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Abstract

Despite the success of multilingual pre-trained
language models, it remains unclear to what
extent these models have human-like gen-
eralization capacity across languages. The
aim of this study is to investigate the out-of-
distribution generalization of pre-trained lan-
guage models through Natural Language Infer-
ence (NLI) in Japanese, the typological prop-
erties of which are different from those of
English. We introduce a synthetically gener-
ated Japanese NLI dataset, called the Japanese
Adversarial NLI (JaNLI) dataset, which is in-
spired by the English HANS dataset and is de-
signed to require understanding of Japanese
linguistic phenomena and illuminate the vul-
nerabilities of models. Through a series of
experiments to evaluate the generalization per-
formance of both Japanese and multilingual
BERT models, we demonstrate that there is
much room to improve current models trained
on Japanese NLI tasks. Furthermore, a com-
parison of human performance and model per-
formance on the different types of garden-
path sentences in the JaNLI dataset shows that
structural phenomena that ease interpretation
of garden-path sentences for human readers do
not help models in the same way, highlighting
a difference between human readers and the
models.

1 Introduction

Generalization is one of the essential components
that account for the understanding of language. In
recent years, pre-trained models such as BERT (De-
vlin et al., 2019) have provided high performance
on both English benchmarks (Wang et al., 2019)
and multilingual benchmarks (Liang et al., 2020),
suggesting that they might have some cross-lingual
generalization capacity. Yet, while these models
have achieved remarkable performance on an in-
distribution test set (i.e., training and test splits are
given as the same distribution), several previous
studies have pointed out that the models fail on

out-of-distribution test sets (i.e., examples drawn
from a distribution different from that of the train-
ing set) (Marvin and Linzen, 2018; McCoy et al.,
2019) and that the models varied widely in terms
of the generalization performance (McCoy et al.,
2020; Yanaka et al., 2020). It remains an open ques-
tion to what extent pre-trained models can realize
human-like generalization ability.

A standard task for assessing whether pre-trained
language models possess human-like language un-
derstanding is Natural Language Inference (NLI),
which is the task of judging whether a premise sen-
tence entails a hypothesis sentence. Recently, a
number of studies have sought to probe the gener-
alization performance of models and detected their
fallible heuristics with various NLI datasets (Naik
et al., 2018; Glockner et al., 2018; McCoy et al.,
2019; Rozen et al., 2019; Goodwin et al., 2020;
Yanaka et al., 2021). However, these studies tend
to focus on English NLI datasets, and independent
analysis in multiple languages would be desirable.
In response to this challenge, the study of the out-
of-distribution generalization ability of NLI mod-
els from cross-lingual perspectives has begun to
be explored (Hu et al., 2021) but is not yet fully
developed.

The aim of this paper is to investigate to what
extent pre-trained language models have general-
ization capacity in Japanese NLI. For this purpose,
we present a Japanese linguistically challenging
NLI dataset, called the Japanese Adversarial NLI
(JaNLI) dataset.! This dataset is inspired by the
English HANS dataset (McCoy et al., 2019) and is
designed to cover a variety of linguistic phenomena
specific to Japanese, a language typologically dif-
ferent from English (Hinds, 1986; Shibatani, 1990).
Generating inference examples in a controlled way
allows us to analyze whether language models are
sensitive to factors such as word order and syntactic

"The dataset will be publicly available at https://
github.com/verypluming/JaNLI.
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structure in Japanese.

We present a series of experiments with the
JaNLI dataset to evaluate the generalization per-
formance of Japanese and multilingual BERT mod-
els. In addition, we compare human performance
with model performance. Our experiments shed
light on several shortcomings of the models and
highlight the following challenges for cross-lingual
generalization in NLI:

* Japanese and multilingual NLI models trained
on Japanese NLI datasets other than JaNLI
behave differently across different classes of
sentences. In particular, cross-dataset gen-
eralization on non-entailing pairs is weaker
on non-entailing pairs than on entailing pairs
(Section 4.2).

» Data augmentation with a small subset of the
JaNLI dataset can help improve model perfor-
mance, but the accuracy is not increased for
some linguistic phenomena (Section 4.3).

* Whereas humans can achieve near-perfect per-
formance on the JaNLI dataset, there is sub-
stantial room for improving the models for
Japanese NLI. In addition, structural phenom-
ena that ease the interpretation of garden-path
sentences for human readers do not help the
models in the same way (Section 4.4).

