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Abstract

Probing classifiers have been extensively used
to inspect whether a model component cap-
tures specific linguistic phenomena. This top-
down approach is, however, costly when we
have no probable hypothesis on the association
between the target model component and phe-
nomena. In this study, aiming to provide a flex-
ible, exploratory analysis of a neural model at
various levels ranging from individual neurons
to the model as a whole, we present a bottom-
up approach to inspect the target neural model
by using neuron representations obtained from
a massive corpus of text. We first feed massive
amount of text to the target model and collect
sentences that strongly activate each neuron.
We then abstract the collected sentences to ob-
tain neuron representations that help us inter-
pret the corresponding neurons; we augment
the sentences with linguistic annotations (e.g.,
part-of-speech tags) and various metadata (e.g.,
topic and sentiment), and apply pattern min-
ing and clustering techniques to the augmented
sentences. We demonstrate the utility of our
method by inspecting the pre-trained BERT.
Our exploratory analysis reveals that i) specific
phrases and domains of text are captured by
individual neurons in BERT, ii) a group of neu-
rons simultaneously capture the same linguis-
tic phenomena, and iii) deeper-level layers cap-
ture more specific linguistic phenomena.

1 Introduction

Deep neural networks (DNNs) learn to induce inter-
nal feature representations or neurons1 for a given
input, which are optimized for the target task. The
success of DNNs in the field of natural language
processing (NLP) is underpinned by this flexibility
to induce internal vector representations of input.
It is, however, difficult for humans to interpret their
roles and properties, which hinders us from lever-
aging DNNs in practical applications.

1Neurons refer to numerical values of each dimension of
internal representations such as hidden states.

Researchers have therefore investigated what lin-
guistic aspects of input text are captured by the
internal representations of DNNs optimized for NLP

tasks (§ 2). Most of the existing methods inspect
a pre-specified model component (e.g., individual
BERT layers) in a top-down manner. A typical ap-
proach first takes aim at specific linguistic phenom-
ena that would be captured by the target compo-
nents, and then trains a probing classifier that pre-
dicts the chosen linguistic phenomena from the tar-
get components (Bau et al., 2018; Giulianelli et al.,
2018; Dalvi et al., 2019; Lakretz et al., 2019; Ko-
valeva et al., 2019; Goldberg, 2019; Petroni et al.,
2019; Hewitt and Manning, 2019; Jawahar et al.,
2019; Durrani et al., 2020; Zhou and Srikumar,
2021; Cao et al., 2021; Jumelet et al., 2021).

Although this top-down approach based on prob-
ing classifiers has provided thought-provoking in-
sights into the target model components, it becomes
costly when we want to inspect many combinations
of model components and linguistic phenomena.
This is because the probing requires us to train
machine-learning classifiers for each combination
of model component and linguistic phenomenon.
Although there are a few bottom-up approaches
to inspect DNNs by examining the response of the
neurons towards (perturbed) inputs that represent
the target linguistic phenomenon (Karpathy et al.,
2016; Shi et al., 2016; Qian et al., 2016), these
approaches are labor intensive since they require
manual intervention.

This study aims at efficiently inspecting neural
NLP models at various levels of granularity ranging
from individual neurons to the model as a whole,
and presents a bottom-up approach to inspecting
what kind of concrete linguistic phenomena each
neuron of the model responds to, without presup-
posing the target linguistic phenomenon to be ex-
amined (§ 3). Given a massive amount of text, we
first feed individual sentences to the target model,
and collect sentences to which each neuron strongly
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responds (§ 3.1).2 We next annotate the collected
sentences with the linguistic annotations (e.g., part
of speech tags) and various metadata (e.g., topic
and sentiment). With the help of these annotations,
we then apply text mining techniques such as fre-
quent pattern mining to extract common patterns
as the linguistic signatures3 that exist repeatedly
and intricately in the sentences collected for the
target neurons (§ 3.2). We finally investigate rela-
tionships between multiple neurons by comparing
and clustering continuous neuron representations
induced from the collected sentences.

