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Abstract

Interpretability methods like INTEGRATED
GRADIENT and LIME are popular choices for
explaining natural language model predictions
with relative word importance scores. These
interpretations need to be robust for trustwor-
thy NLP applications in high-stake areas like
medicine or finance. Our paper demonstrates
how interpretations can be manipulated by
making simple word perturbations on an input
text. Via a small portion of word-level swaps,
these adversarial perturbations aim to make
the resulting text semantically and spatially
similar to its seed input (therefore sharing
similar interpretations). Simultaneously,
the generated examples achieve the same
prediction label as the seed yet are given a
substantially different explanation by the inter-
pretation methods. Our experiments generate
fragile interpretations to attack two SOTA
interpretation methods, across three popular
Transformer models and on three different
NLP datasets. We observe that the rank order
correlation drops by over 20% when less than
10% of words are perturbed on average. Fur-
ther, rank-order correlation keeps decreasing
as more words get perturbed. Furthermore, we
demonstrate that candidates generated from
our method have good quality metrics. Our
code is available at: github.com/QData/
TextAttack-Fragile-Interpretations.

1 Introduction

Recently, the use of natural language processing
(NLP) has gained popularity in many security-
relevant tasks like fake news identification (Zhou
et al., 2019), authorship identification (Okuno et al.,
2014), toxic content detection (Jigsaw, 2017), and
for text-based automated privacy policy understand-
ing (Harkous et al., 2018). Since interpretations of
NLP predictions have become necessary building
blocks of the SOTA deep NLP workflow, expla-
nations have the potential to mislead human users
into trusting a problematic interpretation. How-

ever, there has been little analysis of the reliability

and robustness of the explanation techniques, es-

pecially in high-stake settings, making their utility
for critical applications unclear.

Research has shown that it is possible to disrupt
and even manipulate interpretations in deep neu-
ral networks (Ghorbani et al., 2019; Dombrowski
et al., 2019). The core idea in this literature centers
around “fragile interpretations”. (Ghorbani et al.,
2019) defined that an interpretation is fragile if, for
a given input, it is possible to generate perturbed
input that achieves the same prediction label as the
seed, yet is given a substantially different interpre-
tation. Fragility limits how much we can trust and
learn from specific interpretations. An adversary
for “fragile interpretations” could manipulate the
input to draw attention away from relevant words
or onto desired features. Such input manipulation
might be especially hard to detect because the ac-
tual labels have not changed.

The literature includes two relevant groups: (1)
to conduct model manipulations (Slack et al., 2019;
Wang et al., 2020) (details in Sec. 2), and (2) to
manipulate input samples (Ghorbani et al., 2019).
There has been little attention studying fragile in-
terpretations via input manipulation in deep NLP.

In this paper, we propose a simple algorithm “Ex-
plainFooler” that can make small adversarial per-
turbations on text inputs and demonstrate fragility
of interpretations. We focus on optimizing two ob-
jective metrics - “L2 Norm” or a proposed “Delta
LOM®, searching for small word-swap-based in-
put manipulation to produce misleading interpre-
tations and using semantic-oriented constraints to
constrain the manipulations. Figure 3 provides one
example perturbation process. In summary, this
paper provides the following contributions:

* Our input perturbation optimizes to increase the
objective metric (“L2 Norm” or “Delta LOM*)
that measures difference between the original
and generated interpretations. The LOM score
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Legend: B Negative [J Neutral @ Positive
Perturbed Word Importance

0 [CLS] a sometimes tedious film . [SEP]

1 [CLS] a sometimes tricky film . [SEP]

2 [CLS] a sometimes exasperating video . [SEP]
3 [CLS] a oftentimes exasperating flick . [SEP]

Figure 1: The figure demonstrates the input perturba-

tion process for an increasing number (levels) of word

perturbations. The red color depicts negative attribu-
tion, and the green shows positive attribution. The
saturation of the colors signifies the magnitude of the
said attributions. Note: the interpretations gradually
become more and more different from the original, al-
though the semantic meaning of the sentence does not
change drastically. The model still predicts the correct
original output, but the interpretations become sense-
less as more words get perturbed.[Example taken from
the SST-2 dataset. Interpretations calculated using In-
tegrated Gradients on DistilBERT model. Best viewed
in color]

captures the approximate center “position” of an

interpretation and summarizes it to a scalar.

* We propose an effective algorithm “Explain-
Fooler” to optimize the objective metric via an
iterative procedure. Our algorithm generates a
series of increasingly perturbed text inputs such
that their explanations are significantly different
from the original but preserving predictions.

* Empirically, we show that it is possible to find
perturbed text examples to fool interpretations by
INTEGRATED GRADIENT and LIME, even on
NLP models that are relatively more robust.

The approximate process and results of word per-
turbation using our approach is detailed in Figure 1.

