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Abstract

An important question concerning contextu-
alized word embedding (CWE) models like
BERT is how well they can represent differ-
ent word senses, especially those in the long
tail of uncommon senses. Rather than build a
WSD system as in previous work, we investi-
gate contextualized embedding neighborhoods
directly, formulating a query-by-example near-
est neighbor retrieval task and examining rank-
ing performance for words and senses in dif-
ferent frequency bands. In an evaluation on
two English sense-annotated corpora, we find
that several popular CWE models all outper-
form a random baseline even for proportion-
ally rare senses, without explicit sense super-
vision. However, performance varies consider-
ably even among models with similar architec-
tures and pretraining regimes, with especially
large differences for rare word senses, reveal-
ing that CWE models are not all created equal
when it comes to approximating word senses
in their native representations.

1 Introduction

Contextualized word embedding (CWE) models
such as BERT (Devlin et al., 2019), which were en-
abled by Transformers (Vaswani et al., 2017), have
yielded great improvements in a variety of NLP
tasks. However, because BERT and other CWE
models are deep neural networks with complicated
architectures and very high parameter counts, it is
not easy to understand exactly which aspects of
linguistic form and meaning contextualized word
embeddings are able to capture.

In response to these difficulties, much work has
been done attempting to interpret CWE models,
most notably in the field of BERTology. Over 100
BERTological studies have been published since
BERT was introduced in 2018, covering a diverse
range of linguistic phenomena (Rogers et al., 2020)
such as POS tags, constituency, and event factuality

(Liu et al., 2019a). The methods developed in this
area are usually applicable to other CWE models.

An important question for CWE models is how
well they can represent rare word senses. Word
sense disambiguation systems have been observed
to be most lacking in the long tail of rare word
senses (Blevins and Zettlemoyer, 2020; Blevins
et al., 2021), and sense-awareness is of fundamen-
tal importance for many NLP applications. Thus a
better understanding of how well CWE models un-
derstand senses, and especially rare senses, would
aid the interpretation of NLP systems.

To address this question, we perform an evalua-
tion we call CWE similarity ranking on two sense-
annotated English corpora using several popular
CWE models. We find that while all models outper-
form a random baseline on the evaluation, models
differ substantially in their performance on rare
word senses, with significant differentiation even
between models which are closely related.1

2 Previous Work

2.1 Word Senses

The task of word sense disambiguation (WSD) in-
troduced the notion of a word sense into NLP (Nav-
igli, 2009; Bevilacqua et al., 2021). The WSD task
is typically formulated as labeling words in context
with their senses as defined by a dictionary or other
lexical resource.

Many resources exist to support work on word
senses. WordNet (Miller, 1992) has been a cru-
cial resource for work on word senses, provid-
ing a fine-grained and comprehensive inventory
of words and their senses for English. Several
large annotated corpora have been constructed us-
ing WordNet senses, including SemCor (Miller
et al., 1993; Landes et al., 1998) and OntoNotes
(Hovy et al., 2006). More recently, WSD systems

1All code for this work is available at https://github.
com/lgessler/bert-has-uncommon-sense.
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have been able to achieve human-like performance
on WSD tasks, but performance on rare senses
remains comparatively poor (Blevins and Zettle-
moyer, 2020), leading to the construction of cor-
pora tailored for assessing systems on rare senses
(Blevins et al., 2021).

2.2 Word Sense BERTology

Few studies have focused narrowly on the question
of how well BERT and other CWE models capture
word senses. In one such study, Wiedemann et al.
(2019) evaluate CWE models by using the CWE
models’ embeddings as representations for a kNN
classifier: the predicted sense of a word is the one
most represented among by the word’s k nearest
neighbors (via cosine distance). Despite the sim-
plicity of this WSD system, it is able to achieve
results that are competitive with state-of-the-art
systems, even achieving new SOTA scores on the
SensEval-2 and SensEval-3 datasets. Reif et al.
(2019) construct a similar WSD system, relying
not on kNN but closest sense-centroids (centroids
are constructed using a labeled training set) to de-
cide on a label.

Other studies have approached the question by
modifying BERT’s training scheme. Tayyar Mad-
abushi et al. (2020) train a BERT variant where
the next sentence prediction task has been replaced
with a same construction prediction task and find
mixed results on downstream tasks. Levine et al.
(2020) train a BERT variant by adding a new super-
sense prediction task, wherein the masked token’s
WordNet supersense is to be predicted, and find
performance gains on a variety of meaning-related
tasks, which shows that BERT’s representations do
not perfectly capture word senses.

