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Abstract

We present three Natural Language Inference
(NLI) challenge sets that can evaluate NLI
models on their understanding of temporal ex-
pressions. More specifically, we probe these
models for three temporal properties: (a) the
order between points in time, (b) the duration
between two points in time, (c) the relation be-
tween the magnitude of times specified in dif-
ferent units. We find that although large lan-
guage models fine-tuned on MNLI have some
basic perception of the order between points
in time, at large, these models do not have
a thorough understanding of the relation be-
tween temporal expressions.

1 Introduction

While contextualized embeddings obtained from
recent transformer-based models such as BERT
(Devlin et al., 2019) have proven to contain a lot
of semantic and syntactic information about the
tokens they encode, recent studies have shown that
there are still gaps in their understanding (Rogers
et al., 2020). On the semantic side, for instance,
BERT struggles with representations of numbers
(Wallace et al., 2019) and cannot reason based on
its world knowledge (Rogers et al., 2020). Work in
NLI has also developed challenge sets showing that
the reported performance of these language models
on various tasks can be exaggerated (McCoy et al.,
2019), and they rely on lexical cues in the dataset
instead of actual language comprehension.

Our work explores the grasp of such models on
the relation between temporal expressions. Tempo-
ral expressions, or time expressions, in text are a
sequence of tokens that denote time, such as a point
in time (6 May 1980, Monday, 12 PM) or duration
(7 minutes, 5 years, 2 months). More specifically,
we try to determine whether these models capture
the ordering and duration relationships between dif-
ferent points in time. We also analyze if these mod-
els can reason about durations specified in different

units. Recognition of temporal expressions has
had applications in timeline construction (Do et al.,
2012; Leeuwenberg and Moens, 2018) and clinical
analysis (Bethard et al., 2015) previously, and can
be beneficial for dialogue assistants in scheduling
reminders and meetings, which shapes our moti-
vation behind conducting such an analysis. We
evaluate these models on the above temporal prop-
erties by presenting three NLI challenge sets.

Our experiments demonstrate that language mod-
els such as RoBERTa (Liu et al., 2019) and De-
BERTa (He et al., 2021) fine-tuned on existing
large NLI datasets are unable to completely reason
about the ordering and duration between temporal
expressions. We further analyze the examples and
find that while these models recognize whether a
point in time lies within an interval, they cannot
capture other relations between time instances and
durations1.

2 Related Work

Much work has been done on the extraction of
events, temporal expressions (Chen et al., 2019;
Ding et al., 2019), and the temporal relations be-
tween the two. TimeBank (Pustejovsky et al.,
2003b) was one of the first annotated corpora for
this task. It utilized the TimeML (Pustejovsky et al.,
2003a) standard for annotation. TempEval-1 (Ver-
hagen et al., 2007), TempEval-2 (Verhagen et al.,
2010), and TempEval-3 (UzZaman et al., 2013) are
shared tasks created for evaluating models on var-
ious temporal properties, and most methods used
were traditional rule-based (Strötgen and Gertz,
2010; Ning et al., 2018) or grammar-based (Lee
et al., 2014) solutions.

Various corpora have been developed that test
for different temporal properties. Vashishtha et al.
(2019) map events to their fine-grained duration,
and event pairs to their relative timelines. Naik et al.

1Code and data available on GitHub

https://github.com/kunalkukreja21/temporal-expressions-evaluation-lm
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(2019) create additional annotations in the exist-
ing TimeBank-Dense corpus (Cassidy et al., 2014)
for discourse-level temporal ordering. Ning et al.
(2020) create a reading comprehension dataset that
tests for temporal ordering. Zhou et al. (2019) test
for various temporal commonsense properties us-
ing a multiple-choice question-answering dataset.
Vashishtha et al. (2020) recast existing temporal
datasets into NLI format to test for temporal order-
ing and duration.