2 Related Work

Interpretation Methods: Several interpretation
methods have been proposed(Shrikumar et al.,
2017; Li et al., 2015; Bach et al., 2015; Shriku-
mar et al., 2017) to calculate feature importance
scores. Two well-known methods in this area
are Integrated Gradients (IG) (Sundararajan et al.,
2017) and Local Interpretable Model Explanations
(LIME)(Ribeiro et al., 2016b). IG computes the
scores by summing up the gradients along a path
from the baseline to the input in a fixed number
of steps and subsequently multiplied by the input
itself. IG overcomes the saturation problem dis-
cussed in (Shrikumar et al., 2017; Sundararajan
et al., 2017). On the other hand, LIME is a com-
pletely black-box approach which explains the pre-
dictions of any classifier in an interpretable and
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faithful manner, by learning an interpretable model
locally around the prediction by training the model
on perturbations generated around the input.

Fragile Interpretations More recently, several
works have focused on discussing the robustness
of the said interpretations. Studies have demon-
strated that the interpretations generated are not
robust and can be easily manipulated due to high
dimensionality of networks. (Ghorbani et al., 2019;
Dombrowski et al., 2019; Slack et al., 2019; Wang
et al., 2020). Multiple other works have tried to
fix the problem by making interpretations robust
(Lakkaraju et al., 2020; Rieger and Hansen, 2020).

(Wang et al., 2020) demonstrated that it is possi-
ble to introduce a new model over the original and
alter gradients, to fool gradient-based interpretation
methods. Similarly, (Slack et al., 2019) showed
that black-box interpretation methods can also be
fooled by allowing an adversarial classifier com-
ponent. More recently, (Zafar et al., 2021) demon-
strated empirically. that interpretability methods
produce varying results on the same models but
differently initialized.

Adversarial Examples that fool NLP Predic-
tions: Adversarial examples are inputs to a predic-
tive machine learning model that are maliciously
designed to fool the model predictions (Goodfellow
et al., 2014). Multiple recent works have focused
on applying the concept of adversarial examples on
language inputs, including (1) attacks by Charac-
ter Substitution (Ebrahimi et al., 2017; Gao et al.,
2018; Li et al., 2018); (2) attacks by Paraphrase
(Ribeiro et al., 2018; Iyyer et al., 2018); (c) attacks
by Synonym Substitution (Alzantot et al., 2018; Jin
et al., 2020; Kuleshov et al., 2018; Papernot et al.,
2016); (d) attacks by Word Insertion or Removal
(Liang et al., 2017; Samanta and Mehta, 2017);
(e) attacks by limiting L,, distance in a latent em-
bedding space (Zhao et al., 2017). Our proposed
algorithm is closely connected to the TextFooler
algorithm (Jin et al., 2020) that searches for input
perturbations to achieve mis-classification. Differ-
ently, we optimize the “L2 Norm” and “Location of
Mass (LOM)” objective directly on the input space
for fragile explanations.

3 Proposed Method

In this section, we present our algorithm to gen-
erate perturbed sentences that demonstrate fragile
interpretations. First, we propose the metric “Lo-
cation of Mass (LOM)” and L2 Norm, followed



by a discussion on the search strategy to optimize
the objective metrics. Subsequently, we discuss
the interpretation method choices and end with the
final candidates’ selection procedure and pseudo-
code for our algorithm (Algorithm1). We denote
a text input as x and its word importance score
vector (from a specific interpretation strategy on a
particular NLP model) using notation I.

3.1 Difference Metrics on Interpretation

To quantify the difference between two interpreta-
tions, we propose two objective metrics - “Delta
LOM* and “L2 Norm”. These metrics are diver-
gent - that is higher the metric, the more different
the interpretations.

3.1.1 “‘Location of Mass (LOM)” Score

First, we propose a metric inspired by (Ghorbani
et al., 2019) which provides a quantifiable “posi-
tion” of the interpretations of a sentence. First, we
define the “Location of Mass (LOM)” score as:

t=n—1/-
oy = 2= U g,
t=0

Here n is the length of the sentence (along with
starting/end special tokens). And ¢ is the inter-
pretability score assigned to the token at index ‘t’.
We then propose to calculate the “Delta LOM* met-
ric as: the difference between the LOM scores on
the two interpretations /; and Io:

ALOM (I, I3) = [LOM(I;) — LOM(I2)| (2)

The intuition behind this metric comes from the fact
that changing the approximate position of the “cen-
ter” of interpretations changes the relative position
and magnitudes of interpretations. This observa-
tion is demonstrated in Figure 3.

3.1.2 L2 Norm Metric
We also propose to use a standard L2 Norm to

measure difference between two interpretations.
Mathematically it is computed as follows:

L2Norm(Iy,I5) = ||[I1 — I22 (3)

L2 Norm quantifies the extent of difference, higher
the L2 Norm- higher the difference in pattern of
two interpretations.

3.2 Searching for Word-level Perturbations

Our objective is to perturb a seed input x, into
a slightly-modified text x,g4,, so that ALOM or
L2Norm is maximized under a set of constraints.

First, we rank each word of an input sentence in
the order of their importance to a model’s predic-
tions. This is done by the Leave-one-out approach
(Li et al., 2016), which removes each word from
the sentence one at a time and measures the change
in prediction values, ranking the words which pro-
duce the greatest change as most important. Subse-
quently, we start our search in decreasing order of
word importance and substituting each word with
their k£ closest nearest-neighbors according to their
counter-fitting synonym embeddings (Mrksic et al.,
2016). For every subsequent word replacement,
interpretation is calculated according to victim in-
terpretation strategy we try to attack.