Some recent approaches have developed special-
ized methods for exploring CWE models’ embed-
ding spaces. Karidi et al. (2021) present an iterative
method for surveying the “topography” of BERT’s
embedding space, finding that word senses often
form cohesive regions.

3 CWE Similarity Ranking

We formulate a query-by-example task in which a
word in sentence context is used to query for simi-
lar usages of the same word in other sentences. In a
process we call contextualized word embedding
(CWE) similarity ranking, we will assume some
embedding function f and two corpora of sense-
labeled text segmented into sentences: a larger

“database” corpus D, and a smaller “query” corpus
Q. We will use sentences fromQ to rank sentences
in D, as detailed below.
1. Select a query sentence from Q consisting of
tokens w(q)1 , . . . ,w(q)n , where a token w(q)i has been
designated as the target token and has sense si.
2. Find embeddings for the query sentence,
h(q)1 , . . . ,h(q)n = f (w(q)1 , . . . ,w(q)n ).
3. For every instance w(d)j with its context

w(d)1 , . . . ,w(d)m in D, and sense s j, find embeddings
h(d)1 , . . . ,h(d)m = f (w(d)1 , . . . ,w(d)m ).
4. Rank instances in D in descending order by co-
sine similarity between embeddings of the two to-
kens, w(q)i and w(d)j : COS-SIM(h(q)i ,h(d)j ).
5. Evaluate the ranking, e.g. with precision at k.

CWE similarity ranking consists of much of the
same work that a CWE-based kNN system would
do,2 with the difference that the kNN WSD evalua-
tion will only reward a model if the gold sense is
held by a plurality of the neighbors, whereas CWE
similarity ranking is less stringent and will award
“partial credit” for retrieving any gold instances,
even if they do not form a majority. This provides a
clearer view of how coherent rare word senses are
in CWEs’ representations. See Figure 1 for query
examples.

4 Experimental Setup

We use the CWE similarity ranking method to eval-
uate several popular pretrained CWE models re-
trieved from huggingface.co (Wolf et al., 2020).
Corpora Our two corpora are OntoNotes 5.0
(Hovy et al., 2006), which has sense annotations
for nouns and verbs,3 and the Pattern Dictionary
of English Prepositions (PDEP) corpus (Litkowski,
2014), which has sense annotations for preposi-
tions.4 For OntoNotes, we discard instances la-
beled with “none-of-the-above” senses, as we ex-
pect them to be heterogeneous. For PDEP, we

2Indeed, the basic method of finding embeddings that are
nearest to a target embedding has been widely used both before
and after the rise of CWEs (cf. Wiedemann et al. 2019, which
we describe in §2.2, and Schnabel et al. 2015).

3Specifically, we use the OntoNotes English noun and verb
sense groupings, whose sense inventory was formulated by
merging WordNet senses for each lemma until an acceptable
level of interannotator agreement was reached. Our prelim-
inary experiments with WordNet senses in another corpus,
SemCor (Langone et al., 2004), were difficult to interpret
because annotations often seemed to be inconsistent.

4We use a copy of PDEP obtained from a SQL dump dated
2019-04-19. Original data is available with our code.

huggingface.co
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Query: But with all the money and glamour of high
finance come the relentless pressures to do well; pressure
to pull4 off another million before lunch [...]
1: “Sometimes,” he says, “we’ll pull3 someone off phones
for more training.”
2: Hence, they have never lacked their own stately or
amusing charms to pull2 in wealth and keep it within a
household.
3: I can’t pull4 it off.
4: Bulatovic says Kostunica was able to pull4 off the
balancing act because he is not really anti-American.

(a) A sample of a single query on OntoNotes for the verb pull.
Sense 4, glossed as ‘commit, do’, is rare, comprising just 5 of
the 78 occurrences of pull in the OntoNotes training set. Here,
the first two results are incorrect: sense 3 means ‘eliminate
from a situation’, and sense 2 means ‘steer something in a
certain direction’. All 5 correct instances are retrieved in the
top 50 results, at ranks 3, 4, 5, 6, and 41.

Query: These days I take five pills a day, but at one point
I was on20 about 20.
1: I’m happier than I was three years ago, when I was
drinking and I was on20 cocaine.
2: I was on20 about sixty cigarettes a day.
3: I was on20 heavy duty painkillers for 48 hours.
4: He had been put on20 prescription drugs to help him
cope with coming off crack.
5: Recorded in 21 days in a Mitcham garage, the fact that
it is on2 Chrysalis is a mere coincidence.
6: You can phone now on12 o-five-hundred , four-o-four ,
treble zero to put your views to Tory MP Phil Gallie .

