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Abstract

Despite their failure to solve the composi-
tional SCAN dataset, seq2seq architectures
still achieve astonishing success on more prac-
tical tasks. This observation pushes us to ques-
tion the usefulness of SCAN-style composi-
tional generalization in realistic NLP tasks. In
this work, we study the benefit that such com-
positionality brings about to several machine
translation tasks. We present several focused
modifications of Transformer that greatly im-
prove generalization capabilities on SCAN
and select one that remains on par with a
vanilla Transformer on a standard machine
translation (MT) task. Next, we study its per-
formance in low-resource settings and on a
newly introduced distribution-shifted English-
French translation task.

Overall, we find that improvements of a
SCAN-capable model do not directly transfer
to the resource-rich MT setup. In contrast, in
the low-resource setup, general modifications
lead to an improvement of up to 13.1% BLEU
score w.r.t. a vanilla Transformer. Similarly,
an improvement of 14% in an accuracy-based
metric is achieved in the introduced compo-
sitional English-French translation task. This
provides experimental evidence that the com-
positional generalization assessed in SCAN
is particularly useful in resource-starved and
distribution-shifted scenarios.

1 Introduction

While sequence-to-sequence (seq2seq) mod-
els achieve remarkable performance in many
tasks (Sutskever et al., 2014; Raffel et al., 2019;
Adiwardana et al., 2020), they often fail to gener-
alize in a systematic way (Baroni, 2019; McCoy
et al., 2020; Hupkes et al., 2020; Kharitonov and
Chaabouni, 2021; Dankers et al., 2021). These
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shortcomings are particularly obvious in the
experiments on the SCAN domain (Lake and
Baroni, 2018; Loula et al., 2018; Bastings et al.,
2018).

In SCAN, inputs are instructions that describe
trajectories and outputs define sequences of actions
to follow them (see Table 1). To illustrate how
SCAN probes a model for compositional general-
ization, imagine that we train it on a set of instruc-
tions {jump, run, turn, turn twice, run
twice}, but test it on jump twice. Strictly
speaking, nothing in the training data indicates that
the model must output JUMP JUMP instead of e.g.
JUMP. However, it is hypothesised that a bias for
such compositional, human-like induction is bene-
ficial (Lake and Baroni, 2018; Lake, 2019).

This hypothesis stumbles into a perplexing situ-
ation: despite failing at compositional generaliza-
tion, considered as a core requirement for language
understanding, seq2seq models have tremendous
success in practice. Is the type of compositional
generalization, that SCAN probes for, useful for
NLP tasks? If so, in what scenarios?

In this work, we aim to answer this question.
Firstly, we introduce focused modifications to
Transformer that greatly improve accuracy per-
formance on SCAN. To build such modifications,
we exploit two observations: (i) Transformer’s
architecture is very similar to convolution-based
seq2seq models (ConvS2S) (Gehring et al., 2017),
(ii) ConvS2S performs well on SCAN (Dessı̀ and
Baroni, 2019). This capability (ii) is hypothesized
to be due to explicitly localized representation of
the sequences, where only deep layers of the model
can access more distant tokens (Dessı̀ and Baroni,
2019; Hupkes et al., 2020). Such a capability
should also benefit to natural language processing
as human languages are proved to favor local syn-
tactic constructions (Futrell et al., 2015). Motivated
by these observations, we focus on the major differ-
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ences between ConvS2S and Transformer, namely
the localized receptive field span and the gating
mechanism, to inject into Transformer inductive
biases useful for SCAN.

As a testbed, we use the machine translation
(MT) domain as one of the most popular appli-
cations for seq2seq models. We consider both
resource-rich (IWSLT’14 German→English) and
low-resource (Nepali&Sinhala↔English) setups.
Finally, to evaluate SCAN-style capabilities in nat-
ural language tasks, we build a dataset that probes
whether models can systematically generalize w.r.t.
noun-adjective ordering while translating from En-
glish to French. We construct this dataset by filter-
ing the EuroParl corpus (a part of WMT’14).

Our results indicate that combining two
ConvS2S-inspired changes improves accuracy on
one SCAN split (SCAN-jump) from 3.4% to
43.0%, while maintaining a high accuracy on
the other splits (SCAN-simple and SCAN-around-
right). As expected, given that SCAN is an artifi-
cial diagnostic dataset, not all modifications lead
to equal improvements on an MT task. We select
one of the considered modifications that performs
on par with the vanilla Transformer on IWSLT’14.

Testing the selected modification on low-
resource data, we observe that it provides between
3.6% and 13.1% BLEU improvements over Trans-
former. On the noun-adjective ordering dataset,
we find that our modification results into gains in
generalization of 14%.

This leads to the following picture: the localized
attention, augmented by a gating mechanism, pro-
vides a useful inductive bias that proves to be bene-
ficial for SCAN-style generalization. Additionally,
it turns out useful in low-resource and distribution-
shifted settings. Thus, testing seq2seq models on
SCAN while controlling for a non-degraded per-
formance leads to improvement in domains where
syntactic compositionality is crucial for a task suc-
cess.