2 Related Work

Previous studies have probed pre-trained language
models on various NLI tasks and discovered that
generalization capacity is limited for understand-
ing diverse linguistic phenomena (Naik et al., 2018;
Glockner et al., 2018; McCoy et al., 2019; Rozen
et al., 2019; Goodwin et al., 2020; Yanaka et al.,
2020; Hu et al., 2021; Yanaka et al., 2021) and an-
notation artifacts (Gururangan et al., 2018) in stan-
dard English NLI datasets such as the SNLI (Bow-
man et al., 2015) and MultiNLI (Williams et al.,
2018) datasets. The work most closely related to
ours is HANS (McCoy et al., 2019), which is an
NLI dataset designed to analyze whether models
use structural heuristics to make predictions. Re-
cently, HANS has been used for out-of-distribution
evaluation data (Utama et al., 2020; Tu et al., 2020;
Yaghoobzadeh et al., 2021; Du et al., 2021) and has
been used for data augmentation to improve the
generalization performance of models (Min et al.,
2020).

Although the generalization capacity of NLI
models has been studied mainly in English, non-
English NLI datasets (Ham et al., 2020; Hu et al.,
2020; Wijnholds and Moortgat, 2021) and multilin-
gual NLI datasets (Conneau et al., 2018) have re-
cently been developed to analyze the performance
of pre-trained language models across languages.
Several Japanese NLI datasets have been created.
The Japanese SNLI dataset (Yoshikoshi et al., 2020)
was generated by automatic translation of the En-
glish SNLI dataset. The Japanese Realistic Textual
Entailment Corpus (Hayashibe, 2020) was created
by using realistic texts (hotel reviews) and anno-
tating labels via crowdsourcing. JSeM (Kawazoe
et al., 2017) is a Japanese version of the FraCaS
test suite (Cooper et al., 1994), which contains man-
ually designed problems involving semantic phe-
nomena that have been well studied in formal se-
mantics. Our dataset is designed to assess whether
models capture linguistic structures in Japanese or
simply rely on fallible heuristics.

Recent work (Sinha et al., 2021a,b; Gupta et al.,
2021; Pham et al., 2021) has shown that shuffled
word order has little effect during training or in-
ference with pre-trained language models, which
in turn indicates that the models are insensitive to
word order in NLI tasks. In English, however, the
shuffled data are usually unacceptable and tend to
obscure their gold labels. Kuribayashi et al. (2021)
have re-analyzed the hypothesis that language mod-
els with lower perplexity are more human-like
language models in Japanese rather than in En-
glish, and their experiments have demonstrated
the lack of universality of this hypothesis and the
importance of cross-lingual evaluation of models.
Japanese word order is fairly free, which enables us
to produce grammatically correct sentences even
when the word order is shuffled. Analyzing the be-
havior of models on controlled Japanese inference
examples should provide further insights into the
sensitivity of the models to word order.

3 Dataset Generation

To analyze the generalization capacity of NLI
models, we introduce a synthetically generated
Japanese NLI dataset where each pair (P, H) of
a premise and hypothesis is tagged with a label
for structural pattern and linguistic phenomenon.
Table 1 shows the definition of each pattern and
some examples.

338



Example

Phenomena: Scrambling (Particle-swapping)

Pattern/Description
P:
FULL OVERLAP
P and H share all words and differ only
in word order. H:

FTARX=HH—=—o7r—% I LA
rider ga surfer o rescued

(The rider rescued the surfer)
FTARX—= % =T 7= D HIFHELE
rider o surfer ga rescued

(The surfer rescued the rider)

Phenomena: NP-coordination (disjunction)

P:
ORDER-PRESERVING SUBSET
All the words in H are contained in P in
an order-preserving way. H:

FHE > TR EATVS
student or child ga playing

(The student or the child is playing)
FEPEATNS

student ga playing

(The student is playing)

Phenomena: Garden-path

P:
MIXED SUBSET
All the words in H are contained in P in
a mixed (non-order-preserving) way. H:

FAE KN TW S FAE & B L
child ga swimming student o rescued
(The child rescued the swimming student)

T % A B L

child o student ga rescued
(The student rescued the child.)

Phenomena: Garden-path

P:
SUBSEQUENCE
H is a contiguous subsequence of P but
not a constituent of P. H:

BDOFDHRE-TWVWDE LDT & KRTW5
boy ga sleeping girl o looking

(The boy is looking at the sleeping girl)
BOTHW-oTWDB

boy ga sleeping

(The boy is sleeping)

Phenomena: Modal

P:

CONSTITUENT
H is a constituent of P.