(b) A sample of a single query on PDEP for the preposition on.
Sense 20, glossed as ‘regularly taking (a drug or medicine)’,
is very rare, comprising 14 of the 1728 occurrences of on in
the PDEP training set. The 5th and 6th results are incorrect:
sense 2 has to do with location, and sense 12 a medium of
communication. Only 6 of the 14 total occurrences in D make
it into the top 50 for this query.

Figure 1: Query samples using bert-base-cased.

use only instances of 48 common English preposi-
tions. For both corpora, we use only single-word
targets, and use pre-existing train–validation–test
splits. We treat the training split of each as our D,
and the combined validation and test split of each
as our Q, and discard any senses in Q that did not
occur at least 5 times in D, as these senses are so
rare in D that performance on them is liable to be
overtaken by noise. For OntoNotes, ∣D∣ = 229,989,
∣Q∣ = 50,395. For PDEP, ∣D∣ = 33,090, ∣Q∣ = 8,020.

Inoculation by Fine-Tuning In addition to the
base models, we also evaluate versions of the mod-
els that have been fine-tuned with a small number
of instances from another dataset, a method called
inoculation by fine-tuning (Richardson et al., 2020;
Liu et al., 2019b). Inoculation by fine-tuning allows
model to surface more domain-relevant informa-
tion in its output embeddings, while using only a
small amount of data so as to avoid teaching the
model anything entirely new. We use STREUSLE
4.4 (Schneider and Smith, 2015; Schneider et al.,
2018) to fine-tune, sampling supersense annota-
tions of single-word nouns, verbs and prepositions
in equal numbers for total counts of 100, 250, 500,
1000, and 2500. See Appendix A for full details.

Layer Choice In this work, we use embeddings
from the last layer of every model we assess. Pre-
liminary experiments showed that many models
show no improvement past the middle layers, and
using the last layer is also of interest because many
systems freeze their CWE models’ weights and use
embeddings from their final layers.

Lemma Restriction In all cases, neighbors are
restricted to instances that have the same lemma.

Evaluation To assess the quality of a ranking,
we use mean average precision5 for the top 50
ranked instances.6 Since there can be very few
gold-labeled instances, it may be impossible for a
model to achieve a perfect score. To make these
metrics more interpretable for a given dataset, we
also include a baseline score obtained by randomly
ranking results, and an oracle upper bound, i.e. the
score that would be obtained by a perfect model.7

5 Results

Main results are given in Table 1. Instances are
bucketed by two parameters: ℓ is the instance’s
lemma’s frequency in D, and r is the proportion
of all instances of the lemma that have the same
sense in D. Recall that each cell in Table 1 is
mean average precision over precision at k for 50
instances, and see Figure 2 for a sample of what
the P@K curves look like for each cell in Table 1.

Two example queries and top results appear in
Figure 1. Consider the results for the “on” query at
right: out of a large haystack (1728 available tokens
of “on”), the system has correctly retrieved 6 of the
14 relevant needles, featuring 4 at the top of the
list! Interestingly, even though the complement of
on in the query instance is just “20” (a fused-head
construction; Elazar and Goldberg, 2019) instead

5Recall is omitted here—see Appendix B.
6Average precision is defined for a single query as the

average of precision calculated for every result from 1 to some
k, where k ranges from 1 to a maximum of 50 for the present
study. Mean average precision in turn is the average of this
quantity across all instances inQ.

7Note that this is not always 100%: for queries with fewer
than 50 gold instances that can be retrieved in all of D, the
oracle’s performance will be under 100%.
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Model
ℓ < 500
r < 0.25

ℓ < 500
r ≥ 0.25

ℓ > 500
r < 0.25

ℓ > 500
r ≥ 0.25

Baseline 11.55 62.41 9.55 76.08
Oracle 82.02 93.89 100.00 100.00

bert-base-cased 41.60 81.89 48.48 88.53
distilbert-base-cased 39.80 81.32 48.17 88.50

roberta-base 32.87 78.39 45.16 88.37
distilroberta-base 29.33 76.48 43.69 86.86

albert-base-v2 40.44 81.81 51.58 89.56
xlnet-base-cased 28.72 75.07 36.16 84.29

gpt2 18.34 69.56 33.53 82.74

(a) Performance for OntoNotes, no fine-tuning. Buckets respec-
tively contain 6,949, 30,694, 1,649, and 11,123 query instances.