We apply our method to the pre-trained BERT

(base-uncased) (Devlin et al., 2019) to demonstrate
how much insight into BERT the method can ac-
tually provide. Our exploratory model analysis
have confirmed that it is possible to identify, with-
out any prior assumptions, a wide variety of spe-
cific linguistic phenomena to which each neuron
responds (§ 4.2). Furthermore, by comparing the
linguistic phenomena and sentences corresponding
to individual neurons, we revealed the existence of
neurons that work cooperatively for the same pur-
pose. We finally revealed the impact of optimizing
BERT to the target task (here, the pre-training task
and sentiment classification) by comparing neurons
of randomly initialized BERT with neurons of the
pre-trained and the fine-tuned BERT (§ 4.3).

The contribution of this study is threefold:

• We present a method of exploratory model
analysis to understand neural NLP models.
We investigate concrete linguistic phenomena
(e.g., skip n-grams) captured by the neurons
of the target model, without any prior assump-
tions about the phenomena to be examined.

• We revealed concrete linguistic phenomena
captured by various BERT’s neurons and
layers, whereas existing approaches reported
coarse linguistic phenomena that are indicated
by high performance in probing tasks.

• We confirmed that neurons in deeper BERT
layers capture more specific linguistic phe-
nomena, and fine-tuning facilitates this
tendency in a sentiment classification task.

2For simplicity, we hereafter assume that input to the target
model is a single sentence, although our method can be applied
to models that takes input in shorter or larger linguistic units.

3This term is named after topic signatures (Agirre et al.,
2001), which are supplemental data-driven representations of
word senses whose representations are extracted from external
language resources.

2 Related Work

In order to clarify what kind of linguistic phenom-
ena are captured by neural NLP models, researchers
have analyzed the internal representations of the
models at various levels of granularity such as neu-
rons (Karpathy et al., 2016; Shi et al., 2016; Qian
et al., 2016; Bau et al., 2018; Lakretz et al., 2019;
Vig et al., 2020; Cao et al., 2021), layers (Hewitt
and Manning, 2019; Liu et al., 2019; Tenney et al.,
2019a; Goldberg, 2019; Jawahar et al., 2019; Mi-
aschi and Dell’Orletta, 2020), attentions (Koval-
eva et al., 2019; Clark et al., 2019; Brunner et al.,
2020; Kobayashi et al., 2020), and the model as
a whole (Petroni et al., 2019; Broscheit, 2019;
Roberts et al., 2020). In what follows, we start
by reviewing probing methods that investigate the
classifier performance of external tasks based on
the target model components. We next describe
some microscopic methods that focus on individual
neurons. We then discuss a method of inspecting
each neuron using text generated for that neuron.

Most of the recent methods adopt a top-down
approach called probing, which takes target com-
ponent (e.g., layer) as inputs, trains a classifier that
predicts the linguistic phenomena of interest such
as syntactic information (Jawahar et al., 2019; Mi-
aschi and Dell’Orletta, 2020; Wu et al., 2020) ,
agreement information (Giulianelli et al., 2018;
Goldberg, 2019), and semantic knowledge (Ten-
ney et al., 2019b; Ettinger, 2020), and evaluates the
properties of the internal representation with ref-
erence to the accuracy of the classifier. To reduce
the cost of training a classifier, Zhou and Srikumar
(2021) indirectly predict the performance of prob-
ing classifiers by analyzing how the labeled data
is represented in the vector space. Some studies
identify neurons which make a huge contribution
to solving the desired task, by looking at the perfor-
mance of the task when the activation of neurons is
forcibly controlled (Bau et al., 2018; Lakretz et al.,
2021; Cao et al., 2021).