Vol Ul7%s DV IK-TWVS
perhaps child ga sleeping

(Perhaps the child is sleeping)
FHABRoTWS

child ga sleeping

(The child is sleeping)

Table 1: Five patterns of structural relations between premise (P) and hypothesis (H) sentences: All the examples
are non-entailment. 7>(ga) is a nominative case marker; % (0) is an accusative case marker.

3.1 Structural patterns and heuristics

We classify the structural relationship between
premise and hypothesis sentences into five patterns,
each of which is associated with a type of heuristic
that can cause incorrect prediction of the entail-
ment relation. For instance, a model that relies on
the heuristics of judging an inference as entailment
when the premise and hypothesis sentences share
all the words will make an incorrect prediction for
a non-entailment relation. We follow McCoy et al.
(2019) for the definitions of the SUBSEQUENCE and
CONSTITUENT patterns. McCoy et al. (2019) also
proposed the overlap heuristics (H is constructed
from words in P), which we divide into three types:
FULL-OVERLAP, ORDER-PRESERVING SUBSET
(ORDER-SUBSET in short), and MIXED-SUBSET.
Note that these five patterns are defined to be mu-
tually exclusive. This fine-grained classification of

overlap is suitable for analysis taking into account
the characteristics of Japanese that word order is
relatively free (Hinds, 1986; Shibatani, 1990). We
explore whether language models can perform bet-
ter on some patterns compared with others.

3.2 Linguistic phenomena

To generate these five patterns of adversarial in-
ferences in a controlled way, we focus on 11
categories of Japanese linguistic phenomena and
constructions: garden-path sentences with noun-
modifying clauses, scrambling (including particle-
swapping), passive, causative, factive adverbs,
factive verbs, modal, negation, NP-coordination,
sentence-subordination (those corresponding to
because-clauses and if-clauses), and sentence-
coordination (sentence conjunction and disjunc-
tion).
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For each phenomenon, we fix a template for the
premise sentence P and create multiple templates
for hypothesis sentences H. In total, we produced
144 templates for (P, H) pairs. Each pair of premise
and hypothesis sentences is tagged with an entail-
ment label (entailment or non-entailment), a struc-
tural pattern, and a linguistic phenomenon label.
Table 2 shows an example template for garden-
path sentences with noun-modifying clauses. See
Appendix A for examples of templates for each
linguistic phenomenon.

To evaluate the performance of NLI models for
Japanese, the garden-path construction as shown
in Table 2 deserves special attention. In this ex-
ample, the challenge is to detect the boundary of
the noun-modifying clause in the premise sentence
P as [child ga [Np running cat] o chased]. Here
the noun cat (Ji) is the head of the NP with the
noun-modifier running (& > T\ %); when this
noun is processed in the entire sentence, the subject
child (¥-ff%) must be reanalyzed out of the clause
so that running applies to cat, not to child. Thus,
P entails Hy (The cat is running) but not Hy (The
child is running).

Some factors are known to facilitate the interpre-
tation of garden-path sentences (Miyamoto, 2008).
We analyze whether the model predicts the en-
tailment labels more accurately when the infer-
ence example includes such factors. We catego-
rized problems involving garden-path sentences
according to four factors that make it easier for
people to interpret them: double-o-constraints (GP-
double-0) (Miyamoto, 2002), presence of punc-
tuations (GP-punctuation), selectional preference
(GP-selectional) (Inoue, 2006), and presence of the
topic marker wa (GP-wa) (Inoue, 1991). We also in-
clude the construction where the subject and object
NPs of a garden-path sentence are swapped so that
no garden-path effect can occur (GP-scrambling).
Table 3 shows an example of each construction.

In the psycholinguistics literature, it has been ob-
served that the processing of garden-path sentences
becomes more difficult when they contain more NP-
arguments (Inoue, 1990). Thus, we tagged infer-
ence problems with the number of NP-arguments.

3.3 Dataset overview

The JaNLI dataset was automatically generated by
instantiating each template 100 times, resulting in a
total of 14,400 examples. Table 4 shows the statis-
tics of the linguistic phenomena. We generated

the same number of entailment and non-entailment
examples for each phenomenon. Table 5 shows
the statistics of the structural patterns (heuristics).
Note that the ratio of entailment and non-entailment
examples is not necessarily 1 : 1 for each pattern.
This is because we first generated the templates for
each linguistic phenomenon and then annotated the
structural pattern with the templates.