Our goal is to create similar datasets to probe for
a semantic understanding of temporal expressions
in pre-trained language models. We create these
datasets in an NLI format and use them to evalu-
ate NLI models trained on MNLI (Williams et al.,
2018), which is a generic NLI dataset. We choose
MNLI because it is large and diverse. The dataset
contains time terms in 36% of the development in-
stances, including examples containing temporal
expressions like months and days of the week. We
investigate whether these examples are sufficient
for a general perception of temporal expressions.

To our knowledge, there has been little work
investigating the implicit understanding of time
expressions in pre-trained large language models.
The most similar work to ours is Vashishtha et al.
(2020). They produce five NLI datasets recast from
existing temporal reasoning corpora and test NLI
models for event duration (how long an event lasts)
and event ordering (how events are temporally ar-
ranged). However, there are some key differences:

• Our focus is to investigate the temporal proper-
ties of ordering and duration for explicit time
expressions, and not for events in a sentence.

• We analyze whether language models can rea-
son about more fine-grained duration (e.g.,
whether an event takes exactly 5 hours) where
as they analyze reasoning about more coarse-
grained duration (e.g., whether an event takes
place in the order of hours or days).

• We also investigate whether language mod-
els can figure out commonplace conversions
among adjacent units of time.

• We introduce numerous variations in our data
creation process about how the time expres-
sions are inserted and draw conclusions from
how these variations affect performance.

List Type List Range
hour (12 hr) 12 AM, ..., 11 PM
hour (24 hr) 00:00, 01:00, ..., 23:00
weekday Sunday, ..., Saturday
month-day 1st, 2nd, ..., 28th
month (full name) January, ..., December
month (abbreviated) Jan, Feb, ..., Dec
year 1900, 1901, ..., 2000

Table 1: Different lists of temporal expressions

3 Dataset Creation

We construct three NLI datasets that aim to test
different relations between temporal expressions.
The datasets use templates from a manually cu-
rated list of 71 events, labeled with their temporal
occurrence (when the event is likely to occur) and
temporal duration (how long the event is expected
to last) values. For instance:

Template: I went to Paris
Occurrence: day, month, year
• I went to Paris on Monday.
• I went to Paris in March.
• I went to Paris in 2010.
Duration: hours, days
• I visited Paris from 10 AM to 9 PM.
• I visited Paris from Mon to Wed.

Each temporal unit corresponds to some list(s)
spanning different magnitudes of time (Table 1),
which are used during NLI pair creation.

3.1 Set I: Temp-Order

We create this NLI challenge set to test whether
language models recognize the relationship of or-
dering between two distinct temporal expressions.
We frame this in the NLI format by having the
premise mention an event occur at a particular time
instance, while the hypothesis mentions the same
event but occurring at a different time instance:

Premise : They got married in March.
Hypothesis : They got married before July.
Label : Entailment

We start constructing a basic NLI pair by choos-
ing a sentence template from the list of events.
Based on the temporal occurrence label of the
event, one of the lists from Table 1 is chosen, and
two time instances are sampled from that list with
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Premise Hypothesis Label
a) He left his job at 12 PM. He left his job before 5 PM. E
b) At 12 PM, he left his job. Before 5 PM, he left his job. E
c) He will leave his job at 12 PM. He will leave his job before 5 PM. E
d) He left his job after 12 PM. He left his job after 9 AM. E
e) He left his job after 12 PM. He left his job before 5 PM. N
f) He left his job after 12 PM. He left his job before 9 AM. C
g) He left his job at 12 PM. He left his job before 17:00. E
h) He left his job in February. He left his job after Apr. C
i) He left his job in October 2011. He left his job after Jan 2011. E
j) He left his job on 21st Sep 2013. He left his job before 23rd Sep 2012. C

Table 2: Variations in NLI pairs for ordering of temporal expressions (E→ entailment, C→ contradiction, N→
neutral). a) is the basic construction; b), c) is with the variation in event template; d), e), f) are when premise uses
a relative preposition to allow the event to happen in a time interval; g), h) are examples of choosing time instances
from two different lists; i), j) are generation of more specific dates using months and month-days with years.

replacement. For the premise, the first time in-
stance is attached so that the event happens pre-
cisely at this time instance. For the hypothesis, we
randomly choose a relative ordering between ‘be-
fore’ and ‘after’ and attach it to the template event
and the second instance. Since the premise claims
that the event occurs at an exact point in time while
the hypothesis claims that the event happens in a
specific time interval, the premise time instance
either lies inside the hypothesis time interval or
it does not, generating the labels of entailment or
contradiction correspondingly.