These probing methods are inductive in that they
examine whether the target model component cap-
tures the target linguistic phenomenon. It is costly
to inspect various pairs of model components and
phenomena. Our approach does not presuppose
linguistic phenomena to be examined and gives in-
formation that differs from the above methods; we
show concrete linguistic phenomena each neuron
responds to strongly, in a form that can be easily
understood by humans (e.g., skip n-grams) (§ 4.2).
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Datasets #sent. domain metadata avg. length distribution of simplified POS tags

BookCorpus (Zhu et al., 2015) 40M book author 16.3 noun: 21.4%, verb: 17.6%, adj.: 5.1%
English Wikipedia4 40M wikipedia entity 22.0 noun: 32.5%, verb: 11.7%, adj.: 6.0%
Sentiment140 (Go et al., 2009) 2M social media sentiment 10.3 noun: 23.4%, verb: 18.4%, adj.: 5.8%
IMDB (Maas et al., 2011) 0.3M review sentiment 23.8 noun: 22.9%, verb: 15.3%, adj.: 7.4%
20Newsgroups (Lang, 1995) 0.2M news topic 23.6 noun: 29.0%, verb: 13.0%, adj.: 5.3%
Reuters5 39K news category 28.9 noun: 38.2%, verb: 11.7%, adj.: 6.2%

Total 82M - - 18.9 noun: 27.7%, verb: 14.2%, adj.: 5.7%

Table 1: Datasets used to collect sentences to which individual neurons of the target model strongly activate.
Among the PTB annotations obtained by the POS tagger described in § 4.1, we here defined those POSs whose
letters begin with N, V, and J as “noun,” “verb,” and “adj,” respectively.

There are several studies that have investigated
the roles of neurons – the finest components of
models such as a cell state in a long short term
memory – by observing interactions between their
values and (perturbed) input sentences (Karpathy
et al., 2016; Shi et al., 2016; Qian et al., 2016; Vig
et al., 2020; Lakretz et al., 2021). However, these
methods are tailored to analyze a few pre-defined
particular phenomena such as sequence length, or
need to perform the analysis per phenomenon. Our
method, on the other hand, allows for a wide range
of analytical perspectives in that it uses a massive
amount of raw text to collect sentences in which in-
dividual neurons show strong interest and leverages
pattern mining to highlight linguistic phenomena
contained in the collected sentences.

As the most similar to our approach, Poerner
et al. (2018) proposed a gradient-based method
that generates input text which strongly activates
neurons, inspired by work in computer vision (Si-
monyan et al., 2014). Their method differs from
the probing methods in that it embodies the infor-
mation captured by the neurons as text, which is
similar to our study. However, their method can
generate only text of pre-fixed length, and requires
hyper-parameter tuning (e.g., annealing tempera-
ture) to generate natural text, making it costly to
apply to massive neurons in the models. Moreover,
it is difficult for humans to interpret properties of
the generated text just by observing them. In con-
trast, we propose an example-based method for
collecting human-written sentences from a huge
text corpora, determining which each neuron finds
interesting, without any parameter tuning. By ex-
ploiting text mining techniques, we can reveal vari-
ous linguistic phenomena as long as they appear in
the source raw text.

412/20/2020 ver. https://dumps.wikimedia.org/enwiki
5http://kdd.ics.uci.edu/databases/reuters21578

3 Data-Driven Inspection of Neurons

This section describes our methodology for provid-
ing a deeper insight into a neural model at the finest
level of granularity (i.e., neurons1). Our approach
abstracts the sentences retrieved from a massive
amount of text such as the BookCorpus (Zhu et al.,
2015). The whole process is as follows.

Step 1: Collecting sentences activating neurons
This step finds which neurons consider what text
to be interesting. Feeding a massive amount of
raw text such as Wikipedia and BookCorpus (Zhu
et al., 2015) to the target model, we collect a large
number of sentences that are strongly associated
with each neuron in the model (§ 3.1).

