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Abstract
Pre-trained language models (PLMs) like
BERT are being used for almost all language-
related tasks, but interpreting their behavior
still remains a significant challenge and
many important questions remain largely
unanswered. In this work, we re-purpose a
sentence editing dataset, where faithful high-
quality human rationales can be automatically
extracted and compared with extracted model
rationales, as a new testbed for interpretability.
This enables us to conduct a systematic inves-
tigation on an array of questions regarding
PLMs’ interpretability, including the role
of pre-training procedure, comparison of
rationale extraction methods, and different
layers in the PLM. The investigation generates
new insights, for example, contrary to the
common understanding, we find that attention
weights correlate well with human rationales
and work better than gradient-based saliency
in extracting model rationales. Both the
dataset and code are available at https:
//github.com/samuelstevens/
sentence-editing-interpretability
to facilitate future interpretability research.

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Beltagy et al., 2019) are
pervasively used in language-related tasks, but
interpreting their predictions is notoriously diffi-
cult because of their parameters’ complex inter-
dependencies. Given a specific prediction, we want
to know why a model made that decision, both to
further improve performance and to use the model
in high-stakes scenarios such as healthcare or bank
loan approvals where interpretability is important.
This has motivated efforts in extracting model ex-
planations, typically in the form of rationales, i.e.,
subsets of the original input that support a decision
(Zaidan et al., 2007). Attention heatmaps (Xu et al.,
2015) and gradient-based saliency maps (Simonyan
et al., 2014) are common extraction methods.

The algorithm <del>descripted</del>
<ins>described</ins> in the previous
sections has several advantages.

The algorithm descripted→described in the previous sec-
tions has several advantages.

However, we <del>must note that
we </del>still have no means of
deciding which documents out of _MATH_
deserve to be in _MATH_ and _MATH_,
respectively.

However, we must note that we still have no means of
deciding which documents out of _MATH_ deserve to be
in _MATH_ and _MATH_, respectively.

Figure 1: Two “need edit” examples from AESW in the
original data format and a human-readable format. The
first example (a) has a spelling error “descripted” and
the second (b) is edited for concision.

There have been efforts on developing datasets
for interpretability research, for example, the re-
cent ERASER benchmark (DeYoung et al., 2020).
However, the majority of ERASER tasks use hu-
man rationales highlighted by a different annotator
after the original labeling process. Such rationales
are not necessarily faithful; a rationale highlighted
by the second annotator may not have been ac-
tually used by the first annotator while labeling.
Manual rationale labeling is also difficult and time-
consuming; of the six datasets in the ERASER
benchmark, only one has more than 200 examples.

Our first contribution is the realization that
AESW (Automatic Evaluation of Scientific Writ-
ing; Daudaravicius et al., 2016), a sentence editing
dataset, contains thousands of faithful human ra-
tionales that can be automatically re-purposed for
interpretability research. See Figure 1 for exam-
ples. This provides a new, large-scale dataset with
truly faithful human rationales for interpretability
questions surrounding model rationales.

Our second contribution is investigating multi-
ple factors in PLM rationale plausibility. More
plausible rationales are valuable in human-in-the-

https://github.com/samuelstevens/sentence-editing-interpretability
https://github.com/samuelstevens/sentence-editing-interpretability
https://github.com/samuelstevens/sentence-editing-interpretability
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loop systems where humans use model rationales
to make a final decision. We compare (1) pre-
training procedures, (2) attention weight- and in-
put gradient-based methods of extracting model
rationales, (3) correlation between model rationale
plausibility and model confidence, and (4) differ-
ences in transformer layers. While previous work
(Jain and Wallace, 2019; Serrano and Smith, 2019)
has shown that attention weights are not always
faithful, we find that they correlate with human
rationales better than gradient-based methods.

2 Related Work

Human rationales (as defined by Zaidan et al.,
2007) are subsets of input highlighted by human
annotators as evidence to support a decision. The
same annotator labeling an example might also
highlight their rationale (Khashabi et al., 2018;
Thorne et al., 2018). In other cases, rationales are
collected for an existing dataset by different anno-
tators (Zaidan et al., 2008; Camburu et al., 2018;
Rajani et al., 2019). As previously stated, such
rationales may not be faithful. Rationale length can
vary from sub-sentence spans (Talmor et al., 2019)
to multiple sentences (Lehman et al., 2019).