2 Transformers and ConvS2S

Architecture overview Both Transformer
and ConvS2S are encoder-decoder architec-
tures (Sutskever et al., 2014), where the decoder
has an attention mechanism to peek into the
encoder’s representation (Bahdanau et al., 2014).
These representations are obtained by embedding
the inputs, adding a positional embedding, and
passing them through a sequence of layers.

In Transformer’s encoder, the output represen-
tations are the result of a sequential application of
two (sub)layer types: self-attention and fully con-
nected layers. The input representation can “skip”
any sublayer via a residual connection. The out-
put of the sublayer is passed through a dropout
mechanism and added to the residual. This sum is
then layer-normalized. Any relation between input
tokens is modeled solely by self-attention modules.

In ConvS2S, the encoder is also a sequence of
identical blocks. The inter-term dependencies are
modeled by 1D convolutions with GLU activation
functions (Dauphin et al., 2017).1 In contrast to
self-attention, convolutions have a finite kernel size,
thus effectively capping the maximal distance of in-
termediate dependencies that can be modeled. The
GLU activation function serves as a gate, allowing
ConvS2S to control the balance between residuals
and the output of the convolution. After the GLU
operation, the intermediate representation is added
to the residual and scaled. The output of the final
convolution is then passed into a fully connected
layer. In ConvS2S and Transformer, decoders have
similar structures to those of encoders, with an ad-
ditional decoder→encoder attention layer after the
convolution and self-attention blocks, respectively.

Despite the similarities, there are numerous
low-level differences between the two architec-
tures: normalization (layer norm (Ba et al., 2016)
vs. weight normalization (Salimans and Kingma,
2016)), optimization (Adam (Kingma and Ba,
2014) with a ramp-up vs. NAG (Sutskever et al.,
2013)), etc. A priori, any of those can affect mod-
els’ inductive biases. However, we concentrate on
some of the most obvious architectural differences:
the limited convolution span and GLU activations.

We believe these features can greatly affect mod-
els’ performance on SCAN. Indeed, SCAN has
only local dependencies between tokens, thus the
ability to avoid spurious correlations with more
distant tokens can be useful. Similarly, the ability
to weight contributions from the token interactions
into the intermediate representation is intuitively
prerequisite to build compositional representation.

GLU (Dauphin et al., 2017) Given a vector input
x, GLU splits it in two equally sized halves x1 and
x2; one is passed through a sigmoid (σ(x) = (1 +
e−x)−1). Then both parts are pointwise multiplied:

1GLU was introduced as a combination of a convolution
network and an activation; we follow the Pytorch convention
and consider it as separate blocks for convenience.
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jump ⇒ JUMP
jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ⇒ LTURN LTURN
jump opposite left after walk around left ⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

Table 1: Examples of SCAN trajectories and instructions, adopted from (Lake and Baroni, 2018).

GLU(x) := σ(x1)� x2 (1)

This allows a network to implement a gating mech-
anism, where one half of its output gates the signal
from the second.

Self-attention Instead of convolutions, Trans-
former uses multi-headed self-attention to model
interactions between tokens. Given n embeddings,
x1,x2, ...xn of dimensionality d, the self-attention
layer transforms them in the following way.

Firstly, each embedding xi is projected by three
matrices Q, K, and V to get query qi, key ki, and
value vi representations, respectively: qi,ki,vi ←
Qxi,Kxi, V xi. Next, a scaled dot-product be-
tween query qi and key kj is calculated as follow:

αij =
1√
d
qi · kTj (2)

This dot-product defines the attention weights
wij = eαij/

∑
eαij which are used to get the out-

put representations: oi =
∑

j wijvj . This process
is done in parallel for multiple heads, acting on
independent slices of the input embeddings; their
outputs are concatenated and passed through a fully
connected layer.

3 Transformer Modifications

Self-attention gate (SAG) The simplest way to
imitate the effect of GLU activation (Eq. 1) is
to weight (gate) the output of self-attention by a
learned scalar parameter. To ensure that it is non-
negative and is scaled in [0, 1], we parameterize it
as a sigmoid of a real-valued learned parameter β.
Algorithm 1 illustrates the introduced change. In
comparison to Transformer, SAG adds one scalar
parameter for each encoder and decoder layer.

We treat β0, the value β is initialized with before
training, as a hyperparameter. In the preliminary ex-
periments, we found that after training, encoder lay-
ers often have small negative β values (−2..−0.5),
while decoder layers have positive values (0.2..4.5)
that grow monotonically for higher layers.

A similar modification was considered in an ef-
fort to stabilize Transformer training in the Rein-
forcement Learning domain (Parisotto et al., 2020).

Convolution as self-attention In the limit case,
we can entirely replace self-attention with convo-
lutions. This modification introduces one hyper-
parameter (kernel size). However, convolutional
layers have fewer parameters than the self-attention
mechanism. One might consider this not to be a
Transformer variant due to the lack of self-attention,
but as self-attention generalizes convolutions (Cor-
donnier et al., 2020), we consider this as an extreme
form of regularization.