Step 2: Abstracting the collected sentences
This step finds what concrete linguistic phenomena
each neuron finds interesting. We associate the col-
lected sentences with linguistic annotations such as
part-of-speech tags and available metadata such as
topic and sentiment (Table 1). We then abstract a
wide range of linguistic phenomena that exist in the
retrieved sentences using data mining techniques
such as frequent pattern mining, utilizing the asso-
ciated information (§ 3.2). We call the resulting
patterns as linguistic signatures of neurons.

3.1 Collecting Sentences Activating Neurons
We first feed a massive amount of text to the target
model, and then extract sentences which strongly
activate each neuron. In other words, we look for
sentences that each neuron finds interesting. For
this purpose, the size of the corpus can be reduced
if there is a large diversity in the linguistic phenom-
ena and domains contained in the corpus.

Since it is impractical to record the neurons’ val-
ues for all the sentences, we use a priority queues
to maintain only the top-N sentences that strongly
activate each neuron.
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3.2 Abstracting the Collected Sentences
Although the collected sentences embody various
linguistic phenomena, it is difficult to induce the
types of covered linguistic phenomena due to the
diversity and redundancy of language. We there-
fore exploit data-mining techniques such as fre-
quent pattern mining to obtain common patterns as
linguistic signatures, which represent abstract prop-
erties of the sentences, for neurons. To help the pat-
tern mining sum up sentences, we augment the col-
lected sentences with linguistic annotations (here,
part-of-speech tags) and metadata in advance.

Single-neuron analysis To understand which
types of phenomena are captured by each neuron,
we first rely on frequent (skip) n-grams obtained by
using sequential pattern mining (Han et al., 2001).6

We used relative frequency to find n-grams specific
to individual neurons. We can also observe the
distribution of the linguistic annotations (e.g., part-
of-speech tags) and metadata which capture traits
of the sentences (e.g., domain). By encoding the
sentences collected for each neuron into vectors
and clustering them, we can find the typical sen-
tence which strongly activates the target neuron.

Cross-neuron analysis We compare the linguis-
tic signatures (e.g., common n-grams and distribu-
tion of metadata) obtained for individual neurons.
We also extract groups of neurons that work to-
gether to capture the same linguistic phenomena
by clustering continous neuron representations in-
duced from the sentences collected for the neurons.

4 Experiments

Taking the pre-trained BERT (base-uncased) (De-
vlin et al., 2019) as an example, we demonstrate
that our methodology can perform similar analysis
to that obtained by existing approaches. We also
provide novel findings on how and what aspects of
language each neuron captures.

4.1 Settings
Data We use six English corpora in various do-
mains to mine neuron-sentence interactions (Ta-
ble 1). We split each corpus into sentences with
a sentence tokenizer7, and normalize repetitions
of symbols8 to a single symbol (e.g., from +++ to

6Although here we use only part-of-speech taggers for
annotation, we can exploit syntactic parsers and FREQT (Asai
et al., 2004) to obtain common syntactic structures.

7nltk sentence tokenizer ver. 3.2.4
8!@#$%^&∗()_+-=[]{};:?,.

+). We then tokenize the resulting sentences with
FastTokenizer,9 and exclude sentences less than
three tokens in length. In addition to metadata as-
sociated with text in the corpora, we annotate the
sentences with part-of-speech (POS) tags using a
POS tagger.10 The statistics of the resulting corpora
are summarized in Table 1.

Models We adopt the pre-trained BERT (base-
uncased, 12 layers, and 768 dimensions of hidden
states)11 as the target for inspection (pre-trained).
To investigate the effect of representation learning
(e.g., masked language modeling and fine-tuning)
on the properties of neurons, we also examine two
models: one with parameters randomly initialized
(random) and the other with parameters fine-tuned
on sentiment classification task (fine-tuned).

To fine-tune BERT, we use the training set in Sen-
timent140 (Go et al., 2009) that annotates the sen-
tences with polarity labels (positive and negative).
We passed the CLS token’s output vector through a
fully-connected layer, and updated the parameters
of pre-trained with a learning rate of 10−5, dropout
rate of 0.3, batch size of 32, and 5 epochs. To ob-
tain the random model, we randomly re-initialized
only the parameters of the pre-trained model other
than the word embedding layer since this paper con-
ducts the analysis of 12-layer encoder’s neurons
excluding the embedding layers.