3.3 Ensuring Constraints

We enforce the following four constraints for each
perturbed candidate to ensure candidates do not
lose their linguistic structure and approximate se-
mantic meaning of the seed input.

* Repeat Modification: Stops the same word from
getting perturbed more than once.

* Stop Word Modification: This excludes pre-
defined stop words from getting perturbed.

* Word Embedding Distance: Swaps the original
word with words that have less than a particular
embedding distance using Counter-Fitting Em-
beddings.

* Part of Speech: Replaces the original word with
only words from the same part of speech.

» Sentence Embedding: Ensure the difference in
the Universal Sentence Embedding is less than a
pre-defined threshold (Cer et al., 2018).

3.4 Victim Interpretation Choices

Integrated Gradient: We calculate INTEGRATED
GRADIENT (Sundararajan et al., 2017) interpreta-
tions of NLP models using the open-source pack-
age Captum (Kokhlikyan et al., 2020) that provides
accurate implementations of various interpretation
methods. We use the popular INTEGRATED GRA-
DIENT algorithm to calculate the importance scores
on the embedding space of the models. Once the
interpretations are calculated, they are summed up
along the dimension axis to derive the word im-
portance scores. Subsequently, the ALOM and L2
Norm scores of each candidate perturbation are cal-
culated against the original input’s interpretation.

LIME: The LIME interpretations are calculated
using the official LIME code provided by (Ribeiro
et al., 2016a). We normalize the LIME scores by
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dividing the vector with its Lo-norm. Subsequently,
the ALOM and L2 Norm scores of each candidate
perturbation are calculated against the original in-
put’s interpretation.

3.5 Finding the ideal candidate

Once we obtain all the candidates and their met-
ric scores on every candidate achieving the same
prediction label as the original, we store those
ideal candidates with each ‘m’ number of words
perturbed. This gives us a list of candidates for
each level of word perturbation and the associated
change in objective metric scores. Next, for each
level, the candidate with the highest metric score
against the original is chosen. Finally, we con-
vert the number of perturbed words into a ratio
with respect to the input’s length. This is done
to take into account the varying sentence lengths
and get a normalized measure. The ratio is lim-
ited to 50% because once more than half the words
are perturbed, the sentence starts losing its seman-
tic meaning. The complete selection process is
schematically detailed in Figure 2

[CLS] a sometimes exasperating fim . [SEP] 1

L[CLS] a sometimes uninspiring film . [SEP] W

[CLS] a sometimes tiring fim . [SEP] }

& sqmetlmes Perturb: tedious
tedious film
Select: L2/ALOM

AJ [CLS] a sometimes exasperating flick . [SEP] w

Asometimes Perturb: film ‘ [LS] (a{somet

exasperating film
- [CLS] a sometimes exasperating panorama [SEP]}

\ Select: L2/ALOM

A occasionally
exasperating flick

Figure 2: A schematic diagram of the proposed “Ex-
plainFooler” algorithm. In the figure, the “Perturb”
step generates a list of all possible perturbations accord-
ing to the constraints as discussed in Sec. 3.3. The in-
terpretation are generated as discussed in Sec. 3.4. The
selection process uses objective metrics explained by
Sec. 3.1.

3.6 Algorithm

Algorithm 1 “ExplainFooler” provides pseudocode
to compute and select a list of candidates that can
induce fragile explanations. Our implementation
adapts and builds on top of the open-source pack-
age TextAttack (Morris et al., 2020).

4 Experiments

4.1 Data Summary

The experiments are conducted on three differ-
ent datasets for text classification task. Experi-
ments are conducted on the validation set for SST-

Result: A - list of candidate sentences
ordered by number of words
perturbed from original

For each sentence in dataset

A <—empty

S <+—original sentence

Iy < InterpretMethod(S)

P <ordered list of important words (LOO)

while <=50% of words perturbed from P

do

w < P[0]
C +empty
while Possible perturbations exist do
¢ «Perturb S and get candidate
if constraints pass and prediction
label is same as S then
I < InterpretMethod(c)
Adiff  dif f(Io, T),
C <+ CU(Adiff,c)

else

| continue
A < A U c where max(diff)

P <+ remove P|0]

Algorithm 1: The “ExplainFooler” algo-
rithm

2(Socher et al., 2013), test set for AG News(Zhang
et al., 2015) and test set for IMDB dataset(Maas
etal., 2011). We select the first 500 sentences from
the SST-2 and AGNews datasets and 100 sentences
from the test set from IMDB dataset to run our ex-
periments. We discard sentences with just 2 words
or less.

e SST-2: The Stanford Sentiment Treebank-2
dataset for movie review classification. It has
two classes: positive and negative. Experiments
are conducted on the first 500 sentences of the
validation set.

* AG News: A collection of raw news articles be-
longing to 4 different classes including World,
Sports, Science/Technology and Business. Exper-
iments are conducted on the first 500 sentences
of test set.