Model
ℓ < 500
r < 0.25

ℓ < 500
r ≥ 0.25

ℓ > 500
r < 0.25

ℓ > 500
r ≥ 0.25

Baseline 11.56 56.34 18.25 49.88
Oracle 96.41 100.00 100.00 100.00

bert-base-cased 59.59 83.54 66.34 89.39
distilbert-base-cased 58.06 83.15 65.09 88.10

roberta-base 39.84 76.79 47.65 80.01
distilroberta-base 32.42 72.22 42.29 70.81

albert-base-v2 56.53 82.22 66.64 88.44
xlnet-base-cased 35.76 74.08 37.68 75.16

gpt2 21.75 63.41 33.33 61.00

(b) Performance for PDEP, no fine-tuning. Buckets respectively
contain 4,970, 1,618, 733, and 699 query instances.

Model
ℓ < 500
r < 0.25

ℓ < 500
r ≥ 0.25

ℓ > 500
r < 0.25

ℓ > 500
r ≥ 0.25

Baseline 11.55 62.41 9.55 76.08
Oracle 82.02 93.89 100.00 100.00

bert-base-cased 43.42 82.37 49.81 89.45
distilbert-base-cased 41.62 81.98 50.31 89.43

roberta-base 37.87 80.68 53.65 89.43
distilroberta-base 34.74 79.27 48.50 88.74

albert-base-v2 39.26 81.50 51.65 89.31
xlnet-base-cased 37.53 79.12 51.40 87.97

gpt2 18.12 68.92 32.99 82.08

(c) Best performance across all fine-tuning trials for each model
on OntoNotes.

Model
ℓ < 500
r < 0.25

ℓ < 500
r ≥ 0.25

ℓ > 500
r < 0.25

ℓ > 500
r ≥ 0.25

Baseline 11.56 56.34 18.25 49.88
Oracle 96.41 100.00 100.00 100.00

bert-base-cased 60.37 83.49 67.87 89.28
distilbert-base-cased 58.33 82.91 67.27 87.52

roberta-base 48.99 80.32 60.04 85.72
distilroberta-base 42.25 77.25 53.37 79.19

albert-base-v2 53.75 81.85 65.57 86.97
xlnet-base-cased 49.46 80.50 56.19 84.53

gpt2 21.53 63.00 35.57 61.08

(d) Best performance across all fine-tuning trials for each model
on PDEP.

Table 1: Mean average precision performance broken down by corpus and model. Performance was further
measured on different buckets of instances, as indicated in column headers: ℓ is a query instance’s lemma frequency
in D, and r is the proportional frequency of a query instance’s sense across all instances of the lemma in D.
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Figure 2: A sample of averaged precision at k curves,
showing performance of several models on OntoNotes
for the bucket with lemmas occurring fewer than 500
times in D and senses with proportional frequencies
lower than 0.25. Mean average precision, as shown
in each cell in Table 1, is obtained by averaging every
point along one of these lines.

of the name of a drug or substance, the first four
results are still relevant. From examining the top
50 results as well as the 8 false negatives (which in-
clude “high on drugs”, “drunk on Scotch”, etc.), it
appears that BERT is prioritizing syntactic criteria
(“on” following a verb, especially a copula), pos-
sibly because the information following the query
preposition is semantically impoverished. In fact,
the top 3 results have a trigram match (“I was on”).

All models perform well above the random base-
line across all buckets, and show little differentia-
tion for buckets with only non-proportionally-rare
senses r ≥ 0.25. Dramatic differences emerge, how-
ever, for buckets with proportionally rare senses
r < 0.25, with GPT-2 (Radford et al., 2019) show-
ing the poorest performance. In line with general
trends, the distilled variants of models (Sanh et al.,
2020) generally track only a few points behind their
undistilled variants. Overall, bert-base-cased per-
formance is best. ALBERT (Lan et al., 2020) usu-
ally performs similarly, and RoBERTa (Liu et al.,
2019c) and XLNet (Yang et al., 2019) show notice-
ably worse performance on rare senses.