In experiments, we treat each hidden state as a
neuron to be analyzed (i.e., 12 × 768 neurons in
total in each model). Here we take the average over
the hidden states of each token in the sentence for
quantifying how strongly the neuron responds to
the input. This is to find interesting “sentences”
first, and then to find interesting words and phrases
exploiting well-established pattern mining methods
as described in § 3. Interesting future work will
associate with each token the value of the hidden
states after processing that token, and use the values
to amplify the frequency of n-grams.

To find typical sentences among the sentences
collected for each neuron by clustering the 10K
sentences for each neuron (single-neuron analysis)
and to find a group of neurons that capture simi-
lar linguistic phenomena by clustering continuous
neuron representations induced from the 10K sen-
tences (cross-neuron analysis), we represent each

9https://github.com/huggingface/tokenizers
10https://www.logos.ic.i.u-tokyo.ac.jp/ tsuruoka/lapos
11https://github.com/huggingface/pytorch-pretrained-

BERT
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Noun neuron; 740th hidden state in 3rd layer

words william, john, roBERT, de, edward
word pattern (Sir William), (Sir John)
POS pattern (NNP NNP NNP), (NNP IN NNP), (NNP NNP IN)
ratio of POS noun: 91.7%, verb: 0.9%, adj.: 0.4%
avg. length 3.8
typical sent. The architects of the Square Mile

included RoBERT Findlay, Bruce ...

Verb neuron; 462nd hidden state in 6th layer

words going, got, help, need, get, know
word pattern (going to have), (we have to)
POS pattern (PRP TO VB), (VBP TO VB), (VBG TO VB)
ratio of POS noun: 16.6%, verb: 29.8%, adj.: 1.1%
avg. length 6.4
typical sent. Something was going to have to give,

and it wasn’t going to be him.

Social Media neuron; 200th hidden state in 6th layer

Words lol, im, u, twitter, haha, ur, like, miss
word pattern (I my), (i it), (i i), (I was), (i lol)
POS pattern (NN NN NN), (NN NN), (PRP NN)
ratio of POS noun: 29.8%, verb: 18.3%, adj.: 6.3%
avg. length 7.6
typical sent. nooo I got so many tho That sucks I

finished the boook and now I’m ...

Short sentence neuron; 169th hidden state in 1st layer

words war, party, revolutionary, ibn
word pattern (of the), (the of), (Giovanni Battista)
POS pattern (NNP NNP NNP), (NNP IN NNP), (DT NNP NNP)
ratio of POS noun: 67.5%, verb: 5.5%, adj.: 5.3%
avg. length 3.5
typical sent. The Tale of Loyal Knights and ...

Science neuron; 705th hidden state in 9th layer

words species, family, genus, found, sea
word pattern (is in the), (is of the), (is a the)
POS pattern (IN NNP), (DT IN), (IN DT)
ratio of POS noun: 34.4%, verb: 11.5%, adj.: 7.0%
avg. length 16.7
typical sent. Pachliopta polyphontes is a species of

butterfly from the family Papilionidae...

Positive neuron; 43rd hidden state in 7th layer

words chapter, love, welcome, good, ha
word pattern (Chapter Chapter Chapter), (the of the)
POS pattern (DT JJ NN), (PRP DT NN), (PRP RB JJ)
ratio of POS noun: 42.3%, verb: 7.7%, adj.: 4.2%
avg. length 8.1
typical sent. doing great sweetie, about to take

my dog for a walk in the park (while ...

United States neuron; 203rd hidden state in 7th layer

words freyja, united, states, house, election
word pattern (is going be), (was going be)
POS pattern (DT JJ NN), (PRP DT NN), (PRP RB JJ)
ratio of POS noun: 63.3%, verb: 1.6%, adj.: 2.8%
avg. length 8.0
typical sent. 1912 United States House of

Representatives election in Wyoming ...