* IMDB: IMDB website dataset for binary sen-
timent classification containing a set of highly
polar movie reviews. Experiments are conducted
on first 500 sentences of test set except for LIME
where only 100 sentences are used due to very
high computation time due to very long average
sentence length.
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True Predicted Confidence Predicted Words
Label Label Class Perturbed
0 0 0.98 Negative 0
0 0 0.97 Negative 1
0 0 0.86 Negative 2
0 0 0.57 Negative 3

LOM
Word Importance

Score

0.00 [CLS] a sometimes tedious film . [SEP]
0.82 [CLS] a sometimes exasperating film . [[SEP]
0.92 [CLS] a sometimes exasperating flick . [SEP]
0.95 [CLS] a occasionally exasperating flick . [SEP]

Figure 3: The figure demonstrates the ALOM score for an increasing number of word perturbations. The interpreta-
tions gradually become more and more different from the original although the semantic meaning of the sentence
does not change drastically. We can see that the model still predicts the original output but the interpretations
become senseless as the ALOM score increases.[Best viewed in color]

4.2 Interpretability Parameters

IG: As integrated gradients is a gradient based
approach and requires a reference baseline, we
compute the attributions on the embedding space
and set the reference baseline to the special to-
ken <PAD> which is reserved in transformers as
a special character. The step size for Integrated
Gradients were chosen as 50 i.e. from reference
to baseline, the gradients were summed up in 50
continuous steps.

LIME: The number of perturbations for LIME
were chosen as 500 and the maximum number of
top-k words were chosen as 512 words - the trun-
cation limit for all the models.

4.3 Perturbation Parameters

We choose the number of nearest neighbours as
50 for swapping the words to limit the number of
candidates. The maximum embedding cosine sim-
ilarity between sentences was set as 0.5 to ensure
sentences do not lose their semantic meaning.

4.4 Under the Hood

Pre-processing: All sentences with less than 2
words in all datasets are removed due to word per-
turbations not existing in some cases. In other
cases, the smaller sentence have a very big dif-
ference in rank correlation which can spuriously
decrease evaluation metrics. Each sentence from
all datasets is also converted to lower-case.

Fixing Tokenizations: As pre-trained tokenizers
for transformer models contain a ML matching
based lookup vocabulary, many words in candidate
sentences are tokenized in an unexpected manner.
This results in the change of length of the token
list which in turn changes the length of interpreta-
tions. To alleviate this problem, we test 2 distinct
approaches to combine the unnaturally tokenized
words into their original form.

* Average: The first approach combines all the
tokens prefixed by a set character (## in case of
DistilBERT) into one single word and assigns
the average value of the tokens to the combined
tokens

e Max: The second approach combines all the to-
kens prefixed by a set character (## in case of
DistilBERT) into one single word and assigns
the absolute maximum value with sign to the
combined word.

Upon careful review, we utilize the second ap-
proach for our experiments. This is because, in
uncommon cases where tokens hold opposite polar-
ity to the ones in the word result in ‘diluted’ value
of the original token. An example of the effec-
tiveness of the ‘Max’ approach is given in Figure
4.

[CLS] unflinchingly bleak and |desperate [SEP]

[CLS] un ##fl ##in ##ching ##ly bleak and desperate [SEP]

[CLS] unflinchingly bleak and desperate [SEP]

[CLS] un ##fl ##in #i#ching ##ly bleak and desperate [SEP]

Figure 4: The figure demonstrates the combining of to-
kens of a sentence tokenized using DistilBERT’s pre-
trained tokenizer. The top group of sentences demon-
strates averaging approach and the bottom group of sen-
tences are combined using Abs-Max approach detailed
in 4.4. [Best viewed in color]

4.5 Evaluation Metrics

4.5.1 Rank Correlation

To compare the correlation between interpreta-
tions of 2 sentences, we use the Spearman rank
correlation metric. The more the ranks of the in-
terpretations agree with each other, the higher the
rank correlations. Importantly, we clip the negative
values of the metric to 0. This is done because
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a negative correlation does not make sense when
only comparing the difference in ranks and can
spuriously bring down the average scores.

R — Correlation = max(0, Spearman(ly,I2))

4)
We report results in Tables 1,3,8,10 and correspond-
ing violin graphs Figures 7,10 of average Spear-
man rank order correlations and standard devia-
tions versus ratio of words perturbed for 3 datasets
(SST-2, AG News and IMDB) across both models
(DistilBERT-uncased and RoBERTa-base) using 2
interpretability methods - INTEGRATED GRADI-
ENT and LIME.

4.5.2 Top-50% Intersection

To compare the extent to which the words with
highest attributions are correctly predicted by both
the interpretation methods, we use the Top-k% in-
tersection metric. To compute the intersection, we
first find the words with the maximum absolute
value of attributions (most important for predic-
tion). We calculate the intersection of the top 50%
highest attribution words.

N(argsort(Iy),argsort(1s))
0.5 x length(1y)

Intersection =

4)
where argsort returns the indices of the top-50% of
the words in a sentence with highest attributions.

4.5.3 Candidate Quality

To judge the quality of the candidates generated
using “ExplainFooler”, we calculate two different
commonly used quality metrics from adversarial
attack literature - Perplexity and absolute number
of grammar errors similar to (Li et al., 2020).

Perplexity We first use perplexity to estimate the
fluency of candidates generated using “Explain-
Fooler”. The lower the value, the more fluent the
candidates, measured using a small size GPT-2
model (50k vocabulary) (Radford et al., 2019).