Model rationales can be produced as an explicit
training objective (Zaidan et al., 2008) or extracted
as a post-hoc explanation. Post-hoc methods typi-
cally assign token-level importance scores: atten-
tion weights are often used in attention-based mod-
els (Bahdanau et al., 2016), gradient-based expla-
nations are typical for differentiable models (Denil
et al., 2015; Shrikumar et al., 2017), and LIME is a
model-agnostic method (Ribeiro et al., 2016). We
follow work using BERT’s attention (Clark et al.,
2019; Kovaleva et al., 2019) to extract rationales.

A model rationale is evaluated on faithfulness
(if it is actually used to make a decision) and
plausibility (if it is easily understood by humans).
Faithfulness can be measured by perturbing inputs
marked as evidence and measuring change in out-
puts (Jain and Wallace, 2019; Serrano and Smith,
2019). Plausibility can be measured through user
studies, wherein users are given a model rationale
and asked either to predict the model’s decision
(Kim et al., 2016) or to rate rationale understand-
ability (Nguyen, 2018; Ehsan et al., 2018, 2019;
Strout et al., 2019). Rationale plausibility can
also be measured by similarity to human rationales
(DeYoung et al., 2020), but this requires faithful
human rationales. We use similarity to evaluate

rationale plausibility because we gather faithful hu-
man rationales from sentence editing annotations.

3 Proposed Task

We propose re-purposing the AESW classifica-
tion task for measuring model interpretability. We
gather examples from AESW from which we can
automatically extract faithful and sufficient human
rationales, and then use said rationales to investi-
gate factors in PLM rationale plausibility, specif-
ically BERT (Devlin et al., 2019) and its variants.
It is worth noting that our rationale dataset can be
used for other interpretability topics such as train-
ing with rationales or evaluating rationale faithful-
ness; we will focus on plausibility considering the
scope of this paper.

3.1 Human Rationales

Human rationales are substrings used as evidence
for a decision (Zaidan et al., 2007). Faithful and
sufficient (enough evidence to justify a decision)
human rationales can be used as gold labels for
evaluating model rationale plausibility.

The original AESW task is to predict if a sen-
tence from a scientific paper needs editing. Daudar-
avicius et al. extract spans of a sentence before and
after professional editing1 as deleted (<del>) or
inserted (<ins>) and provide 1.1M training, 140K
validation and 140K testing examples. Sentences
without changes are assumed to not require editing.

We exploit the data format to automatically
extract faithful and sufficient human rationales.
Delete text (text between <del> tags) is always
a faithful rationale (such text is a source of the er-
ror). For edits with arbitrary <del> text alone
and <ins> text, the <del> alone is not always a
sufficient rationale to justify “need edit”. Consider
a sentence where a verb is incorrectly conjugated
and replaced with the correctly conjugated verb.
The incorrectly conjugated verb is not sufficient
to decide that the sentence needs editing; the sur-
rounding context is required. To find edits where
<del> text is always a sufficient rationale, we use
two criteria:

1. A spelling error is corrected. (spelling error)
2. Text is only deleted, not added. (deleted text)

Spelling errors are always a sufficient rationale
to justify editing a sentence (see Figure 1a). In
edits with no insertions, removing the <del> text
leads to an error-free sentence, so the <del> text

1Native English speaking editors working at VTeX.
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is sufficient explanation for editing (see Figure 1b).
These criteria lead to both a simple, lexical task
(spelling error) and a more challenging semantic
task (deleted text) and constitute a wider range of
challenges for future interpretability research. We
extract faithful and sufficient human rationales for
1,321 spelling error edits and 6,741 deleted text
edits from the validation set of AESW.2

3.2 Model Rationales

Model rationales are substrings provided by a
model as evidence for a decision. Given a model,
an example xi and a prediction yi, we extract three
model rationales.

First, we use attention maps (Xu et al., 2015;
Kovaleva et al., 2019) to rank word relevance. We
measure the total attention weight from BERT’s
final layer’s initial [CLS] token to each token tj
across H attention heads. Then we add those totals
together for each token tj in a word w:

score(w) =
∑
tj∈w

H∑
h=1

Attnhj
([CLS]→ tj) . (1)

Second, we use gradient-based saliency (specifi-
cally gradient×input; Denil et al., 2015; Shrikumar
et al., 2017) to rank word relevance. We calculate a
saliency score for each token tj in xi. First, change
in model output with respect to tj’s input embed-
ding ∇e(tj)fyi(xi) captures the sensitivity to token
t. The dot product with e(tj) is then a scalar mea-
sure of each token’s marginal impact on the model
prediction (Han et al., 2020). Finally, we again
compute a word-level score by summing over each
token tj in word w:

score(w) =
∑
tj∈w
∇e(tj)fyi(xi) · e(tj) (2)

In contrast to attention, gradient×input faithfully
measures the marginal effect of each input token
on the prediction (Bastings and Filippova, 2020).
Finally, we extract a third set of rankings using
gradient×input’s magnitude to rank words.