Olympic neuron; 69th hidden state in 6th layer

words olympics, summer, games
word pattern (United States in), (United States of)
POS pattern (NNP NNP NNP), (NNP IN NNP)
ratio of POS noun: 36.2%, verb: 7.4%, adj.: 3.6%
avg. length 17.4
typical sent. In the 5000 metres she competed at the

1995 World Championships and the ...

Table 2: Examples of neurons and their linguistic signatures extracted from the top-10K sentences to which they
strongly responded. The neurons were manually named to highlight the linguistic phenomena they capture (§ 4.2).
The “word” and “word/POS pattern” rows show the most frequent patterns in the 10K sentences. The “typical sent.”
is that is closest to the average vector of the collected 10K sentences when they are vectorized (§ 4.1).

sentence as vectors, and take average over the 10K
sentence vectors to obtain neuron representations.
Specifically, we represent each sentence with an av-
erage of 300-dimensional fastText embeddings (Bo-
janowski et al., 2017)12 of the tokens.

4.2 Single-Neuron Analysis

We collected 10K sentences corresponding to each
neuron, and identified the common linguistic phe-
nomena in those sentences by using frequent pat-
tern mining. We found interpretable neurons from
several perspectives. As inspired by Quiroga et al.
(2005) that reports the existence of a “Halle Berry
neuron” in a human brain analysis, we gave dis-
tinguished names to represent the roles of neurons
(e.g., Science neuron is activated by text in science
domain), and showed some of the linguistic phe-

12https://github.com/facebookresearch/fastText

nomena they captured in Table 2.
With the help of the automatic linguistic anno-

tations, we found neurons that responded only to
nouns or verb-rich sentences (Noun or Verb neu-
ron), and neurons that responded only to short sen-
tences (Short-length neuron). Digging deeper into
what kind of text Noun neuron is actually respond-
ing to, we can see another aspect; it responds to
names of people such as “william” and “john.” It
would be very interesting to investigate the relation-
ship between the existence of neurons correspond-
ing to these fundamental linguistic annotations and
the task performance of the model.

By looking at the metadata distribution for the
collected sentences, we also found neurons that
responded to specific domains/concepts. For ex-
ample, 82.2% of the 10K sentences corresponding
to one neuron were taken from the social media
domain in Table 1 (Social Media Neuron), 80.2%
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Figure 1: The average number of sentences that were newly added to top-1000 of the priority queues of each neuron
for every 100K input sentences when we apply our method to the sentences taken from Wikipedia (Table 1).

of the 10K sentences for another neuron consist of
positive sentiment documents13 (Positive Neuron),
and 45.3% of the 10K sentences for a third neuron
are scientific documents14 (Science Neuron). More-
over, digging deeper into the abstracted linguistic
phenomena in Table 2, we can see that the Social
Media neuron actually responds to informal words
such as “lol” and “haha,” and Science neuron has
a role in responding strongly to relatively uncom-
mon words such as “species” and “genus.” It is an
interesting direction to investigate the relationship
between the robustness of the model to the domain
and the existence of these domain-specific neurons.

We can also reveal the topic-specific neurons by
using a list of words that represent particular top-
ics. For example, we have found neurons that are
strongly activated by the words “united states, us,
u.s., u.s.a, america" (United States neuron) and neu-
rons that strongly respond to the words "olympic"
(Olympic neuron). It would be interesting to in-
vestigate the relationship between the existence
of such topic-specific neurons and the knowledge
possessed by the model (Petroni et al., 2019).

As we have demonstrated so far, the proposed
method can find characteristic neurons from var-
ious perspectives in a bottom-up manner. It can
also reveal information about the properties of neu-
rons (i.e., specific text and linguistic phenomena)
that are not covered by the probing task perfor-
mance (i.e., numerical value). By comparing neu-
rons based on the collected sentences and the lin-
guistic signatures (abstracted phenomena), we can
gain insight into the target model components at
any level of granularity, as we will demonstrate in
the next section.