Grammatical Errors Estimates the average num-
ber of absolute difference in grammatical errors
between the original and the candidate sentences.
We use the Language Tool (Naber et al., 2003) to
compute the errors.

4.6 Model Choices

The robustness concern of interpretation strategies
challenges their use in critical applications, raising
concerns like lack of trust. However, it is unclear
what causes the “fragile explanations”, the model

or the interpretation? We therefore select three
different transformer models namely, DistilBERT-
uncased (Sanh et al., 2019), RoBERTa-base (Liu
et al., 2019) and BERT-base (Devlin et al., 2018) to
conduct our experiments. More importantly, we re-
train the BERT-base to obtain the BERT-base-adv
model that is an adversarially trained version of
the BERT-base model. The rationale behind the
choices is to investigate the impact of model’s ro-
bustness on the robustness of the interpretations.
(1) First, a generic transformer model like Distil-
BERT is relatively smaller and faster but less robust
than the other two. (2) Next RoBERTa is exten-
sively better pre-trained and has a far more robust
performance. (3) Lastly, BERT-base-adv model
is trained from adversarial training. We use the
popular TextFooler(Jin et al., 2020) algorithm to
generate adversarial examples via the open-source
package Textattack. DistilBERT and RoBERTa
models were from pre-trained models, fine-tuned
on the respective datasets and we take them from
the Huggingface’s transformer model hub(Wolf
et al., 2020) without change. Differently, BERT-
base-adv model is adversarially trained by attack-
ing 10000 training examples for the IMDB and
AG datasets and attacking all training samples for
SST-2 dataset.

S Empirical Results

5.1 Rank Order and Top-50% Intersection

The results are reported in a tabular manner across
3 datasets (SST-2, AG News and IMDB), 3 mod-
els (DistilBERT, RoBERTa and BERT-adv (Sec-
tion A(Appendix)) and 2 interpretability methods
covering both metrics - L2 Norm, “Delta LOM*
and compared against random candidate selection
independent of both metrics. The first set of ta-
bles (Tables 1 and 3) report the average rank-order
correlation between interpretations from the per-
turbed and the original, across different perturba-
tion ratios in buckets of 10%. The second set
of tables (Tables 2 and 4) report the average top-
50% intersection. The rank correlation results for
the IMDB datasets are reported only on IG due
to excessive computational constraints. Due to
space constraints, the results for both AGNews
and IMDB datasets are reported in (Tables 8-11
and Tables 12-13 respectively, Section A.2 (Ap-
pendix)) along with a more detailed representation
of the intra-bucket distribution in the form of Violin
Graphs (Section A.3 (Appendix)).
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SST-2

DistilBERT RoBERTa BERT-adv
Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random
0-0.1 | 0.65 0.78 0.8 0.64 0.76 0.81 0.53 0.6 0.73
0.1-0.2 | 0.53 0.65 0.64 0.57 0.61 0.69 0.43 0.43 0.52
0.2-0.3 | 0.42 0.55 0.59 0.51 0.59 0.6 0.3 0.33 0.42
0.3-0.4 | 0.36 0.48 0.48 0.47 0.47 0.55 0.35 0.3 0.43
0.4-0.5 | 0.31 0.42 0.47 0.42 0.43 0.48 0.14 0.24 0.36

Table 1: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: INTEGRATED GRADIENT, for dataset- SST-2 over 3 models - DistilBERT,

RoBERTa and BERT-adv.
SST-2
DistilBERT RoBERTa BERT-adv

Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random

0-0.1 | 0.77 0.78 0.81 0.75 0.76 0.81 0.75 0.76 0.79
0.1-0.2 | 0.71 0.71 0.73 0.71 0.71 0.74 0.68 0.68 0.7
0.2-0.3 | 0.67 0.68 0.68 0.68 0.69 0.7 0.63 0.64 0.65
0.3-04 | 0.65 0.65 0.65 0.66 0.67 0.67 0.61 0.61 0.64
0.4-0.5 | 0.6 0.62 0.62 0.63 0.63 0.65 0.59 0.56 0.63

Table 2: Change in average Top-50% intersection using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: INTEGRATED GRADIENT, for dataset- SST-2 over 3 models - DistilBERT,

RoBERTa and BERT-adv.
SST-2
DistilBERT RoBERTa BERT-adv

Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random

0-0.1 | 0.64 0.7 0.79 0.59 0.66 0.76 0.57 0.68 0.72
0.1-0.2 | 0.52  0.58 0.65 0.58 0.63 0.7 0.37 0.52 0.59
0.2-03 | 0.46  0.51 0.56 052 0.58 0.62 0.34 047 0.54
0.3-04 | 0.39 043 0.46 0.48 0.54 0.58 0.31 0.36 0.36
0.4-0.5 | 0.23 0.29 0.46 0.55 0.55 0.54 0.28 0.2 0.24

Table 3: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conmputed
using the interpretability method: LIME, for dataset- SST-2 over 3 models - DistilBERT, RoBERTa and BERT-adv.

