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Abstract

In this paper we investigate the recently pro-
posed multi-input RIM for inspectability. This
framework follows an encapsulation paradigm,
where external knowledge sources are en-
coded as largely independent modules, en-
abling transparency for model inspection.

1 Introduction

Deep learning with pre-trained language models is
widely used in a variety of NLP tasks. Such mod-
els are often trained using an end-to-end approach,
which assumes that the structure of the network is
sufficient to capture the inductive bias from ade-
quate data, using a gradient-descent approach.

Deploying language models for applications
such as biomedical text processing, however, poses
two main challenges. First, adequate training data
is often not available due to the cost of annotation
by domain experts and, indeed, the exploratory na-
ture of most biomedical tasks. Second, the biomed-
ical domain uses many terms with a more special-
ized meaning and language models often cannot
demonstrate an understanding of this meaning. For
instance, consider Example 1:

(1) TNFAIP3 is a gene whose expression is
induced by the tumor necrosis fac-
tor.

Example 1 defines TNFAIP3 as a gene in a cop-
ula construction and its expression in a relative
clause. We mask the token gene and ask BioBERT
(Lee et al., 2020) (as a masked language model) to
predict the masked token. The top 5 predictions are
simulation, coordinates, diffusion, heat, and pyra-
mid. The default solution is to continue the pre-
training process of the language models on larger
corpora, which is often prohibitive for users with
limited access to computational resources. More-
over, biomedical terminologies are always growing
and enough textual data might not be available for

new concepts. A cheaper option is to use extant
quality knowledge sources, in form of ontologies,
hierarchies, or specialized gazetteer lists. In the de-
veloping field of knowledge injected models, these
high-quality, general knowledge sources are ex-
pected to work in tandem to address the problem
at hand (Søgaard and Goldberg, 2016; Levy and
Goldberg, 2014; Tian et al., 2020; Bagherzadeh
and Bergler, 2020).

Current knowledge injection models introduce
specialized layers to language models or add new
training objectives. For instance, (Peters et al.,
2019) developed KnowBERT (an extension to
BERT), to inject information from WordNet into
an intermediate layer of BERT, which requires re-
training the BERT model. To leverage medical
concepts from the medical knowledge base ULMS,
(Hao et al., 2020) added an auxiliary prediction task
to the BERT model by training a binary classifier
to predict relations between two concepts.

The chosen knowledge source is an integral part
of these language models making their contribution
difficult to inspect. In precision-oriented applica-
tions, users require to understand why and how a
prediction is made. Inspection of a system helps de-
velopers to detect fallacies in a system and provide
insight for the improvement of the system (Verma
et al., 2020; Amini and Kosseim, 2019) and users
to trust the autonomous system.

Different knowledge sources might include over-
lapping, contradicting, or differently aimed knowl-
edge,1 and the wrong components may hamper
rather than enhance the learning progress (Glas-
machers, 2017). In contrast, if the knowledge
sources can adapt to the domain separately and
only interact sparingly, the resulting model is ex-
pected to be robust (Schölkopf et al., 2012; Goyal
et al., 2019)

(Bagherzadeh and Bergler, 2021b) introduced

1A size feature may encode height, width, or volume, for
instance.
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the multi-input Recurrent Independent Mecha-
nisms (mi-RIM), which comprise a set of inde-
pendent and competitive recurrent modules that
operate individually on different knowledge embed-
dings. They report that adding gazetteer and POS
tag modules consistently improves performance on
a variety of tasks. The mi-RIM architecture injects
knowledge in form of different knowledge sources
as largely independent modules. They suggest that
activation visualizations of each module allow for
inspection but do not further probe whether they
provide enough insight to explain the system pre-
dictions.

This paper offers an in-depth analysis of the con-
tribution of several knowledge sources in several
tasks within the mi-RIM framework. We confirm
that once modules compete, they specialize to fo-
cus on different parts of the input and inspect the
competition patterns during processing as a source
for explanation and user feed-back.