13Sentences of positive class in Sentiment140 dataset.
14Sentences of sci class in 20Newsgroups dataset.

On the frequency in updating top-N sentences
With the datasets in Table 1 and our server with
two Intel® Xeon® E5-2680 v4 2.40-GHz CPUs and
eight NVIDIA Quadro P6000 GPUs, analysis of
BERT by our method took about 10 hours for Step 1,
and about five minutes per neuron for Step 2. The
computation time in Step 1 can be reduced if we
stop feeding sentences to the target model when
the elements of priority cues for neurons become
stable.

To confirm this, we performed the Step 1 using
the 40M sentences in the Wikipedia corpus in Ta-
ble 1 with a single GPU on the same server, and
checked how many sentences were newly added to
the priority queues on a neuron-average basis for
every 100K sentences input. Figure 1 shows that
after feeding about 2M sentences into the model,
96% of the sentences in the priority queues have
already been fixed. This indicates that we can trun-
cate the computation in Step 1 by monitoring the
frequency in updates on the priority cues.

We should mention that priority queues for a few
neurons are frequently updated even after feeding
the model with millions of sentences. This happens
if the neurons capture very specific phenomenon,
such as the United States neuron in Table 2. This
suggests that we should diversify the feeding sen-
tences to include various linguistic phenomena as
possible when we want to reduce the amount of the
corpus fed to the model.

4.3 Cross-Neuron Analysis

Clustering neuron vectors induced from the col-
lected sentences We leverage the collected 10K
sentences for individual neurons to obtain example-
based neuron representations (vectors), and then
cluster the obtained neuron vectors to identify co-
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Figure 2: Clustering neurons in both models. Each
neuron is represented by the average of the sentence
vectors of the corresponding 10K sentences. The color
indicates the layer in which the neuron is located.

operating neurons. Here we verify a hypothesis that
neurons in the same layer are cooperating. First,
we represent each neuron with an average of the
vectors for the corresponding 10K sentences. Next,
we perform k-means clustering of these 12× 768
neuron vectors. The number of clusters is set to
12, which is identical to the number of layers. We
report the accuracy of the clustering using the Hun-
garian algorithm (Kuhn, 1955).

The clustering accuracy is 15.9% for the pre-
trained model compared to 9.6% for the random
model. This result suggests that although the over-
all performance is low, the pre-training made the
neurons in each layer capture similar linguistic phe-
nomena, reconfirming results of the existing studies
that explore each layer in a top-down manner (§ 2)
had a reasonable point of view.

Figure 2 visualizes the neuron vectors using
t-SNE (van der Maaten and Hinton, 2008). The
heatmap shows which layer the neurons (vectors)
belong to. We can see that the pre-trained BERT’s
neurons in the shallower and deeper layers form
different clusters.

Ranking neurons by the skewness of captured
linguistic phenomena By ranking (sorting) the
neurons by the frequency of each linguistic phe-
nomenon and the deviation of their distribution, we
can examine where the neurons that represent each
linguistic phenomenon are distributed in the model.
Here, we take the simplified version of the PTB

part-of-speech tags for nouns, verbs, and adjectives
(Table 1) and binary sentiment polarity as the target
linguistic phenomenon.