Fixed-span self-attention A less extreme mod-
ification would be to use the regular multi-head
self-attention mechanism, but without allowing at-
tention to peek beyond some distance. This mimics
the limited kernel size of convolutions in ConvS2S.
We achieve this by adding a fixed bias term bij to
the self-attention logits (Eq. 2):

αij =
1√
d
qi · kTj + bij (3)

Setting bij to −∞ when the difference |i − j| ex-
ceeds some fixed value s and to 0 otherwise pre-
vents the self-attention to look beyond distance s.

Fixed-span self-attention with a span parameter
s has the same “receptive field” as 1D convolution
with kernel size 2s+1. This modification adds one
hyperparameter (span size), but does not introduce
new learned parameters.

T5 attention Further relaxing constraints on
self-attention, we consider the case where we al-
low Transformer to learn how to (soft-)limit its
self-attention. We introduce the bias term bij that
is learned as a function of a (signed) difference
i − j, capping it to [−s,+s] (e.g., positions with
difference above s would have the same bias bs).

This modification is similar to one introduced
by Raffel et al. (2019) in T5, with the only excep-
tion that we allow each head to have its own bias.
Again, the span size is a new hyperparameter. In a
model with nh heads and nl layers, this modifica-
tion requires (2s+ 1)× nl × nh new parameters,
which is negligible in comparison with the sizes
of fully connected layers. Examples of the learned
bij parameters are shown in Supplementary when
training on SCAN.
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1: procedure COMPUTE SELFATTENTION

2: res← x
3: x← self attn(x)
4: x← x ∗ σ(β)
5: x← layer norm(res+ dropout(x))

Algorithm 1: Self-attention gate (SAG). The
only introduced change is on line 4. β is a
learned per-layer scalar parameter.

Implementation details We used the
fairseq (Ott et al., 2019) implementation of
Transformer seq2seq as a foundation, with its
initialization and default parameters. T5 and
fixed-span attentions are implemented by providing
additive attention masks to Transformer.

4 Datasets

4.1 SCAN

Introduced by Lake and Baroni (2018), SCAN is
a collection of tasks used for studying systematic
generalization of seq2seq models (see Table 1 for
some input-output examples). A set of 4 primitive
verbs are combined with different modifiers gener-
ating around 27k unique samples. Lake and Baroni
(2018) and, later, Loula et al. (2018) prepared sev-
eral non-i.i.d. splits of the data into training and test
sets. To successfully generalize on such non-i.i.d.
splits, a model has to generalize systematically, in
a compositional way.

We experiment with three tasks, often focused on
in the literature2 (Dessı̀ and Baroni, 2019). SCAN-
simple splits all sequences in train and test sets
uniformly at random. Hence, both train and test are
identically distributed. Typically models succeed
at it easily. In SCAN-jump, the test set contains all
compositional uses of one of the primitives, jump.
The train set contains all uses of other primitives,
and inputs where jump is used in isolation. SCAN-
around-right tests if a model is capable to general-
ize to combinations of two modifiers, around and
right, that never co-occur in the training data.
The test data contain all examples where the two
modifiers are combined.

2We have also ensured that our best modification performs
on par (≈ 10%) with Transformer on SCAN-length; how-
ever SCAN-length is believed to require a different type of
generalization (Gordon et al., 2019).

4.2 Machine Translation

We hypothesize that the type of systematic gen-
eralization that SCAN probes for could be most
useful in data-poor tasks or tasks with train-test
distribution shift. Hence, we complement the stan-
dard IWSLT’14 En-De dataset with a low-resource
task, FLoRes. To study whether our models can
perform SCAN-style generalization on natural lan-
guage data, we also build a dataset that probes for
compositional generalization in noun-adjective or-
dering in French, when translating from English.

IWSLT’14 En-De This is a standard MT
dataset, that includes train, validation, & test sets.
We apply preprocessing as in the fairseq example.3

FLoRes (Guzmán et al., 2019) FloRes is a low-
resource dataset for English↔ Nepali and English
↔ Sinhala translation. The dataset is split into dev,
devtest, and test subsets. We only use the provided
supervised data.

Noun-adjective ordering We take inspiration
from SCAN-jump to construct an MT dataset
that probes for compositional generalization us-
ing noun-adjective ordering in French. In French,
both adjective noun (forward) and noun adjective
(backward) orders are used, unlike English that
only has the forward order. Which order is used
largely depends on the adjective. For example, to
refer to a specific response, French speakers say
résponse spécifique (backward order), while new
response would be nouvelle résponse (forward).

To draw a parallel with SCAN-jump, we con-
sider the nouns as primitives and adjectives as mod-
ifiers. Modifiers appear with different primitives,
however, some primitives appear with only one
modifier. For instance, if, in the training set, re-
sponse only appears with specific (backward), we
test models on translating sentences containing new
response, where new modifies many other nouns in
the training set in the forward order. Such general-
ization is required by humans when dealing with
rare or too specific nouns.