2 Overview of mi-RIM

Recurrent independent mechanisms (RIM), first in-
troduced by (Goyal et al., 2019), is a modular archi-
tecture that models a dynamic system by dividing it
into M recurrent units, all of which operate on the
same input sequence. The units are selective, i.e
they chose to use or ignore their input, and are able
to communicate with one another. The standard
RIM model was adapted to the language domain
and extended by (Bagherzadeh and Bergler, 2021b)
to multi-input RIMs (mi-RIM) to allow different
modules to operate on different inputs. Since we
use mi-RIMs in our case study, a brief overview of
their model is provided in the following.

Input selection Each module Rm augments the
token input xmt to Xm

t = xmt ⊕ 0, where 0 is an
all-zero vector and ⊕ denotes row-level concatena-
tion. Then, using an attention mechanism, unit Rm

selects input:

Am
t = softmax

(
hm
t−1W

query
m (Km)T√
dh

)
Vm (1)

where hmt−1W
query
m is the query, Km = Xm

t W
key
m

is the key, and Vm = XtW
val
m is the value in the

attention mechanism (Vaswani et al., 2017). If the
input xt is considered relevant to the task, the atten-
tion mechanism in Equation 1 assigns more weight
to it (selects it), otherwise more weight will be
assigned to the null input. The softmax values

of Equation 1 determine a ranking for the mod-
ules and a subset St of the k highest ranked units.
Among M units, those with the least attention on
the null input are the active units. The selected
input Am

t determines a temporary hidden state h̃mt
for the active units:

h̃mt = Rm(hmt−1, A
m
t ) m ∈ St (2)

where Rm(hmt−1, A
m
t ) denotes one iteration of up-

dating the recurrent unit Rm based on previous
state hmt−1 and current input Am

t . The hidden states
of the inactive units Rm (m /∈ St) remain un-
changed:

hmt = hmt−1 m /∈ St (3)

Communication To obtain the actual hidden
states hmt , the active units communicate using an
attention mechanism:

hm
t = softmax

(
Qt,m(Kt,:)

T

√
dh

)
Vt,: + h̃m

t m ∈ St (4)

where
Qt,m = h̃m

t W̃
query
m

Kt,: is the row-level concatenation of all Kt,m

(m = 1, . . . ,M ) defined as:

Kt,m = h̃m
t W̃

key
m

and Vt,: is the row-level concatenation of all Vt,m
(m = 1, . . . ,M ) defined as:

Vt,m = h̃m
t W̃

val
m

Both the key Kt,: and the value Vt,: depend on
the temporary hidden states of all units, therefore
hmt in Equation 4 is determined by attending to all
units.

As pointed out by (Wiegreffe and Pinter, 2019),
the attention-based models can provide explanation
when the attention is applied to individual elements
in an input sequence, rather than contextualized
ones. Similarly, input selection attention for the
mi-RIM architecture also operates on raw input en-
coding. When an input is considered to be relevant
to the task, the corresponding module is allowed
to be active and to be updated with its additional,
specialized input. The activation patterns for each
module are traced to inspect what elements in the
input sequence were used.
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3 Tasks

This paper focuses on the biomedical domain for
two reasons. First, effective knowledge compo-
nents for many biomedical tasks are well-defined
and high quality knowledge sources are freely avail-
able. Second, model inspection is essential in the
biomedical domain, particularly for health related
applications. The following four tasks are consid-
ered here:

BC7-3 or BioCreative VII Task 3 is a sequence
labelling task for detecting spans of drug men-
tions in tweets.2 Example 2 shows a tweet
with one mention of a drug (Zantac), and Ex-
ample 3 is a tweet with no drug mention. BC7-
3 is evaluated by F1 score.

(2) Sprite and Zantac. was not the best
idea.

(3) The meds have arrived!!

BC2-1a or BioCreative II Task 1a concerns ex-
traction of gene mentions in biomedical texts
(Smith et al., 2008). Example 4 contains a
gene mention (alpha fetoprotein) and Exam-
ple 5 does not contain any gene mentions. The
performance is evaluated by F1 score.

(4) False positive amniotic fluid alpha
fetoprotein levels resulting from
contamination with fetal blood

(5) Teratological study of etoperidone in the
rat and rabbit.

SM21-1a concerns adverse drug event classifica-
tion of tweets (Klein et al., 2021). Examples 6
and 7 are instances of tweets with and without
an adverse drug event respectively. The task
is evaluate by F1 score.