It is especially surprising that RoBERTa per-
forms so much worse than BERT on rare senses
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(cf. Table 1a, column 1), even though RoBERTa
outperforms BERT on GLUE (Wang et al., 2019),
and RoBERTa is more closely related to BERT
than XLNet or ALBERT: whereas XLNet and AL-
BERT differ architecturally from BERT, RoBERTa
is architecturally identical and differs only in de-
tails of training. (For example, it implements dy-
namic masking, does not perform next sentence
prediction, and uses an order of magnitude more
data.) Fine-tuning allows RoBERTa to close much
of this gap but not all of it (cf. Table 1c). This
indicates that word sense information is less read-
ily accessible in RoBERTa embeddings compared
to BERT embeddings, and that fine-tuning cannot
draw out this information to the extent that it al-
ready is in BERT. Taken together, these results call
into the question how conclusively a model can be
judged based just on performance on downstream
task benchmarks: RoBERTa performs better on
GLUE, which has led many to prefer it as generally
superior to BERT, but we have seen here it seems to
be inferior within the domain of lexical semantics.

6 Conclusion

We have presented an evaluation method for prob-
ing the word sense content of contextualized word
embeddings and applied it to several popular CWE
models. We find that their ability to capture rare
word senses using their representations is variable
and not easily explained by each model’s train-
ing and architectural characteristics. Moreover,
we find that performance of models on this word
sense evaluation is not directly proportional to their
performance on downstream task benchmarks like
GLUE. We view these differences between models
as reason for further evaluation of CWE models to
investigate their word sense representations, and
inquiry into factors that affect word sense content
of contextualized word embeddings.
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B Full Results, Main Experiment

B.1 OntoNotes, ℓ < 500, r < 0.25
Model # FT Instances Precision Recall
random baseline 0 11.55 3.63
oracle 0 82.02 23.92
roberta-base 0 32.87 9.28
roberta-base 100 34.38 9.80
roberta-base 250 37.87 10.80
roberta-base 500 35.75 10.20
roberta-base 1000 36.88 10.48
roberta-base 2500 35.09 9.96
bert-base-cased 0 41.60 11.79
bert-base-cased 100 42.88 12.20
bert-base-cased 250 43.04 12.24
bert-base-cased 500 42.02 11.93
bert-base-cased 1000 43.42 12.37
bert-base-cased 2500 43.37 12.34
distilroberta-base 0 29.33 8.30
distilroberta-base 100 32.87 9.32
distilroberta-base 250 34.74 9.88
distilroberta-base 500 33.99 9.63
distilroberta-base 1000 32.24 9.16
distilroberta-base 2500 32.92 9.33
distilbert-base-cased 0 39.80 11.26
distilbert-base-cased 100 41.62 11.84
distilbert-base-cased 250 41.42 11.78
distilbert-base-cased 500 41.11 11.70
distilbert-base-cased 1000 40.70 11.55
distilbert-base-cased 2500 41.55 11.83
gpt2 0 18.34 5.37
gpt2 100 16.92 4.99
gpt2 250 18.08 5.30
gpt2 500 18.12 5.32
gpt2 1000 17.59 5.18
gpt2 2500 17.39 5.11
albert-base-v2 0 40.44 11.50
albert-base-v2 100 39.26 11.22
albert-base-v2 250 37.24 10.66
albert-base-v2 500 36.72 10.51
albert-base-v2 1000 38.01 10.86
albert-base-v2 2500 38.48 10.98
xlnet-base-cased 0 28.72 7.93
xlnet-base-cased 100 36.38 10.05
xlnet-base-cased 250 37.53 10.44
xlnet-base-cased 500 34.42 9.55
xlnet-base-cased 1000 37.38 10.36
xlnet-base-cased 2500 36.95 10.31

B.2 OntoNotes, ℓ < 500, r ≥ 0.25
Model # FT Instances Precision Recall
random baseline 0 11.55 3.63
oracle 0 82.02 23.92
roberta-base 0 32.87 9.28
roberta-base 100 34.38 9.80
roberta-base 250 37.87 10.80
roberta-base 500 35.75 10.20
roberta-base 1000 36.88 10.48
roberta-base 2500 35.09 9.96
bert-base-cased 0 41.60 11.79
bert-base-cased 100 42.88 12.20
bert-base-cased 250 43.04 12.24
bert-base-cased 500 42.02 11.93
bert-base-cased 1000 43.42 12.37
bert-base-cased 2500 43.37 12.34
distilroberta-base 0 29.33 8.30
distilroberta-base 100 32.87 9.32
distilroberta-base 250 34.74 9.88
distilroberta-base 500 33.99 9.63
distilroberta-base 1000 32.24 9.16
distilroberta-base 2500 32.92 9.33
distilbert-base-cased 0 39.80 11.26
distilbert-base-cased 100 41.62 11.84
distilbert-base-cased 250 41.42 11.78
distilbert-base-cased 500 41.11 11.70
distilbert-base-cased 1000 40.70 11.55
distilbert-base-cased 2500 41.55 11.83
gpt2 0 18.34 5.37
gpt2 100 16.92 4.99
gpt2 250 18.08 5.30
gpt2 500 18.12 5.32
gpt2 1000 17.59 5.18
gpt2 2500 17.39 5.11
albert-base-v2 0 40.44 11.50
albert-base-v2 100 39.26 11.22
albert-base-v2 250 37.24 10.66
albert-base-v2 500 36.72 10.51
albert-base-v2 1000 38.01 10.86
albert-base-v2 2500 38.48 10.98
xlnet-base-cased 0 28.72 7.93
xlnet-base-cased 100 36.38 10.05
xlnet-base-cased 250 37.53 10.44
xlnet-base-cased 500 34.42 9.55
xlnet-base-cased 1000 37.38 10.36
xlnet-base-cased 2500 36.95 10.31