To construct our dataset, we start from
the English-French Europarl dataset (a part
of WMT’14 En-Fr)4 and select 8 nouns,
N ={response, institution, organisation, solution,
source, decision, responsibility, population}. We
constrain our train set so that each of the nouns
in N appears only with one adjective (hence in

3https://github.com/pytorch/fairseq/
tree/master/examples/translation

4http://www.statmt.org/europarl/

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
http://www.statmt.org/europarl/
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backward order forward order

(‘specific’, ‘response’)
(‘particular’, ‘institution’)
(‘effective’, ‘organisation’)
(‘permanent’, ‘solution’)

(‘new’, ‘source’)
(‘good’, ‘decision’)

(‘big’, ‘responsibility’)
(‘first’, ‘population’)

Table 2: (adjective, noun) pairs in the train set of the
noun-adjective ordering dataset, classified by their or-
der in French language.

one particular order) as shown in Table 2. For
example, the noun response will only be composed
with the adjective specific. However, specific
(and all other adjectives in Table 2) appears with
other nouns. To select these sentences, we use the
CoreNLP parser (Manning et al., 2014).5 Finally,
all sentences with nouns that are not among the
selected ones are kept. In other words, the training
set may contain sentences that have neither the
selected adjectives nor the selected nouns. This
results to 1641681 sentence pairs split into train
(1478195 pairs) and validation (163486 pairs) sets.
The test set is composed of the filtered sentences of
the original Europarl dataset: we select sentences
where nouns in the backward column of Table 2
({response, institution, organism, solution}) are
only modified by the adjectives in the forward
column ({new, good, big, first}). Similarly, we
also consider the sentences where the nouns
of the forward column are composed with the
adjectives of the backward column of the Table.6

This process will ensure that in the test set, the
noun-adjective only appears in the reverse order
compared to the train set. Unlike the training
data, the test data contains only sentences with
the target nouns and adjectives. In total, we test
models on 659 sentences. Note that the train and
validation sets are identically distributed, however,
the test set is distribution-shifted w.r.t. train, akin
to SCAN-jump.
We follow the preprocessing steps on the fairseq
example page for WMT’14 English to French.3

5 Methodology

SCAN Lake and Baroni (2018) were concerned
by the feasibility of systematic generalization in
seq2seq models. Hence, in their experiments, they
tuned the models on the train data and then directly
evaluated them on test set, reporting test scores.

5https://stanfordnlp.github.io/
6We use the Stanford parser to select these sentences.

We follow the same protocol: given a grid of hy-
perparameters, we fit models on the training data.
Next, for each hyperparameter configuration, we
average the performance of the models across ran-
dom seeds. Such a setup demonstrates that, at
least for some hyperparameter configurations, the
introduced models can learn to generalize system-
atically. At evaluation time, we decode greedily.

IWSLT’14 De-En We run a grid search on train
data; next we select the best performing checkpoint
on the validation dataset. We report performance
on the test data. We use the same training and
evaluation protocols as suggested on the fairseq
MT example page.3 We use beam size 5.

FLoRes This dataset has dev, devtest, and test
splits provided. We run a hyperparameter grid
search training on the dev data. Next, we select
the hyperparameter configuration that has the best
average (across seeds) performance on devtest. We
report the performance of the selected hyperparam-
eter configuration on the test set, averaged across
seeds. We use the training/evaluation scripts, to-
kenization and other parameters suggested on the
dataset page: beam size 5 and length penalty 1.2.

Noun-adjective ordering We run the hyperpa-
rameter search similarly to IWSLT’14 De-En. The
training and evaluation protocols are the ones sug-
gested by the fairseq page for WMT’14 En-Fr.3 We
also use beam size 5.

As we aim to probe abilities for compositional
generalization, we introduce an accuracy-based
measure, COMP. When analyzing models’ errors,
we encountered 3 common errors: (1) removing the
adjective (example 1 in Table 6), (2) replacing the
adjective with a synonym and reversing the order
(examples 2 and 3 in Table 6), and (3) producing a
completely wrong generalization while removing
the adjective. While (2) provides a good enough
translation, it is a mistake in the noun-adjective or-
der. However, when outputting the right noun and
adjective, the order is always preserved. Hence,
to measure if a model is compositional, we only
look if both the target adjective and the target noun
appear in the prediction, irrespective of their or-
der. We define thus COMP as the ratio of predicted
sentences that include both the target adjective and
noun.7

7It happens that models use a synonym in the right order
as shown in SAG+T5’s prediction 2 in Table 6. In that case,
models had generalized well but are still penalized by COMP.
COMP is hence only a proxy measure for compositional gen-
eralization based on the common failures.

https://stanfordnlp.github.io/
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jump around-right simple

Transformer 3.4±2.0 97.6±1.5 100.0±0.0

self-att. gate (SAG) 17.2±5.8 85.2±10.0 100.0±0.0
+ Conv as s.-a. 25.7±20.4 38.4±7.8 99.8±0.0
+ Fixed-span 33.6±9.5 97.6±1.3 100.0±0.0
+ T5 43.0±9.5 92.6±2.8 100.0±0.0

LSTM seq2seq (Lake and Baroni, 2018) 1.2 2.5 99.8
ConvS2S (Dessı̀ and Baroni, 2019) 69.2±8.2 56.7±10.2 100.0±0.0

Table 3: Accuracy on SCAN tasks, %. For each architecture and task, we report the mean accuracy of the best
hyperparameter configuration. ± denotes 1 SEM.