SST-2
DistilBERT RoBERTa BERT-adv

Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random

0-0.1 | 0.64 0.7 0.79 0.59 0.66 0.76 0.57 0.68 0.72
0.1-0.2 | 0.52 0.58 0.65 0.58 0.63 0.7 0.37 0.52 0.59
0.2-0.3 | 0.46 0.51 0.56 0.52 0.58 0.62 0.34 0.47 0.54
0.3-0.4 | 0.39 0.43 0.46 0.48 0.54 0.58 0.31 0.36 0.36
0.4-0.5 | 0.23 0.29 0.46 0.55 0.55 0.54 0.28 0.2 0.24

Table 4: Change in average Top-50% intersection using metrics - L2 Norm, LOM and random selection conmputed
using the interpretability method: LIME, for dataset- SST-2 over 3 models - DistilBERT, RoBERTa and BERT-adv.
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Perplexity (lower is better)

DistilBERT RoBERTa BERT-adv
Dataset C-avg ALOM L2 C-avg ALOM L2 C-avg ALOM L2
SST-2 (130.85) | 352.55 285.88 286.62 | 272.67 245.55 248.86 | 388.99 237.76 238.14
AGNews (76.18) | 359.13  239.95 241.33 | 27531 194.89 19529 | 352.05 230.44 229.38
IMDB (39.12) | 101.71  65.04 65.1 101.3 6241  63.65 | 8451 63.21  64.58

Table 5: Average values of perplexity calculated using a small GPT-2 model over all candidates generated by
“ExplainFooler” (C-avg). The values in columns LOM and L2 denote the perplexity values calculated on the
selected sentences using the proposed metrics. The average value of perplexity of original sentences in dataset are
given in parentheses. Selection using metrics give more fluent sentences.

Number of Words Perturbed
Model 0 1 2 3 4
DistilBERT | 0.97 095 0.92 0.88 0.82

Dataset

SST-2 RoBERTa | 0.98 0.98 098 098 0.98
BERT-adv | 0.97 096 094 092 091

DistilBERT | 0.98 097 093 0.86 0.82

AGNews | RoBERTa | 098 098 0.98 0.98 0098
BERT-adv | 0.97 095 095 094 091

DistilBERT | 0.99 097 094 0.89 0.84

IMDB RoBERTa | 0.98 0.98 0.98 098 0.98

BERT-adv | 0.97 096 0.94 094 091
Table 6: Average model confidence for correct predic-
tion values for increasing number of words perturbed
over models - DistilBERT, RoBERTa and BERT-adv on
datasets - SST-2, AGNews and IMDB

A bucket represents all instances of perturbed can-
didates in the ratio between that lower and higher
range. For example, bucket between “0.1-0.2” con-
tains all rank-order correlations from sentences
with a percentage of words perturbed between 10%
and 20%. We also provide violin plots in appendix
showcasing intra-bucket distribution for the dataset
SST-2 (Figures 7-10). We observe that both aver-
age rank-order correlation and top-50% intersec-
tion scores decrease as the ratio of words being
perturbed increases. Observations imply that inter-
pretations of sentences become increasingly dissim-
ilar to the original sentence as more words are per-
turbed even though the prediction robustness of the
models remains high (see Table 6, Figure 12). Sim-
ilar trends are observed across all models, datasets,
and covering both victim interpretability methods.
These empirical observations demonstrate interpre-
tations generated by INTEGRATED GRADIENT and
LIME are fragile for all models - even models
that are adversarially more robust (BERT-adv). To
further demonstrate effectiveness of proposed met-
rics, we plot violin plots on SST-2 dataset for avg.
rank correlation versus selection using metrics and
random. (Figure 5 - Appendix)

5.2 Quality of candidates

Perplexity The average perplexity values over all
models and datasets are reported in Table 5. For

Grammatical Errors (lower is better)

Model C-avg L2 ALOM
DistilBERT | 0.59 0.59  0.58
RoBERTa | 0.79 0.76  0.75
BERT-adv | 0.60 0.51  0.52

Table 7: Average number of grammatical errors on can-
didates generated using “ExplainFooler” on the SST-2
dataset (C-avg). The accompanying values in columns
ALOM and L2 denote the grammar errors calculated
on the sentences selected using the proposed metrics.

each dataset, model pair values corresponding to
proposed metrics and random selection are re-
ported. It can be observed that perplexity of candi-
dates selected using proposed metrics have lower
perplexity score (implying better fluency) than aver-
age of all candidates generated by “ExplainFooler”.

Grammatical Errors Estimates average number
of absolute difference in grammatical errors be-
tween the original and candidate sentences. We use
Language Tool (Naber et al., 2003) to compute the
errors. The results for SST-2 dataset are reported
in Table 7.

6 Conclusions

Literature sees a growing emphasis on interpreta-
tion techniques for explaining NLP model predic-
tions. Our work demonstrates a novel algorithm
that generates perturbed inputs that provide evi-
dence of fragile interpretations. We demonstrate
the effectiveness of our approach across three differ-
ent models, with one of them adversarially trained.
Our results show that it is possible to attack in-
terpretations using simple input-level word swaps
under certain constraints. We also demonstrate
that both black and white-box interpretability ap-
proaches (LIME and INTEGRATED GRADIENT)
show fragility in their derived interpretations. We
hope our findings can pave lights for future studies
on defending against problem of fragile interpreta-
tions in NLP.
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A Appendix

A.1 Compare with Baseline

Figures 5,6 show the decrease in average rank cor-
relation when considering random candidates as
opposed to selection using the LOM metric.