(6) worst was the psychotic episode when
starting #paxil

(7) need nicotine

SM21-6 is a three-way classification task of tweets
containing CoVID symptom mentions (Klein
et al., 2021). In self-report tweets (Exam-
ple 8), posters mention a Covid symptom that
they have experienced. Nonpersonal-reports

2https://biocreative.bioinformatics.
udel.edu/tasks/biocreative-vii/track-3/

however report a symptom for someone else
(Example 9), and News-mentions are symp-
tom reports that are intended to raise aware-
ness (Example 10). This task is evaluated by
the micro-F1 score (µF1) of the self-reports
and Nonpersonal-reports classes.

(8) I am still breathless upon exertion, but
my shortness of breath and cough
that used to happen all the time

(9) my mom was denied a coronavirus test
even tho she has a high fever and
corona symptoms.

(10) Many of these patients with post-
#COVID19 fatigue will have an ab-
normal tilt table test and a form of
#dysautonomia.

Note that since the gold labels for BC7-3, SM21-
1a, and SM21-6 have not been disclosed, we report
the result on a hold out set (20% of the training
data).

4 Knowledge sources

For reproducibility, we use off the shelf knowledge
sources that are available from standard NLP and
deep learning environments, or can be easily ac-
cessed from online ontological repositories.

Morphology Drug or gene names often have a
specific morphology, favoring certain prefixes, suf-
fixes, etc. The suffix -statin, for instance, is ob-
served in drug names of this type, including tor-
vastatin, lovastatin, and pravastatin. Such morpho-
logical information3 can be used to detect possible
mentions of drugs or genes that have not been ob-
served in training data, or those that are not present
in drug or gene lists.

Word embeddings BioBERT (Lee et al., 2020)
word embeddings provide a meaning representation
based on co-occurrence statistics.

POS Part-of-speech tags are the most widely
used linguistic feature and are available from many
standard NLP environments. POS tags provide use-
ful information such as types of pronouns and tense
for verbs, allimportant clues for sequence labeling
and text classification.

3Note that the subtoken input for BERT models can detect
these regularities.

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-3/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-3/
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Drug DrugBank includes commercial drug
names as well as the scientific names of their active
ingredients (Wishart et al., 2018).4

Anatomy Body part mentions are important ev-
idence for detection of health experience men-
tions, in particular adverse drug reactions or disease
symptoms. Relevant anatomy terms are extracted
from sub-tree A of MeSH (Lipscomb, 2000) into a
gazetteer list.

Disease Disease mentions are important evi-
dence for adverse drug event classification and
self-reports of disease symptoms. A gazetteer was
compiled from subtree C in MeSH which includes
terms for infections, wounds, injuries, pain, etc..

Gene To identify mentions of genes, we compile
a gazetteer list from the NCBI Gene database. 5

5 Implementation

Preprocessing We preprocess the data using a
GATE pipeline (Cunningham et al., 2002) and use
the ANNIE tweet tokenizer as well as the hashtag
tokenizer for BC7-3, SM21-6, and SM21-1a data,
and the PennBio tokenzier for BC2-1a data. For
tweet tasks, we remove URLs and user mentions.

Modules Each module m comprises an embed-
der Em (for encoding a knowledge source) and a
recurrent unit Rm. For the token at position t, Em

emits its knowledge representation xmt ∈ Rdmin and
Xm

t = xmt ⊕ 0 is used as input to the recurrent
layer Rm.

Morph. Following (Kim et al., 2016) we use
a character-level Convolutional Neural Net-
work to obtain a morphological representa-
tion for each token. We use multiple convo-
lution filters Fl with different lengths of l ∈
{2, 3, 4, 5}. The resulting character-based rep-
resentations are in a 100-dimensional space.

Word emb. We use the last layer of BioBERT
(Lee et al., 2020) to obtain word embeddings.
The embeddings are then used as input to a
LSTM.

POS Following (Bagherzadeh and Bergler,
2021a), we pre-train POS tags using

4https://go.drugbank.com/drugs/DB00863
identifies Zantac (Example 2) as a drug mention

5alpha fetoprotein in Example 4 is identified by https:
//www.ncbi.nlm.nih.gov/gene/174

Word2Vec (Mikolov et al., 2013) to initialize
an embedding layer.