Hyperparameter search Transformer models
have multiple hyperparameters (embeddings di-
mensionality, number of layers and attention heads,
dropout probabilities, etc.). On top of those, our
introduced models add the attention span s, and
the initial gate state β0. For MT tasks, we start
from the existing strong baseline hyperparameter
configurations (FLoRes: specified by Guzmán et al.
(2019), De-En & En-Fr: following the fairseq ex-
ample page) and only tune (a) the parameters in-
troduced by our architectures, and (b) the attention
dropout parameter (for all architectures, including
Transformer). For SCAN, there is no baseline hy-
perparameter configuration, so we start with tuning
Transformer and then base hyperparameters of the
introduced architectures on it. We report full hyper-
parameter grids in Supplementary.

6 SCAN experiments

In our preliminary experiments, we found that our
modifications of the self-attention mechanism do
not lead to improvements over the standard Trans-
former when they are not combined with the self-
attention gate (SAG). Hence, we focus our experi-
ments on architectures that include SAG.

We report our results in Table 3. We also include
results for LSTM- and Conv-based seq2seq models
that were reported in earlier work (Lake and Baroni,
2018; Dessı̀ and Baroni, 2019). From Table 3, we
see that the unmodified Transformer has very low
accuracy on jump (3.4%), which is only slightly
above that of LSTM seq2seq (1.2%) and well below
ConvS2S (69.2%). This indicates that Transformer
models are indeed failing in compositional general-
ization on jump. However, they have a very high
score on the around-right split (97.6%) and
simple (≥ 99.8%). By introducing the differ-
ent modifications described in Section 3, making
Transformers closer to ConvS2S, we aim at pre-

Transformer SAG + Conv s.-a. + fix. span + T5

34.64±0.03 34.28±0.08 33.44±0.04 34.32±0.01 34.66±0.04

Table 4: BLEU on test set. IWSLT’14 German to En-
glish dataset. ± denotes 1 SEM.

serving the high performance of Transformers on
around-right and simplewhile significantly
improving it on jump.

Adding SAG increases accuracy on jump 5-
fold (17.2%) at the expense of a small drop in
around-right scores (not stat. sig.).

Further, we observe that changes of the self-
attention mechanism (replacing it with Convs,
limiting its span, and adding a relative position-
dependent bias), can further increase the perfor-
mance on jump. Apart from SAG+Conv as s.-a,
the self-attention modifications do not significantly
alter the performance on around-right.

We see that the architectural changes that we pro-
posed improve the compositional capabilities of the
Transformer models. As expected, the introduced
hybrid architectures reach significantly better per-
formance on jump (up to 12x improvements for
SAG+T5) while keeping high performance on the
around-right & simple tasks.

7 Machine Translation experiments

IWSLT’14 De-En In Table 4, we report BLEU
scores on German-English translation. SAG + T5
performs slightly better (0.02 BLEU, not stat. sig.),
but other modifications underperform w.r.t. Trans-
former. Replacing self-attention with convolutions
resulted in the largest drop, 3%. Other differences
are smaller,≤ 1%. For the following parts, we only
experiment with the SAG + T5 model as the only
non-degraded one. However, results with the re-
maining models on FLoRes and the Noun-adjective
ordering datasets are reported in Supplementary.

FLoRes, Si/Ne ↔ En We report results on
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English↔Nepali and English↔Sinhala translation
in Table 5. Following Guzmán et al. (2019), we use
tokenized BLEU when translating from English.
We run standard Transformer models as specified
in Guzmán et al. (2019), but adding a search over
the attention dropout probability. We verify that
we have close results compared to Guzmán et al.
(2019).8 Table 5 shows that SAG + T5 outperforms
Transformer on all language pairs and directions
with relative improvements between 3.6% (si-en)
and 13.1% (en-ne).

Noun-adjective ordering BLEU scores on the
test set are reported in Table 5. SAG + T5 leads
to a relative improvement of 1.39% compared to
standard Transformer. BLEU, however, is not infor-
mative about the particular noun-adjective general-
ization. We hence also report COMP scores. From
Table 5, we see that SAG + T5 demonstrates a sig-
nificant improvement with 14% relative gain com-
pared to the standard Transformer architecture. Our
follow-up experiments show that the hybrid model
recovers an average of 43.3% of cases where the
best Transformer model (best seed w.r.t. COMP)
failed in compositional generalization, whereas
Transformer is only correct at 21.5% of SAG +
T5’s errors. We report in Table 6 examples compar-
ing SAG + T5 and Transformer translations.

Discussion Upon analyzing our experiments on
SCAN and machine translation tasks, we see the
following picture. Indeed the hybrid models that
we described in Section 2 have considerably higher
accuracy on SCAN-jump w.r.t. Transformer and a
comparable performance on the other SCAN splits.
Hence, our results suggest the importance of both
gating and (the ability of) limiting the attention
span for SCAN generalization.

As expected, the improvement on SCAN do not
consistently entail improvements on the resource-
rich dataset, and only the combination of SAG and
T5 showed a tiny improvement. This emphasizes
the importance of testing models on realistic setups
to model from being too SCAN-tailored.