During label generation, we have assumed that
both time instances lie in the same cycle (e.g., two
weekdays lie in the same week). However, for cases
where the two time instances are close across con-
secutive cycles, the automated label generated this
way might be considered conventionally wrong:

Premise: The concert starts at 2 AM.
Hypothesis: The concert starts before 11 PM.
Label: Entailment

To reduce the number of such edge cases in the
dataset, we do not allow sampling of time instances
that are more than half the length of the list far
apart (e.g., for within a day, the distance between
two hours will be at most 12).

We also introduce some variations in the sen-
tence generation process to analyze the sensitivity
of the models. Firstly, we tweak the event template
by changing its position in the sentence (Table 2
b) and by switching it to future tense (Table 2 c).
Secondly, we allow the premise event to also oc-
cur over an interval of time rather than a point in
time (Table 2 d, e, f ). To generate labels for these

cases, the criteria we follow is that the pair is an en-
tailment if the premise time interval is completely
included in the hypothesis time interval (temporal
inclusion), a contradiction if there is no overlap be-
tween the two (temporal precedence), and neutral
otherwise. Moreover, we allow the premise and
hypothesis to sample points in time from different
lists when possible (Table 2 g, h). We also gener-
ate more specific dates by combining months and
month-days with years (Table 2 i, j) to see if the
language models are still able to reason about the
difference in their ordering.

We construct separate train and test datasets, us-
ing 53 templates for the train split and 18 templates
for the test split. We have 11 different ways of
choosing the two time instances: seven ways of
choosing both from the same list (Table 1) and four
ways of choosing from different lists (Table 2 g-j).
We choose the two time instances for each template
based on its temporal occurrence label and run it
for five iterations, which results in a train dataset
of 16,980 instances and test dataset of 6,140 in-
stances, with the distribution of labels being: 40%
contradiction, 35% entailment, 25% neutral.

3.2 Set II: Temp-Duration

The motivation behind this dataset is to test whether
language models can reason about fine-grained tem-
poral durations. We frame this in an NLI format
by having the premise mention an event occurring
between two points in time, while the hypothe-
sis mentions the same event having occurred for a
given duration:

Premise : The war lasted from 1939 to 1945.
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Premise Hypothesis Label
a) The meeting lasted from 12 PM to 5 PM. The meeting lasted for 5 hours. E
b) The meeting lasted from 12 PM to 5 PM. The meeting lasted for 50 hours. C
c) The meeting lasted from 12 PM to 5 PM. The meeting lasted for less than 5 hours. C
d) The meeting lasted from 12 PM to 5 PM. The meeting lasted for less than 6 hours. E
e) The meeting began at 12 PM and lasted

until 5 PM.
The meeting lasted for 5 hours. E

f) The meeting lasted from 9 PM to 3 AM. The meeting lasted for 6 hours. E
g) The meeting lasted from 12 PM to 17:00. The meeting lasted for 5 hours. E
h) The spring quarter lasts from Mar to June. The spring quarter lasts for 3 months. E
i) The war lasted from July 1914 to Nov

1918.
The war lasted for 4 years 4 months. E

j) The war lasted from July 1914 to Nov
1918.

The war lasted for 52 months. E

Table 3: Variations in NLI pairs for duration calculation (E→ entailment, C→ contradiction). a) - d) are a few
examples from the 6 basic pairs; e) is with a changed premise structure; f) is when the hypothesis time instance
crosses over to the next cycle; g), h) are examples of choosing time instances from two different lists; i), j) are
generation of specific dates using months and years in two different formats.