A.2 Additional Results

In this section we report the average rank order
correlation and the average top-50% intersection
scores for AGNews and IMDB datasets. The Ta-
bles 8,9 correspond to AGNews’ rank correlation
and top-50% scores using INTEGRATED GRADI-
ENT whereas Tables 10,11 show same values using
LIME. Tables 12 and 13 show similar values but
for IMDB dataset.

A.3 Violin Plots for intra-bucket distribution
analysis

The Violin plots convey more information about
the relative distribution of average rank correlations
and Top-50% values for various bucket ratios. The
following figures are only reported on the SST-2
dataset for each combination of evaluation metric
and interpretability methods.

A.4 Visual Results

A few visual results demonstrating the gradual
change in interpretations of candidate adversaries is
shown in Figure 12. It can be observed that ALOM
score gradually increases with word perturbations.
The examples demonstrate the same 3 sentences
from the dataset perturbed under DistilBERT and
RoBERTa respectively.
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Figure 5: The violin graphs demonstrate the effective-
ness of candidate selection based on the proposed met-
rics LOM and L2 Norm over random selection for SST-
2 dataset. As it can be seen that the selection based on
the proposed metrics disrupts rank correlation more as
compared to randomly selecting candidates.
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Figure 6: The violin graphs demonstrate the effective-
ness of candidate selection based on the proposed met-
rics LOM and L2 Norm over random selection for AG-
News dataset. As it can be seen that the selection based
on the proposed metrics disrupts rank correlation more
as compared to randomly selecting candidates.
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AGNews

DistilBERT RoBERTa BERT-adv
Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random
0-0.1 | 0.81 0.84 0.86 0.73 0.68 0.82 0.38 0.56 0.63
0.1-0.2 | 0.72 0.75 0.78 0.65 0.57 0.72 0.32 0.42 0.46
0.2-0.3 | 0.64 0.66 0.69 0.62 0.52 0.66 0.28 0.32 0.29
0.3-0.4 | 0.55 0.58 0.58 0.58 0.48 0.62 0.25 0.25 0.26
0.4-0.5 | 0.49 0.52 0.56 0.52 0.42 0.56 0.18 0.23 0.24

Table 8: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conmputed
using the interpretability method: INTEGRATED GRADIENT, for dataset- AGNews over 3 models - DistilBERT,
RoBERTa and BERT-adv.

AGNews
DistilBERT RoBERTa BERT-adv
Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random
0-0.1 | 0.64 0.65 0.71 0.7 0.74 0.85 0.48 0.51 0.79
0.1-0.2 | 0.57 0.58 0.69 0.61 0.64 0.8 0.37 0.4 0.69
0.2-0.3 | 0.57 0.58 0.62 0.55 0.59 0.77 0.24 0.27 0.64
0.3-0.4 | 0.53 0.53 0.58 0.52 0.55 0.74 0.22 0.24 0.6
0.4-0.5 | 0.51 0.52 0.56 0.45 0.5 0.71 0.19 0.24 0.58

Table 9: Change in average Top-50% intersection using metrics - L2 Norm, LOM and random selection conmputed
using the interpretability method: INTEGRATED GRADIENT, for dataset- AGNews over 3 models - DistilBERT,
RoBERTa and BERT-adv.

AGNews
DistilBERT RoBERTa BERT-adv
Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random
0-0.1 | 0.65 0.69 0.71 0.58 0.57 0.61 0.7 0.61 0.72
0.1-0.2 | 0.59 0.6 0.62 0.55 0.54 0.56 0.69 0.45 0.7
0.2-0.3 | 0.53 0.53 0.58 0.54 0.53 0.48 0.65 0.35 0.66
0.3-0.4 | 0.48 0.52 0.55 0.51 0.51 0.36 0.65 0.28 0.65
0.4-0.5 | 044 038 0.46 0.43 0.42 0.43 0.59 0.26 0.61

Table 10: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: LIME, for dataset- AGNews over 3 models - DistilBERT, RoBERTa and
BERT-adv.

AGNews
DistilBERT RoBERTa BERT-adv

Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random

0-0.1 |0.62 0.64 0.66 0.6 0.62 0.61 0.56 0.56 0.55
0.1-0.2 | 0.58 0.59 0.63 0.58 0.58 0.58 0.53 0.54 0.53
0.2-0.3 | 0.57 0.57 0.58 0.55 0.57 0.57 0.51 0.51 0.52
0.3-0.4 | 0.55 0.56 0.58 0.55 0.55 0.57 0.5 0.5 0.52
0.4-0.5 | 0.53 0.55 0.57 0.54 0.54 0.56 0.51 0.5 0.52

Table 11: Change in average Top-50% intersection using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: LIME, for dataset- AGNews over 3 models - DistilBERT, RoBERTa and
BERT-adv.
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IMDB

DistilBERT RoBERTa BERT-adv
Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random
0-0.1 | 0.69 0.69 0.71 0.75 0.74 0.8 0.45 0.44 0.55
0.1-0.2 | 0.53 0.55 0.61 0.64 0.59 0.69 0.32 0.32 0.41
0.2-0.3 | 0.41 0.44 0.5 0.51 0.48 0.58 0.28 0.29 0.39
0.3-04 | 0.42 0.39 0.49 0.45 0.41 0.51 0.27 0.28 0.34
0.4-0.5 | 0.33 0.31 0.41 0.34 0.37 0.49 0.12 0.17 0.28