Finally, we test SAG + T5 on low-resource and
compositional tasks. The hybrid architecture shows
consistent improvements on FLoRes for all trans-
lation directions, with at up to 13.1% relative im-
provement, and on the the natural language com-
positional task with 14% relative improvement on
COMP. Our qualitative analysis also showed that
SAG + T5 correctly handles noun-adjective order-

8We got better BLEU scores due to the extra grid search.

ing in most cases, while Transformer makes more
mistakes.

8 Related Work

Compositionally-biased models Several ap-
proaches were proposed to build SCAN-capable
architectures. They span from meta-learning (Lake,
2019), disentangling syntax and semantics (Russin
et al., 2019), learning equivariant (Gordon et al.,
2019) and disentangled representations (Li
et al., 2019) or combining neural & symbolic
computations (Chen et al., 2020). In contrast, we
do not build new models that are specialized to
SCAN. Instead, we show that a standard model can
be incrementally modified so that performs well
on SCAN and still performs well on a standard
MT task. Having such incrementally improved
models allows us to step back and wonder if SCAN
(or similar artificial tasks) should be used as a
guidance when developing new models.

Bastings et al. (2018) raised concerns due to
SCAN being too artificial by showing that even
degenerate architectures can perform well on some
SCAN tasks. Our results echo their findings: by de-
veloping architectures tailored for SCAN, one can
easily come up with models that perform worse on
general tasks. However, we find that if one avoids
this “SCAN overfitting” and endows a model with
capabilities that SCAN probes for without harm-
ing its general performance, they can gain in low-
resource scenarios and better handle relevant phe-
nomena in language.

Changing attention mechanisms Self- and
cross-attention mechanisms were tweaked in earlier
work in order to inject useful biases, e.g., by adding
information of relative positions of tokens (Shaw
et al., 2018; Raffel et al., 2019) or accounting for
the locality bias in cross-attention (Yang et al.,
2018). Sukhbaatar et al. and Rae and Razavi (2020)
demonstrated that having a short attention span on
the lower layers of Transformer models is enough
for good language modeling performance.

9 Conclusion

In this work, we primarily focused on whether and
in which scenarios the inductive bias for composi-
tional generalization, that SCAN looks for, can be
useful in natural language tasks.

We ran study in two steps. As the first step, by
exploiting ConvS2S/Transformer similarities, we
came up with a modification of the Transformer
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FLoRes (BLEU) Noun-Adj. ordering

ne-en si-en en-ne en-si BLEU COMP

Transformer 7.94±0.05 7.15±0.07 4.43±0.01 2.32±0.08 40.86±0.34 0.64±0.01
SAG + T5 8.40±0.02 7.41±0.10 5.01±0.10 2.54±0.03 41.43±0.29 0.73±0.01

Table 5: Models performance on FLoRes and Noun-adjective ordering (English to French) dataset. For FLoRes, we
report the BLEU dev-test scores for the different translation directions. For the Noun-adjective ordering dataset, we
report both BLEU and COMP measures on the test set. In bold are values that stat. sig. improve over Transformer.
± denotes 1 SEM.

Target: Nous sommes face à une responsabilité politique particulière.

Prediction SAG+T5: Nous sommes accablés par une responsabilité politique particulière.

Prediction Transformer: Nous sommes accablés par une responsabilité politique.

Target: Nous voulons trouver une bonne solution à ce problème.

Prediction SAG+T5: Nous voulons trouver une bonne solution à ce problème.

Prediction Transformer: Nous voulons trouver une solution adéquate à ce problème.

Target: Ce qui nous déçoit par rapport à cette décision particulière, c’est que le projet aurait pu clairement voir le jour.

Prediction SAG+T5: Ce qui est triste dans cette décision précise, c’est que le projet aurait été clairement réalisé.

Prediction Transformer: Ce qui est triste dans cette mauvaise décision, c’est que le projet aurait clairement été.

Table 6: Generation Examples for Noun-adjective ordering dataset. Models are tested on the underlined and italic
(adjective, noun). For the first 2 examples, SAG+T5 predicted the right (adjective, noun) translation. In the last one,
SAG+T5 replaced the adjective with a synonym but in the right target order (the one not seen in the training set).
In the first example, Transformer removed the adjective particulière. In the two following examples, Transformer
replaced the right adjective with a close synonym adjective to be conform with the training order. For instance, in
the second example, bonne (an adjective that appears in the forward order) was replaced by adéquate (an adjective
that appears in the backward order) as the solution appears only in the backward order at training.

architecture that performs considerably better than
vanilla Transformer on SCAN-jump (43.0% vs
3.4% accuracy) and performs equally well on
SCAN-simple, SCAN-around-right, and on a stan-
dard resource-rich MT task (IWSLT’14 De-En).