3.3 Evaluation

We evaluate extracted rationale plausibility using
similarity to human rationales (DeYoung et al.,

2More details on extracting human rationales, as well as
additional examples, can be found in Appendix C

2020). We use the continuous word scores gener-
ated in the previous section to rank relevance, then
use mean reciprocal rank as an evaluation metric.3

4 Experiments

To demonstrate the utility of the AESW task for
interpretability research, we present four experi-
ments, each with the goal of understanding factors
in PLM rationale plausibility.

For our experiments, we add a linear layer and
sigmoid activation function on top of the [CLS]
token representation, fine-tune BERT-base end-to-
end on the AESW training set using the original
training objective (classify a sentence as “need edit”
or “no edit”) and use validation loss to tune hyper-
parameters. We do not add any interpretability or
rationale-related objectives. The classification F1
for the models on spelling error and deleted text
edits is 82.0 and 74.0, respectively.4 We extract
and evaluate model rationales on all spelling error
and deleted text edits, even edits that a model does
not correctly predict as “need edit.”

Does pre-training procedure affect rationale
plausibility? We are interested in how pre-
training affects plausibility after fine-tuning (to the
best of our knowledge, this is a previously unex-
plored topic). We compare BERT and two variants,
RoBERTa (Liu et al., 2019) and SciBERT (Belt-
agy et al., 2019). These models have the same
architecture but differ in pre-training: RoBERTa is
pre-trained for 5x longer with 10x more data than
BERT, and SciBERT is pre-trained on a corpus of
academic papers. We extract model rationales us-
ing attention weights and evaluate their plausibility.

As seen in Figure 2, RoBERTa and BERT gen-
erate nearly equally plausible rationales despite
differences in pre-training corpus size. We hypoth-
esize that SciBERT generates less plausible ratio-
nales because it encodes “need edit” representa-
tions in earlier layers (rather than in the final layer),
then attends to [SEP] as a no-op in later layers, as
proposed in Clark et al. (2019) and Kobayashi et al.
(2020) and further confirmed in the subsequent ex-
periments.

3We performed our analyses with additional, similar met-
rics; our main observations remain consistent independent of
the choice of metric. Appendix D contains additional details
and complete results.

4Appendix B contains more details on fine-tuning proce-
dure and results.



438

BERT RoBERTa SciBERT
0.0

0.2

0.4

0.6

0.8

M
ea

n 
Re

cip
ro

ca
l R

an
k

Pre-Training Scheme

Attention Grad.
(dir.)

Grad.
(mag.)

Extracting Method
Spelling Errors
Deleted Text

Figure 2: Left: BERT, RoBERTa and SciBERT’s at-
tention weight rationale plausibility. Right: BERT’s
attention weight, gradient×input and |gradient× input|
rationale plausibility (see Section 3.2).

Do attention weights or input gradients pro-
duce better rationales? In contrast to attention
weights, gradient×input scores are naturally faith-
ful with respect to individual feature importance
(Jain and Wallace, 2019; Bastings and Filippova,
2020). However, attention weights can represent
word relevance in context, potentially leading to
more plausible rationales. We extract and evalu-
ate rationales using attention weights and the two
gradient×input methods described in Section 3.2.

Figure 2 shows that attention-based rationales
are more plausible and that the difference is more
pronounced on deleted text edits. Using |gradient×
input| (right-most) also shows improvements over
directional gradient×input (middle-right), in con-
trast to Han et al. (2020).

Are plausibility and confidence correlated?
We are curious if BERT is more confident in its
classification decisions when it attends to the origi-
nal evidence used by editors. We quantify BERT’s
classification confidence by treating the sigmoid
activation function’s value as the probability of a
“need edit” decision. We only consider examples
that BERT correctly classifies as “need edit” and
calculate BERT’s mean confidence. We find that
when human rationales are BERT’s most attended-
to words, it is 11.7% and 11.9% more confident in
its predictions for spelling error and deleted text
edits, respectively.