We used 158 words (nouns and verbs) in total.
Nouns and simple verbs were selected from words
that occur more than 20 times in the JSICK and
JSNLI datasets. Compound verbs were selected
from the Compound Verb Lexicon”. Each transitive
and intransitive verb was selected so that every
noun (basically, denoting a human) is a plausible
argument of it.

4 Experiments and Analysis

4.1 Experimental setting

One of our aims is to investigate the differences
in behavior between monolingual and multilingual
pre-trained language models. For this purpose, we
conducted experiments with BERT (Devlin et al.,
2019), a standard pre-trained language model that
is widely used for both multilingual and Japanese
texts. We compared the difference in performance
between the Japanese and multilingual BERT mod-
els, which were implemented by using the trans-
formers framework?. In all experiments, we trained
each model for 30 epochs with early stopping (pa-
tience = 3). We perform five runs and report the
average and standard deviation of the accuracy of
the models.

Model Japanese BERT is pre-trained on
Japanese Wikipedia, and the model processes
input texts with word-level tokenization based on a
standard Japanese dictionary (ipadic) (Asahara and
Matsumoto, 2003), followed by the WordPiece
subword tokenization (Schuster and Nakajima,
2012), trained with whole-word masking enabled
for the masked language model objective. For
multilingual BERT, we used a multilingual-cased
model pre-trained on Wikipedia in 104 languages
including Japanese, which is more recommended
over a multilingual-uncased model in the case of
languages with non-Latin alphabets like Japanese.

Training data To see whether the size and qual-
ity of training data affect the performance, we

Zhttps://db4.ninjal.ac.jp/vvlexicon/en/
3https://github.com/huggingface/transformers
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Templates for P and H

Sentence Example

Phenomenon/Pattern

P: NP1 galVNP2o

# Hj: NP1 galV
= Hy: NP2 galV
= H3: NP1 gaNP2o
# Hy: NP1 o NP2 ga

TP E-TVD I %
child ga running cat o
(The child chased the running cat)

Garden-path sentence

FHE WS £ 5 TV D (The child is running) SUBSEQUENCE
I M > T\ B (The cat is running) MIXED-SUBSET

Tt 2V &
ERARCE N

(The child chased the cat) ORDER-SUBSET
(The cat chased the child) MIXED-SUBSET

Table 2: Example templates for premise and hypothesis sentences. The premise P is a garden-path sentence with a
noun-modifying clause. “=-" indicates entailment and “#-” non-entailment.

Subcategory Template Example
FHE 2 & ZDF % BTz
GP-double-o NP1 ga NP2 o NP3 o TV-02 child ga cato girl o chased

(The child chased the girl who rescued the cat)

GP-punctuation NP1 ga

,IVNP2o

THED, EoTWV D B &
child ga PUNCT running cat o
(The child chased the running cat)

GP-selectional ~ NP-non-human ga IV-human NP2 o

JADB LPRNoTWD XM %
squirrel ga talking woman o
(The squirrel chased the woman who was talking)

GP-wa NP1 walIV NP2 o

FHIEE-TVWDE I %
child wa running cat o
(The child chased the running cat)

GP-scrambling IV NP2 o NP1 ga

EoTW5 il &2 Tt
running cat o child ga
(The child chased the running cat)

Table 3: Example templates for variants of garden-path sentences in the premise sentence.

Linguistic Phenomenon

Examples (Templates)

GP-normal 1,600 (16)
GP-double-o 800 (8)
GP-punctuation 800 (8)
GP-selectional 800 (8)
GP-wa 800 (8)
GP-scrambling 1,600 (16)
Scrambling 1,600 (16)
Passive 400 (4)
Causative 400 (4)
Factive adverb 800 (8)
Factive verb 800 (8)
Modal 600 (6)
Negation 600 (6)
NP-coordination 1,200 (12)
Sentence-subordination 800 (8)
Sentence-coordination 800 (8)
Total 14,400 (144)

Table 4: Statistics of linguistic phenomena.

Pattern (Heuristics) | Entailment Non-entailment Total
FULL-OVERLAP 800 1,200 2,000
ORDER-SUBSET 1,600 800 2,400
MIXED-SUBSET 3,400 2,000 5,400
SUBSEQUENCE 200 2,000 2,200
CONSTITUENT 1,200 1,200 2,400
Total 7,200 7,200 14,400

Table 5: Statistics of structural patterns.
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use two types of Japanese datasets as basic train-
ing datasets: JSICK and JSNLI (Yoshikoshi et al.,
2020)*. Table 6 shows the data split and examples
from the JSICK and JSNLI datasets. We compare
the model performance on the in-distribution test
sets (JSICK and JSNLI) with that on the out-of-
distribution test set (JaNLI). While the JSICK and
JSNLI datasets use three labels (entailment, contra-
diction, and neutral), the JaNLI dataset uses two
labels (entailment and non-entailment), following
the HANS dataset (McCoy et al., 2019). To calcu-
late the model accuracy on each test set, we take the
highest-scoring label out of entailment, contradic-
tion, and neutral and then collapse contradiction
and neutral into non-entailment.