Hypothesis : The war lasted for 6 years.
Label : Entailment

We begin forming a basic NLI pair by choosing
a sentence template. Based on the event’s temporal
duration label, a list from Table 1 is selected, and
two time instances are randomly sampled without
replacement. The smaller instance is mentioned in
the premise as the event start time and the other in-
stance as the event end time. We construct multiple
hypotheses for the same premise. First, we calcu-
late the gold duration (GOLD) by finding the dif-
ference between the two instances, assuming both
the instances are part of the same cycle. Then, the
hypothesis mentions the event to have occurred in
two different settings (equal to, less than) for three
different durations (GOLD, GOLD+1, GOLD*10),
generating a total of six hypotheses (Table 3 a-d
are a few examples). We do this to test whether
the NLI models can reason for the claimed du-
ration’s validity only when they are very distant
(GOLD*10) or also very close (GOLD+1) to the
gold duration. Generation of true labels for the
pairs is automated, producing an entailment or con-
tradiction depending on whether the gold duration
falls in the duration range specified by the hypothe-
sis.

We again introduce two variations in the dataset
creation process. First, we change the wording of
the premise sentence (Table 3 e). Secondly, while
sampling the time instances, we force the ending
instance to be picked such that it falls before the

starting instance in the list, which implies that the
event crossed over to the next cycle. In such cases,
the calculation of the gold duration is slightly dif-
ferent (Table 3 f ). We perform this next cycle
calculation for all lists in Table 1 except month-
days (because gold calculation without specifying
the exact month is ambiguous) and years (because
the list is acyclic). We also allow a similar blend
of temporal expressions, like in Temp-Order set,
combining the two hours (Table 3 g) and months
(Table 3 h) lists. We construct specific dates by
including months and years and allow the duration
to be mentioned in a year-month format (Table 3 i)
or a months-only format (Table 3 j).

We create separate train and test datasets using
the same split of 53 and 18 templates as before.
For each template, time instances are chosen based
on their temporal duration label, along with the
variations as mentioned above applied (Table 3 e-j).
Running each template for five iterations produces
a train dataset of 13,500 instances and test dataset
of 3,540 instances, with the label distribution: 50%
entailment and 50% contradiction.

3.3 Set III: Cross-Unit Duration

The motivation behind the creation of the Cross-
Unit Duration set is to test whether language mod-
els understand the conversion relationship between
magnitudes specified in different units of time; for
instance, if models are able to interpret that 5 hours
are less than 350 minutes but more than 250. More-
over, we investigate if these models are better at
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Premise Hypothesis Label
a) The store will close in 2 hours. The store will close before 40 minutes. C
b) In 2 hours, the store will close. The store will close after 84 minutes. E
c) The store will close in 2 days. After 34 hours, the store will close. E
d) After 4 days, the store will close. The store will close before 38 hours. C
e) The store will close before 4 days. Before 174 hours, the store will close. E
f) The store will close before 6 hours. The store will close after 77 minutes. N
g) After 3 hours, the store will close. The store will close after 409 minutes. N

Table 4: Variations in NLI pairs for cross-unit duration comparison (E→ entailment, C→ contradiction, N→
neutral). a) is the basic pair; b), c) are variations of basic pair with template position changed; d) - g) are variations
in which the premise event occurs over a range of time.

certain kinds of conversions. We frame this task
in an NLI format in a similar manner to the Temp-
Order set. In the premise, we mention a future
event that will occur after a given duration (T1),
while in the hypothesis we mention the same future
event to occur before or after a different duration
(T2). Apart from varying magnitudes, T1 and T2
are also specified in different but adjacent units
of time. More specifically, T1 is specified in the
higher adjacent unit of time, i.e., if T2 is speci-
fied in minutes, then T1 will be specified in hours.
Since the premise mentions an event occurring at a
future point in time while the hypothesis mention
an event occurring over a time interval bounded on
just one side, the premise event either lies in the
interval or not, leading to the labels entailment and
contradiction respectively. We tried multiple varia-
tions similar to Temp-Order set, like changing the
position of the template in the premise/hypothesis
(Table 4 b, c) and making the event in the premise
also occur over a future interval (Table 4 d-g). The
labeling procedure of the second variation is again
similar to Temp-Order set.