Next, we tested this modification in low-resource
and distribution-shifted setups. In the low-resource
MT setup (FLoRes Si/Ne↔En), we found that our
considered architecture improves by up to 13.1%
in BLEU score over the vanilla Transformer. Then,
we introduced a new dataset that probes specifi-
cally for compositional reasoning in natural lan-
guage. Unlike SCAN, our compositional dataset
is built by filtering an existing natural language
corpus (EuroParl En-Fr) to probe how models per-
form noun-adjective ordering under a (minimal)
distribution shift. Thus, we are largely closer to
testing the compositional generalization required
by humans compared to SCAN, and succeeding on
the test set requires both compositional reasoning
and good language model performance (see exam-
ples in Table 6). We believe that such a dataset is
beneficial for future research to test more complex

compositionality skills. Finally, our experiments
on our dataset demonstrated that better SCAN gen-
eralization leads to better results on noun-adjective
ordering (14% on COMP).

Our findings indicate the following. Firstly, as
hypothesized before (Dessı̀ and Baroni, 2019; Hup-
kes et al., 2018), the limited attention span pro-
vides a useful inductive bias that allows models to
perform better on compositional generalization in-
duction, that SCAN probes for. Further, endowing
a model with SCAN-style generalization capabili-
ties can lead to improvements in low-resource and
distribution-shifted scenarios as long as we ensure
that we do not overfit to SCAN.

We believe that the contribution of diagnostic
datasets like SCAN is of great value. As perfor-
mance grows on tasks such as MT, identifying gaps
where a model’s performance lags will become fun-
damental and will guide us to develop architectures
that cover genuine new linguistic grounds and not
just overfit to peculiarities of standard datasets.
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A Hyperparameter grids

A.1 SCAN

For each architecture, we used the same hyperpa-
rameter grids for all splits of SCAN.

All models were trained by Adam with default β1
and β2 parameters, for 250 epochs, with batch size
256, learning rate 5 · 10−4, dropout and attention
dropout 0.1, random seeds {0, 1, 2}. We vary the
Encoder and Decoder parameters independently:
number of attention heads {4, 8}, embedding di-
mensions {128, 256}, FFN dimensions {256, 512},
and the number of layers {4, 6, 8}; clip norm 1.0.

For hybrids models, add the following parame-
ters.

SAG To reduce the search space, we did not vary
β0, setting it to −1.

SAG + CNN as self-attention Span: {2, 4, 6},
β0 = −1, number of layers: {4, 6}.

SAG + fixed span self-attention Span:
{2, 4, 6}, β0 = −1, number of layers: 4.

SAG + T5 Span: {2, 4, 6}, β0 = −1, number of
layers: 4.

A.2 Machine Translation

De-En We start from the standard architecture
suggested by Fairseq examples for IWSLT’14 De-
En. That is we share decoder input and output
embeddings. Both Encoder and decoder have an
embedding size of 512 FFN dimensions of 1024, 4
attention heads, 6 encoder & decoder layers. We
used adam optimizer with learning rate of 5e-4,
no clip norm, warm-up learning rate 1e-7, inverse
square root learning rate scheduler, 4000 warm-
up updates, dropout 0.3, weight decay 1e-4, label
smoothing 0.1, max. tokens per batch per GPU:
1024, 40 epochs. We used 4 GPUs for training.

For SAG-enabled architectures, we additionally
searched for Encoder’s β0 in {−1, 0} and {1, 0} for
Decoder. We varied attention span in {2, 4, 6}, tten-
tion dropout in {0.0, 0.2} and pre-block encoder
and decoder normalization.

For model selection, we also follow Fairseq ex-
ample and checkpoint the best model on validation
set based on BLEU score. BLEU score is computed
with a beam of size 5.

FLoRes We used shared embeddings between
Encoder and Decoder, embedding dimenions of
512, FFN dimensions of 2048, 2 attention heads,

5 encoder & decoder layers. We used pre-block
normalization9, learning rate of 1e-3, no clip norm,
warm-up learning rate 1e-7, inverse square root
learning rate scheduler, 4000 warm-up updates,
dropout 0.4, activation dropout 0.2, weight decay
1e-4, label smoothing 0.2, max. tokens per batch
per GPU: 4000, 100 epochs. We searched for at-
tention dropout in {0.0, 0.2}. We used 4 GPUs for
training.

For SAG-enabled arcchitectures, we addition-
ally searched for Encoder’s β0 in {−2,−1, 0} and
{2, 1, 0} for Decoder. We varied attention span in
{2, 4, 6}.

Noun-adjective order agreement We start from
the standard architecture suggested by Fairseq ex-
amples for WMT’14 En-Fr. That is we share en-
coder, decoder and output embeddings. Both En-
coder and decoder have an embedding size of 1024
FFN dimensions of 4096, 16 attention heads, 6 en-
coder & decoder layers. We used adam optimizer
with learning rate of 7e-4, no clip norm, warm-up
learning rate 1e-7, inverse square root learning rate
scheduler, 4000 warm-up updates, dropout 0.1, la-
bel smoothing 0.1, max. tokens per batch per GPU:
4000, 30 epochs. We used 6 GPUs for training.

For SAG-enabled architectures, we additionally
searched for Encoder’s β0 in {−1, 0} and {1, 0} for
Decoder. We varied attention span in {2, 4, 6}, tten-
tion dropout in {0.0, 0.2} and pre-block encoder
and decoder normalization.

Best checkpoint is based on the loss of the vali-
dation set.