Table 12: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: INTEGRATED GRADIENT, for dataset- IMDB over 3 models - DistilBERT,

RoBERTa and BERT-adv.
IMDB
DistilBERT RoBERTa BERT-adv

Ratio L2 ALOM Random | L2 ALOM Random | L2 ALOM Random

0-0.1 0.7 0.71 0.74 0.73 0.75 0.76 0.61 0.63 0.66
0.1-02 | 0.6 0.63 0.66 0.64 0.66 0.69 0.58 0.61 0.63
0.2-0.3 | 0.59 0.6 0.63 0.57 0.63 0.65 0.57 0.6 0.61
0.3-04 | 0.56  0.57 0.57 0.57 0.58 0.6 0.55 0.57 0.58
0.4-0.5 | 052 0.52 0.52 0.52  0.55 0.57 0.54 0.54 0.54

Table 13: Change in average rank-order correlation using metrics - L2 Norm, LOM and random selection conm-
puted using the interpretability method: INTEGRATED GRADIENT, for dataset- IMDB over 3 models - DistilBERT,
RoBERTa and BERT-adv.
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Figure 7: Average Rank-correlation for the dataset: SST-2, using metric: LOM on models DistilBERT, RoBERTa
and BERT-adv using interpretability method -INTEGRATED GRADIENT

10 __ 10 - _ 10 ” -
0.8 0.8 0.8
c f=l c
2 L 2
B os B 06 T o6
[ S I [
S 1S
15} <} S T
S (S ©oa
< X~ ~ O
c f= f=
© © ©
& & &
0.2 0.2 0.2
0.0 -4 0.0 -4 L 4 £ 0.0 -4 -+ -4
0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

Ratio of words perturbed Ratio of words perturbed Ratio of words perturbed

Figure 8: Average Rank-correlation for the dataset: SST-2, using metric: LOM on models DistilBERT, RoBERTa

and BERT-adv using interpretability method -LIME
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Figure 9: Average Rank-correlation for the dataset: SST-2, using metric: L2 Norm on models DistilBERT,
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L | Lot Cordcs PTG et Soor Word imporance
1 1 1.00 Positive [] 0.00 [CLS] it ' s a charming and often affecting journey . [SEP]
1 1 1.00 Positive 1 0.31 [CLS] it ' s a alluring and often affecting journey . [SEP]
1 1 0.98 Positive 2 0.80 [CLS] it * s a beautifull and often afflicted journey . [SEP]
1 1 0.72 Positive 3 1.22 [CLS] it ' s a beautifull and often afflicted rook . [SEP]
o [} 0.98 Negative o 0.00 [CLS] unfiinchingly bleak and desperate [SEP]
o o 0.89 Negative 1 0.72 [CLS] unflinchingly baleful and desperate [SEP]
[} [} 0.66 Negative 2 0.86 [CLS] unflinchingly dusky and depressive [SEP]
[ [ 0.99 Negative 0 0.00 [CLS] it ' s slow - - very , very slow _
0 o 0.99 Negative 1 0.25 [CLS] it ' s slow - - crucially , very slow . ﬁ
[ [ 0.99 Negative 2 0.91 [CLS] it ' s slow - - crucially , vitally slow . [SEP]
0 0 0.97 Negative 3 1.44 [CLS] it * s slow. - - crucially , highly lent . [SEP]
o [ 0.91 Negative 4 1.61 [CLS] it ' s sluggish - - crucially , highly lent . [SEP]

Figure 11: A few random sentence explanations from the SST-2 dataset calculated on DistilBERT-uncased using
INTEGRATED GRADIENT. [Best viewed in color].

U e e Vi J—
1 1 1.00 Positive [} 0.00 it 's a charming and often affecting journey . #/s
1 1 1.00 Positive 1 0.73 it 's a mignon and often affecting journey . #/s
1 1 0.99 Positive 2 1.19 it 's a dreamy and often plaguing journey . #/s
1 1 0.98 Positive 3 112 it 's a dreamy and often effect nomad . #/s
[ 0 1.00 Negative 0 0.00 unflinchingly [BI88RI and desperate #/s
[ 0 1.00 Negative 1 0.45 unflinchingly dreary and desperate #/s
[ o 0.90 Negative 2 0.76 unflinchingly sombre and frenetic #/s
o o 1.00 Negative o 0.00 it 's slow -- very , very slow . #/s
0 0 1.00 Negative 1 0.78 it 's --- very , very lent . #/s
] ] 0.97 Negative 2 0.73 it 's slow -- perfectly , very slowness . #/s
0 0 1.00 Negative 3 0.31 it 's BIGWI-- immeasurably , immeasurably slowness . #/s
0 ] 1.00 Negative 4 0.39 it 's slowest -- immeasurably , immeasurably slowness . #/s

Figure 12: The same sentence visualizations calculated on RoBERTa-base. It is clear RoOBERTa is much more
robust in making predictions but both DistilBERT and RoBERTa are susceptible to such attacks on their interpre-
tations. [Best viewed in color]
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