B.3 OntoNotes, ℓ ≥ 500, r < 0.25

Model # FT Instances Precision Recall
random baseline 0 11.55 3.63
oracle 0 82.02 23.92
roberta-base 0 32.87 9.28
roberta-base 100 34.38 9.80
roberta-base 250 37.87 10.80
roberta-base 500 35.75 10.20
roberta-base 1000 36.88 10.48
roberta-base 2500 35.09 9.96
bert-base-cased 0 41.60 11.79
bert-base-cased 100 42.88 12.20
bert-base-cased 250 43.04 12.24
bert-base-cased 500 42.02 11.93
bert-base-cased 1000 43.42 12.37
bert-base-cased 2500 43.37 12.34
distilroberta-base 0 29.33 8.30
distilroberta-base 100 32.87 9.32
distilroberta-base 250 34.74 9.88
distilroberta-base 500 33.99 9.63
distilroberta-base 1000 32.24 9.16
distilroberta-base 2500 32.92 9.33
distilbert-base-cased 0 39.80 11.26
distilbert-base-cased 100 41.62 11.84
distilbert-base-cased 250 41.42 11.78
distilbert-base-cased 500 41.11 11.70
distilbert-base-cased 1000 40.70 11.55
distilbert-base-cased 2500 41.55 11.83
gpt2 0 18.34 5.37
gpt2 100 16.92 4.99
gpt2 250 18.08 5.30
gpt2 500 18.12 5.32
gpt2 1000 17.59 5.18
gpt2 2500 17.39 5.11
albert-base-v2 0 40.44 11.50
albert-base-v2 100 39.26 11.22
albert-base-v2 250 37.24 10.66
albert-base-v2 500 36.72 10.51
albert-base-v2 1000 38.01 10.86
albert-base-v2 2500 38.48 10.98
xlnet-base-cased 0 28.72 7.93
xlnet-base-cased 100 36.38 10.05
xlnet-base-cased 250 37.53 10.44
xlnet-base-cased 500 34.42 9.55
xlnet-base-cased 1000 37.38 10.36
xlnet-base-cased 2500 36.95 10.31

B.4 OntoNotes, ℓ ≥ 500, r ≥ 0.25

Model # FT Instances Precision Recall
random baseline 0 11.55 3.63
oracle 0 82.02 23.92
roberta-base 0 32.87 9.28
roberta-base 100 34.38 9.80
roberta-base 250 37.87 10.80
roberta-base 500 35.75 10.20
roberta-base 1000 36.88 10.48
roberta-base 2500 35.09 9.96
bert-base-cased 0 41.60 11.79
bert-base-cased 100 42.88 12.20
bert-base-cased 250 43.04 12.24
bert-base-cased 500 42.02 11.93
bert-base-cased 1000 43.42 12.37
bert-base-cased 2500 43.37 12.34
distilroberta-base 0 29.33 8.30
distilroberta-base 100 32.87 9.32
distilroberta-base 250 34.74 9.88
distilroberta-base 500 33.99 9.63
distilroberta-base 1000 32.24 9.16
distilroberta-base 2500 32.92 9.33
distilbert-base-cased 0 39.80 11.26
distilbert-base-cased 100 41.62 11.84
distilbert-base-cased 250 41.42 11.78
distilbert-base-cased 500 41.11 11.70
distilbert-base-cased 1000 40.70 11.55
distilbert-base-cased 2500 41.55 11.83
gpt2 0 18.34 5.37
gpt2 100 16.92 4.99
gpt2 250 18.08 5.30
gpt2 500 18.12 5.32
gpt2 1000 17.59 5.18
gpt2 2500 17.39 5.11
albert-base-v2 0 40.44 11.50
albert-base-v2 100 39.26 11.22
albert-base-v2 250 37.24 10.66
albert-base-v2 500 36.72 10.51
albert-base-v2 1000 38.01 10.86
albert-base-v2 2500 38.48 10.98
xlnet-base-cased 0 28.72 7.93
xlnet-base-cased 100 36.38 10.05
xlnet-base-cased 250 37.53 10.44
xlnet-base-cased 500 34.42 9.55
xlnet-base-cased 1000 37.38 10.36
xlnet-base-cased 2500 36.95 10.31
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B.5 PDEP, ℓ < 500, r < 0.25