JSICK was created by manually translating
SICK (Marelli et al., 2014), an English NLI dataset
that targets compositional inference, into Japanese
by experts. Marelli et al. (2014) created the original
SICK dataset by expanding and normalizing the
sentences from Flickr image captions with manual
rules to create inference examples involving such
linguistically challenging phenomena as negation,
disjunction, and active-passive alternation. We ex-

*https://nlp.ist.i.kyoto-u.ac.jp/index.php



Dataset Training Test Creation Protocol Classes Inference Example Label
P:KEERIZ U CR@IAEZETWE AE—ADHW0ARn
. Nobody is practicing water safety and wearing preservers Contradiction
JSICK  5.0K 49K Manual Translation 3 H: 2D 27— D ) AR % S8 LT\, SaiisE A 5T 5 (Non-entailment)
This group of people is practicing water safety and wearing preservers
P HEHIZRBREADY ¥ 7 v DL
. . The woman in a red and white jacket riding a bicycle .
JSNLI 533K 39K Automatic Translation 3 H: VNI 2 ’ ¥ : Entailment
The woman is riding a bicycle
P: EoTWAHiZE FHRANEVAT
JaNLI 14K Templates 2 ere ;h {tifiﬁg];gxidé};e\rgtlntng cat Non-entailment
The child is running
Table 6: Overview of the Japanese NLI datasets considered in this study.
Model  Finetuned on Test-overall Correct: Entailment Correct: Non-entailment
In-dist. JaNLI Full. Order. Mixed. Subseq. Const. Full. Order. Mixed. Subseq. Const.
JSICK (5K) 92.1+0.01 | 51.34+0.01 | 99.9+0.00 97.840.02 79.4+0.10 98.3+0.02  88.6+0.07 | 0.1+0.00 6.2+0.01 6.7+£0.04  32.5+0.11 22.740.09
Ta +JaNLI (0.7K) | 92.3+0.01 | 89.320.06 | 90.8+£0.04 98.6+0.01 96.8£0.02  99.2+0.01 97.3£0.02 | 67.1+0.17 59.1+0.04 84.6+023 92.440.09 90.4:0.05
JSNLI (533K) | 94.5£0.00 | 50.4£0.00 | 98.6£0.02 99.0£0.01 97.2£0.02  97.7£0.02 99.6£0.00 | 6.8£0.06 4.6+0.04  2.6£003  1.1+002  0.1£0.00
+JaNLI (0.7K) | 95.5+0.00 | 72.3+0.01 | 71.7+0.03 88.4+0.03 81.4+0.07 85.0+0.16 92.54+0.05 | 53.440.07 46.6+0.10 69.2+0.16 48.54+0.03 67.94+0.25
JSICK (5K) 73.6+0.20 | 50.2+0.01 | 66.0+£0.57 64.6£0.56 57.1£0.50  62.7+0.55 63.840.55 | 33.9+£0.57 34.7+057 36.2+£0.55 45.1+048 43.5+0.49
Mulii +JaNLI (0.7K) | 86.5+0.08 | 56.9+0.06 | 40.8+037 32.9+033 38.04035 49.84044 38.84036 | 6424033 66.040.37 83.3+0.19 77.44+032 80.9+0.23
JSNLI (533K) | 94.6+0.01 | 49.7+0.00 | 99.0+0.01 99.2+0.01  97.3+0.01 98.8+0.01 99.2-+0.01 2.0+0.02 1.6+0.01 0.8+0.01 1.2+0.01 0.8+0.01
+JaNLI (0.7K) | 94.8+0.01 | 56.3+0.09 | 26.4+046 30.4+0.53 28.0£049  26.7+046 28.4+049 | 79.4+£036 76.94040 8244030 26.7+046 79.0+0.36
Human - 94.0+£0.04 | 94.2+0.05 97.1+£001 92.7 £0.04 100.0£0.00 98.3+£0.03 | 97.8+0.01 95.840.05 88.7+0.09 94.3+0.08 91.1+0.14

Table 7: Results on the JaNLI test set (average accuracy and standard deviation of five runs).