One possible explanation for such a correlation
is that easy-to-classify examples also have easy-to-
identify rationales. Because agreement with human
rationales is not the training objective, however, we
believe this correlation suggests that BERT learns
to classify edits similarly to humans.
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Figure 3: Mean reciprocal rank for each layer (using
the mean strategy) for each model for spelling error
and deleted text edits.4

How does transformer layer affect plausibility?
It is widely agreed that BERT’s early layers encode
more lexical and phrasal information than other
layers (Jawahar et al., 2019; Rogers et al., 2020).
We hypothesize that rationales extracted from early
layers will be more plausible for spelling error than
deleted text edits because it is a more lexical task.
We extract rationales from each layer’s attention
weights and measure their plausibility in Figure 3.

The results confirm the hypothesis and show
that early layers in BERT models are indeed more
lexically-oriented. We also find that SciBERT
strongly attends to spelling errors in earlier lay-
ers. We believe it is because that, pre-trained on
well-formed academic text, SciBERT is not as well
exposed to spelling errors as BERT and RoBERTa
so it learns to attend to spelling errors in earlier
layers during fine-tuning.

4BERT shows a decline in plausibility at layer 11 in both
edit types because it attends heavily to periods.
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5 Conclusion

We re-purpose the AESW task to gather thousands
of inherently faithful human rationales and inves-
tigate an array of questions regarding PLM inter-
pretability. We find, among other new insights, that
attention weights correlate well with human ratio-
nales and produce more plausible rationales than
input gradients, which is different from existing
understanding. Furthermore, we find that BERT is
more confident in its predictions when it attends
to the same words that a human did, supporting
the idea that while attention is not inherently faith-
ful, attention-based models might rely on the same
information as humans when making a prediction.

Future work might expand the subset of exam-
ples for which human rationales can be automat-
ically extracted, include human rationales during
training or evaluate faithful-by-design model ratio-
nales on this dataset.
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A AESW Details

The original AESW task is to classify a sentence
from an academic paper as “need edit” or “no edit”.
There is no special markup attached to the sentence
when it is given as input to a model. Task partici-
pants receive the training and validation sets with
<del> and <ins> tokens for model development,
and Daudaravicius et al. provided an automatic test
set evaluation through an online portal. Daudar-
avicius et al. collected these sentences from 9,919
journal articles published by Springer Publishing
Company and edited at VTeX. Sentences before
and after editing were automatically aligned using a
modified diff algorithm.5 After the challenge, Dau-
daravicius et al. released the dataset in its entirety
(all three datasets with all tokens/spans included).

B Training Details

The AESW task uses scientific papers written in La-
TeX, which contains markup characters that impact
sentence meaning. The original authors (Daudar-
avicius et al.) replace these characters with special
tokens, as seen in Table 1. We add these four spe-
cial tokens (_MATH_, _MATHDISP_, _CITE_ and
_REF_) to the model vocabulary, fine-tuning the
word representations during training.

LaTeX Example Special Token
$\beta_{2}$ _MATH_
$$2 + 3$$ _MATHDISP_
\cite{google2018} _CITE_
\ref{tab:results} _REF_

Table 1: Special tokens found in the original AESW
data that should not be split further into bytes/tokens.

We train all models for a maximum of 30 epochs
with a patience of 5 on a single Tesla P100 GPU.

All models (BERT6, SciBERT7, RoBERTA8) are
based on their HuggingFace (Wolf et al., 2020)
implementations.

We list all the key hyperparameters and tuning
bounds for reproducibility in Table 3. Our final
results for all three BERT-based models along with

5More details can be found in (Daudaravicius et al., 2016)
6https://huggingface.co/transformers/

v3.0.2/model_doc/bert.html#
bertforsequenceclassification

7https://github.com/allenai/scibert#
pytorch-huggingface-models

8https://huggingface.co/transformers/
v3.0.2/model_doc/roberta.html#
robertaforsequenceclassification

the top three models from (Daudaravicius et al.,
2016) can be found in Table 2. Additionally, we
will release code and instructions for reproducing
our results.

Model Dev F1 Test F1

CNN+LSTM – 0.628
CNN – 0.611
SVM – 0.555

BERTbase 0.654 0.666
RoBERTabase 0.661 0.670
SciBERTscivocab 0.658 0.668

Table 2: Performance on the original AESW sentence
classification task. Dev set results are not available for
models reported in Daudaravicius et al. (2016).

C Gathering Human Rationales

To find spelling error edits, we look for sentences
with a deleted, misspelled word followed by an
inserted, correctly spelled word. The first two ex-
amples in Figure 4 are examples of spelling error
edits, while the third is not.

To find deleted text edits, we look for sentences
where text is removed but not added. The fourth
and fifth examples in Figure 4 are examples of
deleted text edits.