Gazetteer modules Each gazetteer list is embed-
ded by two trainable vectors, one correspond-
ing to a match against the gazetteer, and an-
other one for a mismatch. The gazetteer em-
bedings are then used as input to simple RNN
units rather than LSTMs.

All NN components are implemented using Py-
Torch (Paszke et al., 2017), using cross-entropy to
calculate loss and the Adam optimizer (Kingma
and Ba, 2015).

6 Experiments

We report three sets of experiments. First, we in-
ject different knowledge sources using the mi-RIM
model, and evaluate their effectiveness in terms of
precision (P), recall (R), and F1 scores. Second,
we inspect the activity profiles of the modules for
several samples. Third, we provide a quantitative
analysis on whether module activity can be used
to provide insight into model’s predictions using
Total Variation Distance (TVD) (Jain and Wallace,
2019) as a measure of change between output dis-
tributions.

6.1 Performance

We investigate whether each knowledge source can
contribute to each of the different tasks and how
different knowledge sources cooperate or whether
redundancy or contradicting values decrease per-
formance.

Carefully selected sources Table 1 reports per-
formance when using the four modules Word Emb.,
Morph, Drug, and POS on the drug mention de-
tection task BC7-3. Three different competition
settings are reported, k ∈ {1, 2, 3}. Greater k val-
ues are not reported, because performance drops.

Modules k P R F1
Word Emb. 1 .60 .69 .64
System BC7-3: 3 .67 .68 .67

Word Emb., Morph, Drug, POS 2 .69 .70 .70
1 .70 .63 .66

Table 1: 4 module mi-RIM system on BC7-3

Table 2 reports performance when using the four
modules Word Emb., Morph, Gene, and POS on
the gene mention detection task BC2-1a. Both

https://go.drugbank.com/drugs/DB00863
https://www.ncbi.nlm.nih.gov/gene/174
https://www.ncbi.nlm.nih.gov/gene/174


451

BioCreative mention detection tasks show best per-
formance when only two modules can be active at
a time.

Modules k P R F1
Word Emb. 1 .85 .84 .84
System BC2-1a: 3 .86 .86 .86

Word Emb., Morph, Gene, POS 2 .89 .85 .87
1 .82 .89 .85

SOTA (Lee et al., 2020) – .85 .83 .84

Table 2: 4 module mi-RIM system on BC2-1a

Table 3 shows a similar behaviour for five mod-
ules on the adverse drug reaction classification task
SM21-1a.

Modules k P R F1
Word Emb. 1 .56 .63 .58
System SM21-1a: 3 .57 .67 .62

Word Emb., Drug, 2 .59 .70 .64
Disease, Anatomy, POS 1 .53 .74 .63

Table 3: 5 module mi-RIM system on SM21-1a

Modules k µP µR µF1
Word Emb. 1 92 .93 .92
System SM21-6: 3 .94 .95 .94

Word Emb., Disease, 2 .95 .95 .95
Anatomy, POS 1 .92 .96 .94

Table 4: 4 module mi-RIM system on SM21-6

The external knowledge sources consistently
improve performance across the tasks. Peak
performance (F1) is reached for k = 2.

This forms a proof of concept that external
knowledge sources can be harnessed in fixed con-
figurations tailored to specific tasks. This has been
shown in different architectures as well.

Some redundant sources We claim that the mi-
RIM architecture can combine redundant and pos-
sibly contradicting knowledge sources with no ill
effects and offer as justification a seven module
system combining all the knowledge sources intro-
duced here and comparing its performance on all
the tasks.

Table 5 shows that in fact, the overabundance of
these resources slightly lowers performance some-
times (SM21-6), but sometimes improves perfor-
mance further. We consider this a strong endorse-
ment of the claim.

6.2 Visualization of activation patterns
When k < M , only a subset of modules is allowed
to contribute and the modules enter into compe-

BC7-3 BC2-1a SM21-1a SM21-6
k P R F1 P R F1 P R F1 P R µF1
3 .69 .68 .68 .87 .86 .86 .59 .66 .63 .93 .93 .93
2 .70 .70 .70 .88 .87 .87 .62 .69 .66 .94 .95 .94
1 .69 .68 .67 .83 .88 .85 .55 .73 .64 .91 .94 .93

Table 5: Seven module system (Word Emb., Morph,
POS, Drug, Disease, Anatomy, Gene) on all tasks

tition mode. As claimed by (Goyal et al., 2019),
competition for activity makes the modules to focus
on specific parts of the input. We probe activation
patterns for varying k.