Model # FT Instances Precision Recall
random baseline 0 11.56 1.85
oracle 0 96.41 15.19
roberta-base 0 39.84 5.90
roberta-base 100 42.09 6.29
roberta-base 250 47.86 7.21
roberta-base 500 45.20 6.78
roberta-base 1000 48.99 7.37
roberta-base 2500 46.63 6.99
bert-base-cased 0 59.59 8.99
bert-base-cased 100 60.00 9.07
bert-base-cased 250 60.23 9.11
bert-base-cased 500 60.07 9.07
bert-base-cased 1000 59.94 9.07
bert-base-cased 2500 60.37 9.13
distilroberta-base 0 32.42 4.80
distilroberta-base 100 39.20 5.84
distilroberta-base 250 42.25 6.34
distilroberta-base 500 41.75 6.26
distilroberta-base 1000 40.09 6.02
distilroberta-base 2500 39.89 5.96
distilbert-base-cased 0 58.06 8.75
distilbert-base-cased 100 58.06 8.77
distilbert-base-cased 250 58.02 8.76
distilbert-base-cased 500 57.96 8.75
distilbert-base-cased 1000 58.03 8.75
distilbert-base-cased 2500 58.33 8.79
gpt2 0 21.75 3.24
gpt2 100 18.34 2.76
gpt2 250 21.53 3.17
gpt2 500 19.77 2.93
gpt2 1000 19.42 2.90
gpt2 2500 20.58 3.08
albert-base-v2 0 56.53 8.55
albert-base-v2 100 53.75 8.14
albert-base-v2 250 52.56 7.95
albert-base-v2 500 51.63 7.80
albert-base-v2 1000 51.97 7.86
albert-base-v2 2500 53.10 8.03
xlnet-base-cased 0 35.76 5.12
xlnet-base-cased 100 48.28 7.02
xlnet-base-cased 250 48.47 7.08
xlnet-base-cased 500 45.99 6.68
xlnet-base-cased 1000 48.80 7.13
xlnet-base-cased 2500 49.46 7.25

B.6 PDEP, ℓ < 500, r ≥ 0.25

Model # FT Instances Precision Recall
random baseline 0 11.56 1.85
oracle 0 96.41 15.19
roberta-base 0 39.84 5.90
roberta-base 100 42.09 6.29
roberta-base 250 47.86 7.21
roberta-base 500 45.20 6.78
roberta-base 1000 48.99 7.37
roberta-base 2500 46.63 6.99
bert-base-cased 0 59.59 8.99
bert-base-cased 100 60.00 9.07
bert-base-cased 250 60.23 9.11
bert-base-cased 500 60.07 9.07
bert-base-cased 1000 59.94 9.07
bert-base-cased 2500 60.37 9.13
distilroberta-base 0 32.42 4.80
distilroberta-base 100 39.20 5.84
distilroberta-base 250 42.25 6.34
distilroberta-base 500 41.75 6.26
distilroberta-base 1000 40.09 6.02
distilroberta-base 2500 39.89 5.96
distilbert-base-cased 0 58.06 8.75
distilbert-base-cased 100 58.06 8.77
distilbert-base-cased 250 58.02 8.76
distilbert-base-cased 500 57.96 8.75
distilbert-base-cased 1000 58.03 8.75
distilbert-base-cased 2500 58.33 8.79
gpt2 0 21.75 3.24
gpt2 100 18.34 2.76
gpt2 250 21.53 3.17
gpt2 500 19.77 2.93
gpt2 1000 19.42 2.90
gpt2 2500 20.58 3.08
albert-base-v2 0 56.53 8.55
albert-base-v2 100 53.75 8.14
albert-base-v2 250 52.56 7.95
albert-base-v2 500 51.63 7.80
albert-base-v2 1000 51.97 7.86
albert-base-v2 2500 53.10 8.03
xlnet-base-cased 0 35.76 5.12
xlnet-base-cased 100 48.28 7.02
xlnet-base-cased 250 48.47 7.08
xlnet-base-cased 500 45.99 6.68
xlnet-base-cased 1000 48.80 7.13
xlnet-base-cased 2500 49.46 7.25