To create the challenge set, we first pick a tem-
plate and look at the list of its temporal occurrence
values. We then iterate over all adjacent values in
this list, e.g., seconds-minutes, hours-days, months-
years. For each pair, we iterate over a manually
created list of magnitudes for the higher unit of
time (T1) for the premise. We then pick a magni-
tude in the smaller unit of time (T2) which is either
higher or lower than T1. T2’s value is generated
randomly, but a difference range parameter con-
trols its absolute difference with T1’s value. For
each fixed template, fixed duration unit pair, and
fixed magnitude of T1, we generate twelve differ-
ent premise-hypothesis pairs, four in which the
premise occurs at a future point in time, and eight

in which it occurs over a future interval of time.
Using a difference range parameter of 5, we cre-
ate a training set of 42,240 rows and a test set of
15,840 rows. Due to the challenge set creation pro-
cedure, the resultant dataset is naturally balanced
with the same number of samples for each of the
three labels.

4 Experimental Setup

We evaluate three different NLI models on each
of our challenge sets. The first model is a pre-
trained RoBERTa-large model fine-tuned on the
MNLI corpus, which reports 90.8% accuracy on
the MNLI-matched task. The second model is Mi-
crosoft’s DeBERTa-large model fine-tuned on the
MNLI corpus, which reports 91.9% accuracy on
the MNLI-matched task. Both these models are
trained on all three labels: entailment, contradic-
tion, and neutral.

The third model comes from Vashishtha et al.
(2020), which is a RoBERTa-large model fine-
tuned on their temporal NLI datasets. For Temp-
Order set, we evaluate their model trained on the
UDS-NLI (order) corpus as it explored ordering re-
lations between events, and we wanted to analyze
if any of that knowledge transfers over for deter-
mining the ordering between temporal expressions.
Similarly, for Temp-Duration and Cross-Unit Du-
ration sets, we evaluate their model trained on the
UDS-NLI (duration) corpus, which explored more
coarse-grained duration of events. In contrast to
the models fine-tuned on MNLI, these models are
only trained on binary classification - producing

‘entailed’ for the entailment label and ‘not-entailed’
for the contradiction and neutral labels. We have a
separate majority baseline corresponding to these
models.

We report performances of all datasets under
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Model Method Accuracy F1 Score

Majority Ternary Classification 40.29 23.14
Binary Classification 65.19 51.46

RoBERTa (MNLI)
Direct Evaluation 52.75 45.36

Hypothesis Only Training 40.29 ± 0 23.14 ± 0
Train and Evaluate 99.81 ± 0.03 99.81 ± 0.03

DeBERTa (MNLI)
Direct Evaluation 51.57 44.29

Hypothesis Only Training 40.29 ± 0 23.14 ± 0
Train and Evaluate 99.76 ± 0.04 99.76 ± 0.04

UDS-NLI (order) Direct Evaluation 56.36 57.20

Table 5: Evaluating Temp-Order set on NLI models

three different settings:

1. Direct Evaluation: Evaluating the pre-
trained NLI models directly on the test splits
of our challenge sets.

2. Train and Evaluate: Fine-tuning the NLI
models with the train splits and reporting per-
formances on the test splits. We report this
to recognize the complexity of the synthetic
datasets, and the ceiling performances that
various NLI models can achieve on them.

3. Hypothesis Only Training: Fine-tuning the
NLI models in a hypothesis-only setting (Po-
liak et al., 2018) with the train splits, and re-
porting performances on the test splits. We
report this as a control for the results achieved
in the Train and Evaluate setting.