Figures 1–9 show the activation patterns for the
four tasks. In each figure’s caption, the input is
given and the gold spans are indicated as underlined
text. Moreover, the correctly tagged tokens are
indicated by solid boxes , and the false positives
by dashed boxes .

Sequence labeling tasks Figure 1 is an instance
of a true-positive classification for BC7-3 (drug
mention span detection). When k = 3, the Drug
module is only active when there is a match with
the Drug gazetteer; Fentanyl. Other modules how-
ever are always active which means that they are
not focusing on a specific part of the input. On
the other hand, when k = 2 the Morph module
is active only for the drug mention, which means
that the competition has made the module more fo-
cused. For this example, activation patterns of the
seven module system for k = 2 are identical. Note
that for k = 1, only the Drug module is active for
the mention of Fentanyl, indicating that the model
prioritizes the high quality drug gazetteer over the
general Morph module when a choice has to be
made.

Morph.

k
=

3Word Emb.
Drug
POS

Morph.

k
=

2Word Emb.
Drug
POS

Morph.

k
=

1Word Emb.
Drug
POS

Fe
nt
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w
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G
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pa
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Figure 1: True positive case for BC7-3: Fentanyl is
where it’s at. Goodbye pain
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Figure 2: False positive case for BC7-3: Seriously, does
anyone watch #Americanidol anymore

Figure 2, on the other hand, shows a false-
positive case for BC7-3. Americanidol has been
identified as a drug mention. When k < 3, the
Morph module is active only for the supposed
drug mention, suggesting the cause of the mis-
classification: the token Americanidol is a good
candidate for a drug name based on its morpho-
logical structure: it is capitalized, a composite
name, and ends in ol. Inspection of such cases
using the activation patterns provides valuable
insight for users and developers, and allows
users to give nuanced feedback to developers
capitalizing on their expertise. For instance, expert
users might suggest enhancing the tokenizer to
split hashtags, for instance, #Americanidol into
[#, American, idol] instead of [#, Americanidol].
For this example, activation patterns of the seven
module system for k = 2 are identical.
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Figure 3: True positive case for BC7-3: Just get on
birth control and use protection

Figure 3 shows another example of a correctly
tagged drug. The term birth control is not recog-
nized by the Drug gazetteer, therefore, the Drug

module is never active. In competition mode (k = 1
or k = 2), the Morph module is also never active,
however, the Word Emb. module at k = 1 is active
for the span of birth control, and contributes its
input.
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Figure 4: True positive case for BC7-3, 7-modules sys-
tem: Just get on birth control and use protection

This example demonstrates the advantage of re-
dundant capability in a highly competitive context
(k = 1) and showcases the overgeneralization pro-
cess for the deep modules Morph and Word Emb. in
the context of redundancy. If a knowledge source
(in this case a gazetteer list) has limited expertise,
other modules can compensate (capability) but a
danger of synchronization exists for fully redun-
dant modes. Figure 4 demonstrates that an abun-
dance of modules can lead to more specialized
patterns.
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Figure 5: True positive and false positive cases for BC2-
1a: Decrease of the lysozyme activity coincided with the
improvement of the bacterial meningitis.

Figure 5 shows the activation patterns for a sam-
ple from BC2-1a. We see a behaviour similar to
those for the drug span task; once modules are
in competition, they are more focused on specific
parts of the input. An interesting observation here
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is the difference between predictions when k has
different values. When k = 2 and k = 3, the
model correctly tags only lysozyme as a gene men-
tion. However, when k = 1, the model makes
a false positive prediction for meningitis as well.
Note that when k = 1, the Morph module is active
for the token meningitis. In this case, the Morph
module has won the competition and has forced
the Word Emb. module to be inactive, which is
the result of intense competition between modules.
This however is not the case when k = 2 and both
Morph and Word Emb. modules are active and
contribute to a correct prediction.