The number in

parentheses is the size of the dataset used for finetuning. The accuracy on the in-distribution test set (JSICK/JSNLI
test sets) is calculated by translating the contradiction and neutral labels into non-entailment.

Model  Finetuned on GP Scramb. Pass. Caus. Fac-adv. Fac-v. Modal Neg. NP-coord.  Subord.  Sent-coord.
JSICK 49.340.01  50.14£0.00 49.6+0.01 47.7+0.03 49.74£0.00 51.140.02 54.840.04 63.2+0.03 50.240.00 69.3+0.02 46.840.02
Ja +JaNLI 92.840.10 79.24+0.06 49.240.01 56.1+£0.00 75.7+0.10 90.0+£0.07 93.7+£0.07 98.6+0.02 99.0+0.01 98.4+0.01 97.8+0.01
JSNLI 50.2+0.01 5234002 4594004 49.7+001 51.54001 51.2+0.01 49.6+£0.00 50.24+0.01 51.44+0.00 50.0+0.00 49.7+0.00
+JaNLI 70.1+£0.06 65.3+0.03 41.2+0.06 50.54+001 67.9+0.08 70.2+0.09 71.7+0.19 87.44+0.06 76.6+0.17 88.8+0.11 79.2+0.18
JSICK 49.340.01 49.940.00 49.6+0.01 48.6+0.02 49.5+001 50.840.01 50.5+0.01 49.3+001 49.84£0.00 61.0+0.10 49.6+0.01
Multi +JaNLI 56.3+£0.05 52.740.03 49.240.01 56.0+0.06 53.24+0.04 58.7+£0.09 57.6+£020 62.74+024 61.0+0.12 61.5+0.10 60.7+0.10
JSNLI 49.8+0.00 50.1+0.00 48.1+0.01 49.9+0.00 50.3+0.00 50.3+0.00 49.6+0.01 45.5+0.04 50.54+0.00 49.9+0.00 50.24+0.00
+JaNLI 54.1+0.07 53.840.07 48.9+0.02 50.7+0.01 52.740.05 53.3+£0.06 55.3+0.09 62.6+022 54.4+0.08 54.4+0.08 54.84+0.08
Human 94.240.05 93.3+0.03 91.7+0.08 85.0+0.17 95.84£0.05 95.0+£0.02 95.6+0.08 94.4+0.05 93.9+0.03 96.7+0.04 92.54+0.09

Table 8: Results on the JaNLI test set for each linguistic phenomenon.

plore whether training on data containing these
diverse linguistic phenomena improves the perfor-
mance of the models. The gold labels of inference
examples in JSICK were annotated via crowdsourc-
ing. Given that the gold label of an inference ex-
ample can be changed as a result of translation due
to structural and lexical differences between En-
glish and Japanese, the gold labels of JSICK were
re-annotated via crowdsourcing.

JSNLI was created by automatically translat-
ing the large crowdsourced English NLI dataset
SNLI (Bowman et al., 2015), into Japanese. A
premise sentence in the original SNLI dataset was
sourced from Flickr image captions, and workers
were asked to generate a corresponding hypothesis
sentence for each of the three labels. Note that
the size of the SNLI training set (533K) is around
100 times larger than that of the SICK training set
(50K). Thus, we consider whether the quantity of
the training data improves the model performance
on JaNLI. The gold labels of JSNLI are the same

as those of English SNLI.

We hypothesize that even if the models trained
on the basic training datasets do not perform well
on the JaNLI dataset, data augmentation with a
small number of JaNLI examples could help the
models to learn how to solve the inferences with
diverse linguistic phenomena in the JaNLI dataset.
To test this hypothesis, for each baseline setting,
we added a small amount of JaNLI data (700 exam-
ples)’ during the finetuning of models and checked
whether the performance of the models would be
improved.

4.2 Baseline results

Table 7 shows the results for the in-distribution
(JSICK and JSNLI) and out-of-distribution (JaNLI)
test sets. For the five heuristics, the results on