We do not train the models fine-tuned on UDS-
NLI corpora, and only report their performance
under the Direct Evaluation setting, as the archi-
tecture of those models is similar to that of the pre-
trained RoBERTa-MNLI model and we hypothe-
size that this may lead to similar results on training.
More details on the training process are mentioned
in Appendix A.

5 Results & Discussions

We present the results of all three challenge sets
separately.

5.1 Set I: Temp-Order
Results of Temp-Order set are summarised in Ta-
ble 5. When evaluating on the RoBERTa and De-
BERTa models, there is an improvement of about
10% over the majority baseline. On analyzing the
effect of different variations mentioned in Table
2, we find that changing the template position or

its tense does not produce any significant differ-
ence in performance. However, we find that pairs
where the premise event occurred at a fixed time
instance (2 a) have an average of 75% accuracy,
while the pairs where the premise event occurred
over a time interval (2 d-f ) have an average accu-
racy of 28%. This implies that models trained on
MNLI have some basic understanding of temporal
ordering, especially in determining whether a fixed
time instance is present in another time interval.
However, it gets difficult to reason about the order-
ing between two time intervals, where discerning
the label is also not as straightforward.

We further analyze the accuracies for different
methods of choosing the two time instances, and
the results for DeBERTa are summed up in Figure
1. For pairs where the premise event takes place at
a fixed point in time, most methods in which both
time instances were sampled from the same list give
over 73% accuracy. Among the methods in which
time instances are sampled across multiple lists,
dates in which months are combined with years
give an average accuracy of 74%, but this drops
to 57% when month-days are added, signifying
that the comparison of specific dates becomes too
complicated for the NLI model. The model also
has a hard time mapping hours between 12 and 24-
hour format, giving only 59% accuracy. For pairs
where the premise takes place over a time interval,
the accuracies of all methods are below 35%.

We also evaluate the RoBERTa model trained
on UDS-NLI (order) corpus on our challenge set.
However, the average performance was only 56%,
even below the majority baseline for the corpus,
not indicating any significant transfer of knowledge
from their task of event-based temporal ordering.

The hypothesis-only baseline for both the
RoBERTa/DeBERTa models is exactly the major-
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Figure 1: Comparison of accuracies across different ways of choosing temporal expressions when running Temp-
Order set on DeBERTa fine-tuned on MNLI. Label ‘DATE DMY’ implies generating dates using all month-day,
month and year (Table 2 j), while ‘DATE MY’ uses only month and year (Table 2 i). The added descriptions signify
where the month instances are drawn from, where ‘month (full)’ implies that both months come from the month
(full name) list, ‘month (abv)’ implies that they come from month (abbreviated) list, and ‘month (both)’ implies
that one month instance comes from each of the two lists. Labels ‘MONTH (both)’ and ‘HOUR (both)’ signify
similar methods of choosing from multiple lists (Table 2 h and g correspondingly).

ity baseline, which is not surprising as the true
label cannot be determined without knowing the
premise time instance. Further fine-tuning the pre-
trained MNLI models on our Temp-Order set leads
to an almost perfect accuracy of 99%. This is de-
spite having separate templates for the train and test
split, and having time instances randomly sampled
from different lists. Since our method of gener-
ating labels was automated and depended on the
values of the time instances, we infer that the nu-
merous parameters of a large language model were
able to learn this label generation process from the
artificial NLI data.