B.7 PDEP, ℓ ≥ 500, r < 0.25
Model # FT Instances Precision Recall
random baseline 0 11.56 1.85
oracle 0 96.41 15.19
roberta-base 0 39.84 5.90
roberta-base 100 42.09 6.29
roberta-base 250 47.86 7.21
roberta-base 500 45.20 6.78
roberta-base 1000 48.99 7.37
roberta-base 2500 46.63 6.99
bert-base-cased 0 59.59 8.99
bert-base-cased 100 60.00 9.07
bert-base-cased 250 60.23 9.11
bert-base-cased 500 60.07 9.07
bert-base-cased 1000 59.94 9.07
bert-base-cased 2500 60.37 9.13
distilroberta-base 0 32.42 4.80
distilroberta-base 100 39.20 5.84
distilroberta-base 250 42.25 6.34
distilroberta-base 500 41.75 6.26
distilroberta-base 1000 40.09 6.02
distilroberta-base 2500 39.89 5.96
distilbert-base-cased 0 58.06 8.75
distilbert-base-cased 100 58.06 8.77
distilbert-base-cased 250 58.02 8.76
distilbert-base-cased 500 57.96 8.75
distilbert-base-cased 1000 58.03 8.75
distilbert-base-cased 2500 58.33 8.79
gpt2 0 21.75 3.24
gpt2 100 18.34 2.76
gpt2 250 21.53 3.17
gpt2 500 19.77 2.93
gpt2 1000 19.42 2.90
gpt2 2500 20.58 3.08
albert-base-v2 0 56.53 8.55
albert-base-v2 100 53.75 8.14
albert-base-v2 250 52.56 7.95
albert-base-v2 500 51.63 7.80
albert-base-v2 1000 51.97 7.86
albert-base-v2 2500 53.10 8.03
xlnet-base-cased 0 35.76 5.12
xlnet-base-cased 100 48.28 7.02
xlnet-base-cased 250 48.47 7.08
xlnet-base-cased 500 45.99 6.68
xlnet-base-cased 1000 48.80 7.13
xlnet-base-cased 2500 49.46 7.25

B.8 PDEP, ℓ ≥ 500, r ≥ 0.25
Model # FT Instances Precision Recall
random baseline 0 11.56 1.85
oracle 0 96.41 15.19
roberta-base 0 39.84 5.90
roberta-base 100 42.09 6.29
roberta-base 250 47.86 7.21
roberta-base 500 45.20 6.78
roberta-base 1000 48.99 7.37
roberta-base 2500 46.63 6.99
bert-base-cased 0 59.59 8.99
bert-base-cased 100 60.00 9.07
bert-base-cased 250 60.23 9.11
bert-base-cased 500 60.07 9.07
bert-base-cased 1000 59.94 9.07
bert-base-cased 2500 60.37 9.13
distilroberta-base 0 32.42 4.80
distilroberta-base 100 39.20 5.84
distilroberta-base 250 42.25 6.34
distilroberta-base 500 41.75 6.26
distilroberta-base 1000 40.09 6.02
distilroberta-base 2500 39.89 5.96
distilbert-base-cased 0 58.06 8.75
distilbert-base-cased 100 58.06 8.77
distilbert-base-cased 250 58.02 8.76
distilbert-base-cased 500 57.96 8.75
distilbert-base-cased 1000 58.03 8.75
distilbert-base-cased 2500 58.33 8.79
gpt2 0 21.75 3.24
gpt2 100 18.34 2.76
gpt2 250 21.53 3.17
gpt2 500 19.77 2.93
gpt2 1000 19.42 2.90
gpt2 2500 20.58 3.08
albert-base-v2 0 56.53 8.55
albert-base-v2 100 53.75 8.14
albert-base-v2 250 52.56 7.95
albert-base-v2 500 51.63 7.80
albert-base-v2 1000 51.97 7.86
albert-base-v2 2500 53.10 8.03
xlnet-base-cased 0 35.76 5.12
xlnet-base-cased 100 48.28 7.02
xlnet-base-cased 250 48.47 7.08
xlnet-base-cased 500 45.99 6.68
xlnet-base-cased 1000 48.80 7.13
xlnet-base-cased 2500 49.46 7.25