B Other modifications on FloRes and
Noun-adjective ordering datasets

In the main paper, we only experimented with SAG
+ T5 as the only non-degraded modification on the
IWSLT’14 En-De dataset. Our intuition is that
the remaining hybrid models are SCAN-tailored
and would not lead to any improvement in the
low-resource (FloRes) and domain-shifted (Noun-
adjective ordering dataset) settings. In this section,
we verify our intuition and report the results of
all the introduced variants. The hyper-parameters
search is reported in Section A.

FloRes We report results on English↔Nepali
and English↔Sinhala translation in Table 7. We

9--encoder-normalize-before and
--decoder-normalize-before in fairseq.
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also report Guzmán et al. (2019) results under
“Baseline”.

Analyzing results of SAG, we notice that it is
usually very close to Transformer’s results on all
tasks, apart from Nepali→English, where it lags
behind. The fixed-span modification performs
worse than Transformer on in all directions. Re-
placing self-attention with convolutions results in
better scores on En→Ne and worse scores on
Ne→En/En→Si.

Hence, as expected, only the SAG + T5 model
outperforms Transformer on all language pairs and
directions, highlighting the importance of verifying
the generality of the model on realistic datasets.

Noun-adjective order agreement BLEU scores
on the test set are reported in Table 8. SAG leads
to a relative improvement of 1.44% compared to
standard Transformer, closely followed by SAG +
T5. Still, in total, the differences are very small
across all models. On the other hand, all intro-
duced variants outperform standard Transformer
on COMP. However, only SAG + T5 demonstrates
a significant improvement with 14% relative gain.

Overall, we observe that the SCAN-tailored vari-
ants do not degrade performances on the Noun-
adjective order agreement dataset, but still do not
lead to any significant improvement, contrary to
SAG + T5.

C Visualizing attention biases

In this Section, we illustrate how a successful SAG
+ T5 model uses its bij terms (Eq. 1) to control its
attention.

We take the most successful hyperparameter
combination on SCAN-jump in Table 3 and se-
lect a model instance that has the best accuracy
(≈ 60%). Next, for each attention head of each
encoder and decoder layer, we retrieve its learned
relative-position bias bd, where d is a (signed) rel-
ative distance between positions i and j, that is
capped to be within [−s,+s] (see Section 3). For
each head, we apply a softmax, to find its “prefer-
ence” b̂d over relative positions d:

b̂d =
exp(bd)∑
d exp(bd)

We report the results in Figure 1. Interestingly,
quite a few attention heads have very strong pref-
erences for fixed relative positions and some are
even dominantly focused on particular positions
(Encoder: head 7 in the layer 0; heads 4, 5 in layer

1, heads 3, 7 in layer 2; head 2 in layer 3; Decoder:
head 4 in layer 0, head 2 in layer 1, heads 3,4,5 in
layer 2; heads 2, 6, 7 in layer 3)10. More often than
not, those “specialized” heads look within the span
and not on the “border” values of d (due to d being
capped, they also correspond to arbitrary distant
positions to the left and right).

Hence we conclude that in a T5 model (among
most successful on SCAN-jump), several heads
leverage the ability pay attention locally; support-
ing our finding that local attention is connected
with the compositional generalization needed to
succeed at SCAN. At the same time, some heads
have large relative-position bias for distant posi-
tions ([s,+∞[ or ]−∞,−s]). This general ability
to optionally look beyond a fixed span in T5 could
be responsible for its better performance compared
to the fixed span modification.

10T5 reduces to the vanilla Transformer if all bd are equal
to zero. That corresponds to the uniform bias b̂d.
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Baseline Transformer SAG + Conv s.-a. + fixed span + T5

ne-en 7.6 7.94±0.05 7.58±0.06 7.59±0.02 7.44±0.08 8.40±0.02
si-en 7.2 7.15±0.07 7.14±0.10 7.18±0.10 .78±0.07 7.41±0.10
en-ne 4.3 4.43±0.01 4.36±0.08 4.63±0.03 4.12±0.05 5.01±0.10
en-si 1.2 2.32±0.08 2.37±0.10 2.14±0.03 2.12±0.04 2.54±0.03

Table 7: BLEU dev-test scores on FLoRes. Baseline scores are taken from (Guzmán et al., 2019). In bold are
values that stat. sig. improve over Transformer (p < 10−3). ± indicates 1 SEM.

Transformer SAG + Conv s.-a. + fixed span + T5

BLEU 40.86±0.34 41.45±0.14 39.89±0.27 41.01±0.24 41.43±0.29
COMP 0.64±0.01 0.70±0.03 0.67±0.01 0.68±0.01 0.73±0.01

Table 8: BLEU and COMP measures on test sets: compositional English to French dataset. In bold are values that
stat. sig. improve over Transformer (p < 0.05). ± denotes 1 SEM.
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(d) Encoder layer 3.
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(f) Decoder layer 1.
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(g) Decoder layer 2.
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Figure 1: Relative attention biases for T5 + SAG architecture (after a softmax). Each cell indicates preference
of a head to a position at a signed relative distance. The relative distances are capped. For the decoder we
only represent relative attention biases for d ≤ 0, as positions with positive relative distance are masked in the
autoregressive decoder.