5.2 Set II: Temp-Duration

Results for Temp-Duration set are summarized in
Table 6. Both the RoBERTa and DeBERTa models
fine-tuned on MNLI produce poor accuracies of
around 55%, just over the majority baseline. While
analyzing the DeBERTa predictions, we found that
the model produced entailment for 83% of the data
points, implying that it is not able to adequately
determine durations. The different variations (Ta-
ble 3) or methods of sampling time instances also
did not have any significant effect. We investigated
the performances of the six types of hypotheses
and found that among the hypothesis types with
the contradiction gold label, ‘equal to GOLD*10’
produced 0.68 F1-score, compared to ‘equal to
GOLD+1’ and ‘less than GOLD’, which produced
0.15 and 0.07 F1-scores respectively. This might

indicate that while the NLI model has difficulty
figuring out when the claimed duration is incor-
rect, it still does better off when it is very distant
(GOLD*10) from the gold duration compared to
when it is very close (GOLD+1). We also find
that for the ‘equal to GOLD’ hypothesis, pairs of
instances far apart in a list tend to be misclassi-
fied more than pairs of instances that are closer
to each other. This implies that determination of
exact duration gets difficult for the NLI model as
the distance between instances increases.

We also evaluate the model trained on UDS-NLI
(duration) corpus on our set, and the results are
slightly above the majority baseline. While the
predictions by this model were not as skewed, we
could not find any significant impact of the vari-
ations or the different methods of sampling time
instances, not indicating any possible knowledge
transfer from their problem of determining coarse-
grained event duration.

On fine-tuning our challenge set under the
hypothesis-only setting, both MNLI models sur-
prisingly produce at least 15% gains in accuracy
over the majority baseline. We investigate and find
that the models use lexical cues from the different
hypothesis types, producing entailment for all ‘less
than’ hypotheses. For the ‘equal’ hypotheses, they
predict contradiction when the claimed duration
is a large value (more likely to be GOLD*10) and
entailment when it is smaller (more likely to be
GOLD). However, under the standard NLI training
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Model Method Accuracy F1 Score
Majority1 Binary Classification 50.00 33.33

RoBERTa (MNLI)
Direct Evaluation 54.32 46.64

Hypothesis Only Training 68.82 ± 0.22 66.84 ± 0.51
Train and Evaluate 91.86 ± 6.42 91.85 ± 6.42

DeBERTa (MNLI)
Direct Evaluation 56.67 51.53

Hypothesis Only Training 64.15 ± 0.27 59.64 ± 0.41
Train and Evaluate 73.72 ± 3.92 73.28 ± 4.50

UDS-NLI (duration) Direct Evaluation 58.44 57.66

Table 6: Evaluating Temp-Duration set on NLI models

Model Method Accuracy F1 Score

Majority Ternary Classification 33.33 16.67
Binary Classification 66.67 53.33

RoBERTa (MNLI)
Direct Evaluation 35.47 28.71

Hypothesis Only Training 49.38 ± 0.71 39.51 ± 0.52
Train and Evaluate 99.97 ± 0.02 99.97 ± 0.02

DeBERTa (MNLI)
Direct Evaluation 45.02 38.60

Hypothesis Only Training 49.58 ± 0.79 41.29 ± 0.56
Train and Evaluate 99.94 ± 0.03 99.94 ± 0.03

UDS-NLI (duration) Direct Evaluation 52.61 53.54

Table 7: Evaluating Cross-Unit Duration set on NLI models

scenario, these cues are not the only factor behind
learning, as the RoBERTa MNLI model produces
91.86% average accuracy, which is a gain of 20%
over the hypothesis-only setting. Among the var-
ious methods of sampling time instances, years
performs the worst, producing only 66% accuracy,
possibly because the lengths of duration can be as
large as 100 years. Finally, the hypothesis types

‘equal to GOLD*10’ and ‘less than GOLD*10’ pro-
duce 99% accuracy, while ‘equal to GOLD’ and

‘less than GOLD’ report below 90%, confirming
our speculation that it is easier for the models to
reason about the validity of the claimed duration
when it is distant from the gold duration.

5.3 Set III: Cross-Unit Duration Set

As shown in Table 7, all the models produce
poor performances on direct evaluation, just near
the majority baseline. DeBERTa fine-tuned on
MNLI manages to perform better when compared
to RoBERTa fine-tuned on MNLI by around 10%
on overall accuracy. Hence, we can conclude that
DeBERTa has a slightly better understanding of
cross-unit duration comparison when compared to
RoBERTa.