There is no overlap between the subset of JaNLI and the
test set in terms of (P, H) pairs. Only five premise sentences
are overlapped between the added subset and the test set, for
which the labels are not biased: two of them are entailment
and three of them are non-entailment.
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Model Finetuned on | Scramb. Pass. Caus. Fac-adv. | Scramb. Pass. Caus. Fac-adv.
Correct: Entailment Correct: Non-entailment
JSICK 100.0+£0.00 94.7+£0.05 76.7+£0.07 99.4+0.01 | 0.2+0.00  4.5+£0.04 18.7+0.05  0.0+0.00
Ja +JaNLI 91.540.03 94.7+0.03 79.3+0.14 94.840.06 | 66.94+0.12 3.84£0.03 32.840.14 56.7+0.25
JSNLI 98.14+0.03  87.240.15 99.0+0.01 99.340.01 | 6.5+0.07 4.74007  0.34000  3.740.03
+JaNLI 71.34£0.03  53.840.34 93.0£0.06 94.940.02 | 59.1+0.12 32.0+0.18  7.5+£0.08 43,5+0.19
JSICK 65.940.57  65.74057 60.240.53  65.240.56 | 33.940.57 33.5+0.58 37.0+0.55 33.9+0.57
Multi +JaNLI 41.840.40 47.54+044 49.0+045 43.9+0.38 | 63.6+0.34 50.8+0.45 63.0+0.38 62.5+0.34
JSNLI 98.54+0.02  95.840.02 99.8+0.01 99.1+0.01 | 1.6+0.01  0.3+0.00  0.0+0.00  1.640.01
+JaNLI 71.340.03  53.840.34 93.0+0.06 94.940.02 | 59.140.12 32.04+0.18 7.5+0.08 43.5+0.19

Table 9: Details of performance for problems involving linguistic phenomena for which the model performance
was not improved very much by data augmentation.

Correct: Entailment Correct: Non-entailment
Model  Train Normal  Double-o Punct. Select. Wa Scramb. Normal  Double-o Punct. Select. Wa Scramb.
JSICK | 90.240.09 90.8+0.10  86.8+0.11  82.9+0.15 84.1+0.13 90.6+0.08 | 9.3+0.07 11.9+0.11 10.2+0.08 14.1+0.13 13.8+0.11  7.2+0.06
Ja +JaNLI | 99.0£0.00 99.2+0.01  99.4+0.01 98.8£0.01 98.6+0.02 98.7+0.01 | 91.2+0.13 78.3+032 83.0£027 87.8+0.19 87.8+0.19 86.9+0.14
JSNLI | 98.3+0.01 95.3+£0.03 99.44+0.00 98.8+0.02 99.3+0.00 98.6+0.02 | 2.0+£0.03  3.7+0.04  1.8+£0.02  0.6+0.01  2.8+0.03 1.5+0.02
+JaNLI | 83.2+0.07 88.2+0.01 86.5+£0.08 92.8+0.09 88.8+0.09 82.8+0.07 | 58.0+0.16 54.8+0.14 53.1+020 49.44+0.19 47.7+0.17 55.94+0.09
JSICK | 62.7+£055 64.0+£0.56 59.84+0.53  62.9+0.55 62.4+0.54 62.5+0.55 | 35.2+0.56 34.2+0.57 35.8+0.56 35.8+0.56 36.2+0.55 37.9+0.54
Mulii +JaNLI | 33.8+£035 34.8+039 30.8+0.28 35.44033 32.4+033 27.84032 | 81.2+0.26 74.9+036 84.0+0.19 78.74+0.26 82.8+0.20 80.6+0.24
JSNLI | 98.740.01 97.1+0.01  99.6£0.01  99.840.00 99.2+0.01 98.7+0.02 | 0.6+0.01  1.8£0.02  0.24000  0.2+0.00  1.1+0.01  0.8+0.01
+JaNLI | 28.3+049 29.8+0.52 30.840.53 3224056 30.9+0.54 29.3+0.51 | 79.8+035 79.2+0.36 78.7+0.37 74.2+045 77.94£038 78.3+0.38
Human 95.040.02  96.7+0.06 100.040.00 98.3+0.03 98.3+0.03 97.5+0.03 | 90.8+0.14 96.74+0.12 91.7+0.10 91.0+0.05 95.0+0.22 96.7+0.04
Table 10: Results on the JaNLI dataset for garden-path effects.
Correct: Entailment Correct: Non-entailment
Model Train 2 3 4 2 3 4
JSICK 85.840.12  89.4+0.10 95.540.04 | 11.840.09 11.0+0.11 5.140.05
Ta +JaNLI | 98.9+0.01 98.840.01 99.1+0.00 | 85.2+0.22 88.5+0.14 89.6+0.13
JSNLI 99.240.00 97.140.03 96.7+0.02 1.940.02 1.5+0.02 2.740.03
+JaNLI | 86.3+0.08 85.6+0.04 85.54+0.04 | 53.0+£0.17 55.840.08 56.140.10
JSICK 61.540.54 63.64+0.55 64.840.56 | 36.840.55 35.2+0.56 34.3+0.57
Multi +JaNLI | 33.0+0.33 33.9+0.37 27.44031 | 80.84£0.23 78.7+0.30 81.34+0.26
JSNLI 99.54+0.01  97.340.02 98.0+0.02 0.4+0.00 1.240.02 1.540.02
+JaNLI | 30.5+0.53 29.240.51 28.44+049 | 78.44+0.37 79.1+036 77.240.39
Human | 97.7+0.01 96.7+0.10 96.74+0.00 | 90.0+0.01 94.4+0.05 91.14+0.08