For part-of-speech tags, we find neurons that se-
lectively respond to a specific part-of-speech tag.
First, we normalize the frequency of each part of
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Figure 3: Ranking neurons in the models in terms of
how selectively the neuron responds to a specific part-
of-speech. The box-and-whisker diagrams show where
the neurons in each layer are distributed in the ranking.
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Figure 4: Ranking neurons by standard deviation of
sentiment polarity of the collected sentences. The box-
and-whisker diagrams show the distribution of each
layer’s neurons in the ranking.

speech tag in the 10K sentences collected for each
neuron using the frequency obtained from the orig-
inal corpus (Table 1). The maximum relative fre-
quency (percentage) among all the part-of-speech
tags is then used as a measure of how selectively
the neuron responds to a particular part of speech
tag. For sentiment polarity, we find the neurons that
selectively respond to a particular polarity (i.e., pos-
itive and negative). First, we calculate the standard
deviation of the binary sentiment polarity distribu-
tion of the 10K sentences collected for each neuron,
and then use this as a measure of how much the
neuron responds to a particular sentiment.

Figure 3 and 4 show the results of ranking the
neurons in each layer for their selective responsive-
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Figure 5: Ranking neurons in the three models by stan-
dard deviation of sentiment polarity of the collected
sentences.

ness to part-of-speech and sentiment polarity. The
box-and-whisker diagrams show where the neurons
in each layer are distributed in the ranking. From
the figures, we can see that random model results
in a ranking of neurons that is independent of the
layer, while the pre-trained model tends to show
that neurons in deeper layers are more selectively
responsive to both phenomenon.

Interestingly, for the POS tagging task, it has
been reported that neurons in the lower layers are
better able to handle the probing task (Tenney et al.,
2019a). This suggests that, for POS tagging, the
presence of neurons that respond uniformly to part-
of-speech tags has a significant influence on POS

tagging performance. For sentiment polarity, we
also calculated the ranking of the neurons in the
fine-tuned model. Figure 4 shows that the neurons
of the fine-tuned model in the deeper layers be-
come more capable of capturing the sentiment of
the text, while the neurons in the shallower layers
are kept insensitive to the polarity of the text.

Figure 5 depicts the results of ranking the neu-
rons in each model, where the y-axis represents
the standard deviation of sentiment polarity of the
collected sentences for the ranked neurons. We
can see that the models have increased the per-
centage of neurons that show a certain degree of
selective response to specific sentiment polarity by
pre-training and by fine-tuning. It will be interest-
ing to utilize this standard deviation to measure the
distance between the two tasks.

5 Conclusions

This study aims to provide a method of exploratory
model analysis for a neural NLP model at vari-
ous levels of granularity ranging from individual

neurons to the model as a whole, and proposed a
bottom-up methodology for revealing what kind
of concrete linguistic phenomena each neuron of
the model strongly responds to. We take advantage
of large-scale text data and data mining techniques
to extract linguistic signatures (common patterns)
that characterize the individual neurons.

Taking BERT (base-uncased) as an example, we
first showed that specific phrases such as those
related to United States are captured by individual
neurons in BERT (e.g., United States Neuron in
Table 2). By comparing neurons in terms of the
collected sentences they strongly respond to, we
then revealed that neurons in the same layer of
BERT have similar properties. Lastly, in comparing
the corresponding linguistic phenomena with those
of neurons in randomly initialized and fine-tuned
models, we found that neurons in deeper BERT

layers capture more linguistic phenomena specific
to language modeling and sentiment classification.

In the future, we plan to investigate models with
different architectures. For example, our method
can be used to compare the differences of encoder
and decoder neurons in end2end models; there is a
debate in the field of neural machine translation as
to whether modifying the encoder or the decoder
contributes more to domain adaptation (Wang et al.,
2021).

Our method enables us to find non-apriori lin-
guistic phenomena the neurons may capture, so
that it is possible to assist in the construction of a
novel training/evaluation dataset for the probing-
based evaluation methods. In addition, our method
provides information of a different nature, i.e., the
concrete linguistic phenomena to which the internal
representations respond, as opposed to numerical
information such as accuracy of probing tasks.

As mentioned in § 4.2, our method has the po-
tential to perform with less time complexity by
reducing the corpus size fed to the target model in
Step 1. Therefore, we plan to study how to select a
text corpus of such a small size that it reproduces
the analysis results obtained when using a very
large corpus as the one used in this study.
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