1Same majority baseline because no neutral labels.

Similar to Temp-Order set, all models performed
better compared to their respective majority base-
lines when the premise event occurs at a future
point in time rather than over a time interval. More
specifically, we see an improvement in accuracy
of around 18% (29.65 to 47.12) for RoBERTa and
around 10% (41.77 to 51.52) for DeBERTa when
we switch from the premise occurring over a time
interval to a point in time.

We analyzed the results on adjacent units to rec-
ognize if there are specific pairs for which the mod-
els are better able to figure out the conversion re-
lationship. We did not find any significant pair
for RoBERTa or DeBERTa models, but we find
that the UDS-NLI (duration) model does better on
bigger unit pairs of duration, i.e., it performs the
best on conversion between month-years (56.03%
F1), then day-months (55.32% F1), then hours-
days (51.02% F1), and then minutes-hours (16.74%
F1). This suggests a better transfer of knowledge
for bigger time units from the UDS-NLI (duration)
model to our challenge set.

Similar to Temp-Duration set, on fine-tuning un-
der the hypothesis-only setting, both MNLI models
produce around 16-17% gains in accuracy over the
majority baseline using lexical cues present in the
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hypotheses due to the challenge set creation pro-
cess. For the hypotheses that contain ‘before’, the
models tend to predict entailment if the duration
(T2) is large, and contradiction if it is small. Sim-
ilarly, for the hypotheses that contain ‘after’, the
models mostly predict contradiction if the dura-
tion is large, and entailment if it is small. How-
ever, on standard training, the accuracy goes up
from around 50% to near perfect 99%, showing
that these cues are not the only reason behind the
model’s performance and that it actually learns the
relationship between the premise and hypothesis.

We believe a valuable addition to this challenge
set would be introducing more varied phrasing of
prepositions. That is, using synonymous ways of
denoting a temporal event occurring before, after,
or strictly at a point in time. In particular, phrasing
like ‘after the next 60 minutes’ or ‘sometime after
60 minutes pass’ could be examples of more spe-
cific ways to represent that an event occurred ‘after
60 minutes’ - a phrase which we acknowledge may
read to mean ‘in exactly 60 minutes’, as opposed
to some time after.

6 Conclusion

We create three challenge sets that test different
kinds of relationships between temporal expres-
sions. We evaluate these challenge sets on popular
NLI models like RoBERTa and DeBERTa trained
on MNLI, and find that while they can reason about
simple cases of ordering between time instances,
they fail when presented with more complicated
cases or when temporal reasoning requires deter-
mining fine-grained duration. Since our challenge
sets were synthetically created, training on them
helped the NLI models to figure out the label gen-
eration process, and they produced near-perfect
accuracy for the Temp-Order and the Cross-Unit
Duration sets. A direction for future research could
be evaluating and comparing models, trained on
other NLI datasets containing temporal expressions,
on our challenge sets. Another direction could be
to collect naturally occurring sentences that con-
tain temporal expressions from large corpora and
recast them into NLI format for similar testing of
understanding of temporal expressions.
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A Training Details

We use three different NLI models for
our experiments. For the RoBERTa and
DeBERTa models fine-tuned on MNLI,
we use the roberta-large-mnli and
microsoft/deberta-large-mnli models
respectively, available under the transformers
library from HuggingFace (Wolf et al., 2020). For
the UDS-NLI models, we directly use the saved
RoBERTa-large models for UDS-NLI (duration)
and UDS-NLI (order) made publicly available by
Vashishtha et al. (2020).

For training, we use an Adam optimizer, with
a learning rate of 2 ∗ 10−5 and 0.1 weight decay.
We use a batch size of 16 for training and 128 for
testing. We train for 10 epochs, using early stop-
ping with a patience of 2. We run each experiment
for three random seeds (3, 5, 7), and use them to
calculate the mean and standard deviation for the
accuracy and F1 (weighted) score metrics.
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