASE and HerBERTLARGE mod-
els were trained with a batch size of 2560.

6 Evaluation

In this section, we introduce other top-performing
models for Polish language understanding and com-
pare their performance on evaluation tasks (see
Section 3.3) to HerBERT.

6.1 Models

According to the KLEJ Benchmark leaderboard7

the three top-performing models of Polish language
understanding are XLM-RoBERTa-NKJP8, Polish
RoBERTa, and XLM-RoBERTa. These are also the
only three models available in LARGE architecture
variant.

Unfortunately, the XLM-RoBERTa-NKJP
model is not publicly available, so we cannot use
it for our evaluation. However, it has the same
average score as the runner-up (Polish RoBERTa)
which we compare HerBERT with.

6.2 Results

KLEJ Benchmark Both variants of HerBERT
achieved the best average performance, signifi-

7https://klejbenchmark.com/
leaderboard/

8XLM-RoBERTa-NKJP is XLM-RoBERTa model addi-
tionally fine-tuned on NKJP corpus.

cantly outperforming Polish RoBERTa and XLM-
RoBERTa (see Table 7). Regarding BASE models,
HerBERTBASE improves the state-of-the-art result
by 0.7pp and for HerBERTLARGE the improvement
is even bigger (0.9pp). In particular, HerBERTBASE
scores best on eight out of nine tasks (tying on
PolEmo2.0-OUT, performing slightly worse on
CDSC-R) and HerBERTLARGE in seven out of nine
tasks (tying in PolEmo2.0-IN, performing worse
in CDSC-E and PSC). Surprisingly, HerBERTBASE
is better than HerBERTLARGE in CDSC-E. The
same behaviour is noticeable for Polish RoBERTa,
but not for XLM-RoBERTa. For other tasks, the
LARGE models are always better. Summing up,
HerBERTLARGE is the new state-of-the-art Polish
language model based on the results of the KLEJ
Benchmark.

It is worth emphasizing that the proposed proce-
dure for efficient pretraining by transferring knowl-
edge from multilingual to monolingual language
allowed HerBERT to achieve better results than Pol-
ish RoBERTa even though it was optimized with
around ten times shorter training.

POS Tagging HerBERT achieves overall better
results in terms of both accuracy and F1-Score.
HerBERTBASE beats the second-best model (i.e.
Polish RoBERTa) by a margin of 0.33pp (F1-Score
by 0.35pp) and HerBERTLARGE by a margin of
0.09pp (F1-Score by 0.12pp). It should be em-

https://klejbenchmark.com/leaderboard/
https://klejbenchmark.com/leaderboard/


8

Model Accuracy F1-Score

Base Models

XLM-RoBERTa 95.97 ± 0.04 95.79 ± 0.05
Polish RoBERTa 96.13 ± 0.03 95.92 ± 0.03
HerBERT 96.46 ± 0.04 96.27 ± 0.04

Large Models

XLM-RoBERTa 97.07 ± 0.05 96.93 ± 0.05
Polish RoBERTa 97.21 ± 0.02 97.05 ± 0.03
HerBERT 97.30 ± 0.02 97.17 ± 0.02

Table 8: Part-of-speech tagging results on NKJP
dataset. Scores are reported for the test set and are me-
dian values across five runs. Best scores within each
group are underlined, best overall are bold.

phasized that while the improvements may appear
to be minor, they are statistically significant. All
results are presented in Table 8.

Dependency Parsing The dependency parsing
results are much more ambiguous than in other
tasks. As expected, the models with static fast-
Text embeddings performed much worse than
Transformer-based models (around 3pp differ-
ence for UAS, and 4pp for LAS). In the case of
Transformer-based models, the differences are less
noticeable. As expected, the LARGE models out-
perform the BASE models. The best performing
model is Polish RoBERTa. HerBERT models per-
formance is the worst across Transformer-based
models except for the UAS score which is slightly
better than XLM-RoBERTa for BASE models. All
results are presented in Table 9.

7 Conclusion

In this work, we conducted a thorough ablation
study regarding training BERT-based models for
Polish language. We evaluated several design
choices for pretraining BERT outside of English
language. Contrary to Wang et al. (2020), our ex-
periments demonstrated that SSO is not beneficial
for the downstream task performance. It also turned
out that BPE-Dropout does not increase the quality
of a pretrained language model.

As a result of our studies we developed and eval-
uated an efficient pretraining procedure for transfer-
ring knowledge from multilingual to monolingual
BERT-based models. We used it to train and release
HerBERT – a Transformer-based language model

Model UAS LAS

Static Embeddings

Plain 90.58 ± 0.07 87.35 ± 0.12
FastText 92.20 ± 0.14 89.57 ± 0.13

Base Models

XLM-RoBERTa 95.14 ± 0.07 93.25 ± 0.12
Polish RoBERTa 95.41 ± 0.24 93.65 ± 0.34
HerBERT 95.18 ± 0.22 93.24 ± 0.23

Large Models

XLM-RoBERTa 95.38 ± 0.02 93.66 ± 0.07
Polish RoBERTa 95.60 ± 0.18 93.90 ± 0.21
HerBERT 95.11 ± 0.04 93.32 ± 0.02

Table 9: Dependency parsing results on Polish Depen-
dency Bank dataset. Scores are reported for the test set
and are median values across three runs. Best scores
within each group are underlined, best overall are bold.

for Polish. It was trained on a diverse multi-source
corpus. The conducted experiments confirmed its
high performance on a set of eleven diverse linguis-
tic tasks, as HerBERT turned out to be the best on
eight of them. In particular, it is the best model
for Polish language understanding according to the
KLEJ Benchmark.

It is worth emphasizing that the quality of the
obtained language model was even more impres-
sive considering its short training time. Due to
multilingual initialization, HerBERTBASE outper-
formed Polish RoBERTaBASE even though it was
trained with a smaller batch size (2560 vs 8000) for
a fewer number of steps (50k vs 125k). The same
behaviour is also visible for HerBERTLARGE. Ad-
ditionally, we conducted a separate ablation study
to confirm that the success of HerBERT is caused
by the described initialization scheme. It showed
that in fact, it was the most important factor to
improved the quality of HerBERT.

We believe that the proposed training procedure
and detailed experiments will encourage NLP re-
searchers to cost-effectively train language models
for other languages.
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