Document-level tasks Figure 6 shows a true-
positive case from SM21-1a. Similar to previous
patterns, the more the modules are in competition
(smaller k), the more their activities are sparse and
focused. The Anatomy module is active for the
body parts mentions tendons and hands, and the
Disease module is active for pain and ruptured.
Note that the Word Emb. module is inactive for
tokens that are matched with gazetteer lists. On
the other hand, the Word Emb. module is active for
phrases/tokens such as barely usable and damned,
as other evidence for the adverse event classifica-
tion. The seven modules system again leads to a
more specialized pattern in Figure 7.
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Figure 6: True positive case for SM21-1a: tendons in
lots of pain, almost ruptured & hands barely usable.
damned cipro

Figure 8 on the other hand shows a false-positive
case for SM21-1a (adverse drug effect mentions).
Note that the tweet is an example of a text with
figurative language. When k = 1, the Word Emb.
module is active for the phrases the marbles made
my and look pink. It seems the activity on look
pink has mislead the model to make a false-positive
prediction.

The seven module system shows unfortunately
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Figure 7: True positive case for SM21-1a, 7 module
system: tendons in lots of pain, almost ruptured &
hands barely usable. damned cipro
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Figure 8: False positive case for SM21-1a: with adder-
all in my veins you came. cause the marbles made my
cheecks look pink.

that the abundance of modules is not sufficient to
rectify the error, even though the module activa-
tions change in certain parts: Word Emb. relieves
POS for adderall and Morph relieves Word Emb.
for marbles.
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Figure 9: True positive case for SM21-6: I had Covid
in march & am still getting whacked with strange brain
fog, fatigue and vertigo

Finally, an example of a true-positive prediction
for SM21-6 (self-reports of CoVID symptoms) is
provided in Figure 9. There are three symptom
mentions such as brain fog, fatigue, and vertigo,
and the Disease module is active for the latter two.
Interestingly, when k = 1, the Word Emb. mod-
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ule is active for the token Covid and has won the
competition against the Disease module. Further
analysis of the activation patterns revealed that at
77% of the time, the Disease module is active only
when a token corresponds to a symptom. However,
when the actual name of the disease is mentioned,
the Word Emb. module is active. We surmise, due
to the frequent occurrence of terms such as Covid
and Corona in the training set, the Word Emb. mod-
ule has learned to focus on such tokens, and the
Disease module covers the more lexically-diverse
symptom mentions. More module choice in the
seven modules system for k = 2 leads to three
changes: Morph is active for Covid, whacked, and
fatigue, relieving Word Emb. at these time points.

As argued by (Wiegreffe and Pinter, 2019) and
(Serrano and Smith, 2019) the attention mechanism
fails to provide explanation, since it operates on
the contextualized representations. This, however
is not the case for the models in the mi-RIM ar-
chitecture since module activity is the result of the
input selection mechanism, assuring that when a
module is not active at a particular time-step, it is
guaranteed that its input is not used.

6.3 Quantitative analysis of module activity

(Jain and Wallace, 2019) argue that if attention
weights provide insight into why a prediction is
made, removing a token accorded with a high atten-
tion weight has to significantly change the output
distribution. In other words, the question is had we
not attended to an element, would we have the same
output? A yes to this question means there is no
association between the input with high attention
weight and the prediction. A no to this question
however shows that the input is crucial for mak-
ing that prediction. Thus (Jain and Wallace, 2019)
perform leave-one-out experiments and calculate
the Total Variation Distance (TVD) as a measure
of change between output distributions, which is
defined as:

TVD(ŷ(X), ŷ(X−t)) =

1

2

|K|∑
i=1

|ŷ(X)i − ŷ(X−t)i| (5)

where |K| is the number of classes, ŷ(X) is the
output distribution when all tokens are in the input,
and ŷ(X−t) is the output distribution when token
at position t is removed from the input. As an
example, suppose the initial output distribution for

a 3-class problem is:

ŷ(X)1 = 0.7 , ŷ(X)2 = 0.1 , ŷ(X)3 = 0.2

and the secondary distribution is:

ŷ(X−t)1 = 0.1 , ŷ(X−t)2 = 0.8 , ŷ(X−t)3 = 0.1

then, the TVD value is 0.7 which is a significant
variation in the distribution of the output.