D Evaluating Model Rationales

Although the main text presents our analyses using
mean reciprocal rank, we performed our analyses
with multiple metrics. Here we provide specific
definitions for our metrics and our complete results
for all models with every metric.

Mean reciprocal rank Because human ratio-
nales can be made up of multiple words, we need
to modify mean reciprocal ranking. For a single
sentence, a model’s ordered ranking of words M
and an unordered human rationale H:

1. Find the top ranked word w in M from H and
record the rank.

2. Remove w from M and H .
3. Repeat until H is empty.
4. Use the reciprocal of the mean rank.

If we did not remove words from M , a perfect
score for a rationale with multiple words would be
impossible. Consider the sentence “The boy ate
the found his ball.” If the rationale ranked ‘ate’
and ‘the’ as most important, the mean rationale
rank would be (1 + 2)/2 = 1.5 and the rationale’s
reciprocal rank would be 1/1.5 = 0.66, despite a
perfect rationale.

https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification
https://github.com/allenai/scibert#pytorch-huggingface-models
https://github.com/allenai/scibert#pytorch-huggingface-models
https://huggingface.co/transformers/v3.0.2/model_doc/roberta.html#robertaforsequenceclassification
https://huggingface.co/transformers/v3.0.2/model_doc/roberta.html#robertaforsequenceclassification
https://huggingface.co/transformers/v3.0.2/model_doc/roberta.html#robertaforsequenceclassification
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Model Hyperparameters Hyperparameter bounds

BERTbase

learning rate: 1× 10−6

batch size: 32
model: bert-base-uncased
vocab size: 30526 (normally 30522)

learning rate: (2× 10−7,
1× 10−6, 2× 10−5,
1× 10−4)

RoBERTabase

learning rate: 1× 10−6

batch size: 32
model: roberta-base
vocab size: 50269 (normally 50265)

learning rate: (1× 10−6)

SciBERT

learning rate: 1× 10−6

batch size: 32
model: allenai/scibert_scivocab_uncased
vocab size: 31094 (normally 31090)

learning rate: (1× 10−6)

Table 3: Hyperparameter options for each model. Note that each model had 4 special tokens added to the vocab-
ulary. BERT was fine-tuned first. Because of compute limitations, RobERTa and SciBERT were both fine-tuned
using the same hyperparameters as the optimal BERT configuration (learning rate of (1× 10−6)).

We take the mean reciprocal ranking across all
examples to evaluate rationales.

Mean area under precision-recall curve Using
the model relevance scores for words in a sentence,
we adjust the threshold for classifying a word as
part of the rationale, calculate a precision-recall
curve and measure the area underneath. We take
the mean AUPRC across all examples.

Mean top 1 match We score a rationale as 1 if
the rationale’s top ranked word is the human ratio-
nale and 0 otherwise. This means that all multiple-
word rationales are automatically not a match and
scored as 0. We take the mean of these scores
across all examples.

Our main observations are consistent across met-
rics: Table 4 contains all results for models on
spelling error edits and Table 5 contains all results
for models on deleted text edits.
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Model F1 Method Classification Mean Recip. AUPRC Top 1 Match

BERT 82.1 Attention All 0.841 0.115 0.756
BERT 100.0 Attention Correct 0.895 0.081 0.824
BERT 0.0 Attention Wrong 0.717 0.194 0.602
BERT 82.1 gradient×input All 0.407 0.332 0.325
BERT 100.0 gradient×input Correct 0.401 0.335 0.322
BERT 0.0 gradient×input Wrong 0.422 0.325 0.331
BERT 82.1 |gradient× input| All 0.701 0.201 0.579
BERT 100.0 |gradient× input| Correct 0.730 0.184 0.615
BERT 0.0 |gradient× input| Wrong 0.635 0.241 0.498

RoBERTa 81.4 Attention All 0.834 0.118 0.739
RoBERTa 100.0 Attention Correct 0.886 0.085 0.811
RoBERTa 0.0 Attention Wrong 0.721 0.192 0.581
RoBERTa 81.4 gradient×input All 0.310 0.380 0.231
RoBERTa 100.0 gradient×input Correct 0.303 0.383 0.229
RoBERTa 0.0 gradient×input Wrong 0.324 0.375 0.236
RoBERTa 81.4 |gradient× input| All 0.675 0.219 0.546
RoBERTa 100.0 |gradient× input| Correct 0.707 0.201 0.583
RoBERTa 0.0 |gradient× input| Wrong 0.605 0.259 0.463