When modules are in competition, they are only
active for specific parts of the input that are relevant
to the task, and this activity pattern can be inspected
to provide some explanation for behavior of the
model. To support our claim, we use a similar set
of leave-one-out experiments as (Jain and Wallace,
2019). Suppose a module is active at time-step
t. We manually deactivate the module only for
this time-step, and then measure the TVD value.
As an example, consider Figure 6, when k = 2.
The module Disease is active for tokens pain and
ruptured. We deactivate the module only at those
two time-steps (the rest of the modules keep their
activity state) as two leave-one-out cases. Note that
at time-step t, the inactive modules simply retain
their previous hidden states (see Equation 3).

As a consequence, performance of the model is
expected to be affected due to changes in output
distribution. The performance change can also be
used as a measure of the importance of module
activity. If the activity of a module is important
towards a prediction, deactivating it has to change
the performance. When performing leave-one-out
experiments, we report these changes by ∆F1. Ta-
ble 6-8 report the average TVD values,6 as well as
corresponding ∆F1 values.

Morph Word Emb. Drug POS
TVD ∆F1 TVD ∆F1 TVD ∆F1 TVD ∆F1

k

3 .12 -.02 .08 -.02 .14 -.03 .01 .00
2 .36 -.16 .16 -.06 .30 -.21 .08 -.01
1 .42 -.23 .20 -.11 .54 -.32 .14 -.03

Table 6: Mean TVD and ∆F1 on BC7-3

We can assess the overall value of a module for
a task by the greatest difference in TVD or ∆F1
values. In Table 6, Drug outranks Morph followed
by Word Emb. and POS. In fact, POS appears to
be a marginal module of no great impact on the
analyzed examples.

6averaged over all leave-one-out experiments
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Morph. Word Emb. Gene POS
TVD ∆F1 TVD ∆F1 TVD ∆F1 TVD ∆F1

k

3 .18 -.05 .10 -.02 .12 -.02 .06 .00
2 .48 -.23 .22 -.09 .26 -.13 .12 -.04
1 .62 -.41 .32 -.18 .54 -33 .16 -.05

Table 7: Mean TVD and ∆F1 on BC2-1a

For Table 7, Morph outranks Drug, outlin-
ing that the results are specific to the tasks and data.

For document-level tasks, changes in the output
distribution observed are smaller due to the fact
that users often report several symptoms for Covid,
and rejecting one of the symptoms as input to the
modules does not prevent the model from correct
classification, since other evidence still exist. Still,
we note that Table 8 for SM21-6 (self-reports of
Covid symptoms) shows that for this task Anatomy
outranks Word Emb. followed by Disease and fi-
nally POS, but that the differences are very small.

Word Emb. Disease Anatomy POS
TVD ∆F1 TVD ∆F1 TVD ∆F1 TVD ∆F1

k

3 .08 -.01 .04 .00 .06 .00 .02 .00
2 .12 -.02 .10 -.02 .14 -.03 .08 -.01
1 .18 -.05 .20 -.07 -.28 -.12 .18 -.05

Table 8: Mean TVD and ∆F1 on SM21-6

The different behaviour of the Anatomy module
on SM21-a (adverse drug effects) is interesting;
deactivation has a greater effect since mentions of
body parts are very frequent in reports of adverse
drug effects.

Word Emb. Drug Disease Anatomy POS
TVD ∆F1 TVD ∆F1 TVD ∆F1 TVD ∆F1 TVD ∆F1

k

3 .08 -.02 .06 -.01 .06 -.01 .06 .00 .00 .00
2 .12 -.03 .18 -.04 .10 -.03 .09 -.02 .04 .00
1 .22 -.11 .42 -.24 .22 -.10 .16 -.05 .06 -.01

Table 9: Mean TVD and ∆F1 on SM21-1a

7 Conclusion

We have demonstrated the potential of modules
for visualizations for inspection: mean TVD val-
ues and ∆F1 provide insight into general module
importance for tasks, module activation patterns
provide some insight into system behavior for indi-
vidual samples, such as error cases. With the seven
module system, we demonstrate that ineffective
knowledge sources can be combined without harm
in the mi-RIM architecture.

The experiments suggest that the encapsulation
approach for leveraging knowledge sources in the
mi-RIM architecture is promising but still has to
be applied to more modules to gauge complexity
implications.
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