SciBERT 86.8 Attention All 0.739 0.203 0.577
SciBERT 100.0 Attention Correct 0.830 0.138 0.707
SciBERT 0.0 Attention Wrong 0.442 0.415 0.152
SciBERT 86.8 gradient×input All 0.475 0.296 0.399
SciBERT 100.0 gradient×input Correct 0.467 0.296 0.401
SciBERT 0.0 gradient×input Wrong 0.501 0.295 0.392
SciBERT 86.8 |gradient× input| All 0.670 0.214 0.557
SciBERT 100.0 |gradient× input| Correct 0.698 0.197 0.591
SciBERT 0.0 |gradient× input| Wrong 0.575 0.268 0.447

Table 4: Results for all three models for spelling error edits across all methods of selecting rationales (attention,
gradient×input and |gradient× input|) and all metrics to evaluate rationales (mean reciprocal ranking, AUPRC and
mean top 1 match).
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Model F1 Method Classification Mean Recip. AUPRC Top 1 Match

BERT 74.0 Attention All 0.561 0.272 0.411
BERT 100.0 Attention Correct 0.680 0.211 0.528
BERT 0.0 Attention Wrong 0.391 0.359 0.244
BERT 74.0 gradient×input All 0.189 0.447 0.074
BERT 100.0 gradient×input Correct 0.195 0.442 0.089
BERT 0.0 gradient×input Wrong 0.181 0.454 0.054
BERT 74.0 |gradient× input| All 0.306 0.416 0.130
BERT 100.0 |gradient× input| Correct 0.354 0.399 0.166
BERT 0.0 |gradient× input| Wrong 0.238 0.440 0.078

RoBERTa 74.8 Attention All 0.598 0.263 0.426
RoBERTa 100.0 Attention Correct 0.662 0.230 0.487
RoBERTa 0.0 Attention Wrong 0.503 0.312 0.335
RoBERTa 74.8 gradient×input All 0.168 0.456 0.058
RoBERTa 100.0 gradient×input Correct 0.156 0.458 0.054
RoBERTa 0.0 gradient×input Wrong 0.187 0.452 0.063
RoBERTa 74.8 |gradient× input| All 0.321 0.404 0.154
RoBERTa 100.0 |gradient× input| Correct 0.367 0.384 0.194
RoBERTa 0.0 |gradient× input| Wrong 0.252 0.434 0.094

SciBERT 73.9 Attention All 0.501 0.327 0.304
SciBERT 100.0 Attention Correct 0.605 0.270 0.414
SciBERT 0.0 Attention Wrong 0.353 0.406 0.148
SciBERT 73.9 gradient×input All 0.226 0.426 0.111
SciBERT 100.0 gradient×input Correct 0.260 0.410 0.145
SciBERT 0.0 gradient×input Wrong 0.178 0.450 0.062
SciBERT 73.9 |gradient× input| All 0.322 0.400 0.162
SciBERT 100.0 |gradient× input| Correct 0.356 0.387 0.189
SciBERT 0.0 |gradient× input| Wrong 0.275 0.418 0.123

Table 5: Results for all three models for deleted text edits across all methods of selecting rationales (attention,
gradient×input and |gradient× input|) and all metrics to evaluate rationales (mean reciprocal ranking, AUPRC and
mean top 1 match).
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The algorithm <del>descripted</del><ins>described</ins> in the
previous sections has several advantages.
A spelling error edit; “descripted” is a spelling error and is corrected.

For each energy point, the thereby obtained cross-section values
and errors from different experiments have been further averaged
according to the <del>weigthed</del><ins>weighted</ins> average
method used by the Particle Data Group _CITE_, including error
rescaling by _MATH_ in case of large discrepancy.
A spelling error edit; “weigthed” is a spelling error and is corrected.
And the short notations for the denominators are _MATHDISP_,
Furthermore, the following relations are useful to
<del>short</del><ins>shortcut</ins> the expressions: _MATHDISP_.
Not a spelling error edit; “short” is incorrect in this context, but it is not a spelling error.

However, we <del>must note that we </del>still have no means of
deciding which documents out of _MATH_ deserve to be in _MATH_ and
_MATH_, respectively.
A deleted text edit; text is only removed, while no text is inserted.

Let _MATH_ be the conjugate Holder<del>’s</del> function of a
Holder<del>’s</del> function _MATH_.
A deleted text edit; text is only removed, while no text is inserted.

Figure 4: Additional examples of the two types of edits extracted from the original AESW dataset.