Table 11: Results on problems involving garden-path sentences for different numbers of NPs.

JaNLI are shown for correct entailment and non-
entailment labels. All the models except the mul-
tilingual BERT model trained on JSICK achieved
high accuracy on their in-distribution test set. They
also achieved very high accuracy for the examples
where the correct label is entailment. By contrast,
we can see that regardless of the finetuning data
type and model type, BERT performed substan-
tially worse than chance (most accuracies were
close to 0% while the chance level is 50%) for the
examples where the correct label is non-entailment.
These results are more or less consistent with the
results reported for the English HANS dataset (Mc-
Coy et al., 2019), suggesting that the models are
fooled by the heuristics in the case of Japanese as
well. As explained in more detail in Section 4.4,
we also evaluated human performance using a por-
tion of the JaNLI test set. As shown in Table 7,
human performance is near perfect for both entail-
ment and non-entailment cases. Interestingly, the
most difficult pattern for humans was the MIXED-

SUBSET pattern (92.7 for entailment and 88.7 for
non-entailment) and the same tendency was ob-
served in the BERT models.

Comparing the performance of the multilingual
and Japanese BERT models on the JaNLI dataset,
we see that the overall performance of multilingual
BERT is slightly lower than that of Japanese BERT.
Also, comparing the effects of finetuning with
JSICK and JSNLI, we see that the performance
of the model finetuned with JSICK is slightly bet-
ter than that of the model finetuned with JSNLI
(JSICK: 51.3%; JSNLI: 50.4%). When a portion of
JaNLI was added to the training data, the difference
became much larger (see Section 4.3). These re-
sults suggest that the quality of the training dataset,
in particular, the diversity of linguistic phenomena,
can be more effective than the quantity of data for
solving linguistically challenging inferences.

Table 8 shows detailed results on the JaNLI
dataset for each linguistic phenomenon. The per-
formance for each phenomenon is near the chance
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level (50%) for all baselines. As with the results
for the heuristics, the accuracy for entailment ex-
amples was near 100%, while the accuracy for non-
entailment examples was close to 0%. When fine-
tuned with JSICK, accuracy tended to be slightly
higher for negation and sentence-subordination
than for the other phenomena.

4.3 Data augmented with JaNLI examples

As Table 7 shows, when we add a small amount
of JaNLI data (700 examples) during finetuning,
the performance of the Japanese BERT model im-
proved on non-entailment examples, while main-
taining its performance on entailment examples:
the overall accuracy increased from 51.3% to
89.3% on JSICK and 50.4% to 72.3% on JSNLI.
On the other hand, the performance of the multi-
lingual model decreased on entailment examples
and thus failed to consistently improve the perfor-
mance on JaNLI. This suggests that the training of
multilingual BERT is more unstable in learning the
Japanese NLI task when compared with Japanese
BERT.

For both the Japanese and multilingual BERT
models, the degree of performance improvement
by the data augmentation was greater when fine-
tuned with JSICK than when finetuned with JSNLI.
There are two possible reasons for this result. One
is that the effect of adding JaNLI examples is larger
when the total size of the dataset is smaller. The
other is that the data augmentation is more effective
when the linguistic diversity of the original training
set is higher. It should be noted that when a portion
of the JaNLI dataset was added to the training set
during finetuning, both Japanese and multilingual
models improved in terms of performance on the
in-distribution test set (JSICK/JSNLI). This result
seems to support the finding that syntactic data
augmentation helps to improve the robustness of
models (Min et al., 2020). However, Table 8 also
shows that even when JaNLI examples were used
for finetuning, the performance of multilingual and
Japanese BERT models was not improved on exam-
ples involving passive, causative, factive-adverbs,
and scrambling. This indicates that some linguistic
phenomena are difficult to learn using only data
augmentation.

Table 9 shows details of performance for the
four types of problems for which the model per-
formance was not improved very much by data
augmentation. For these problems, the accuracy

on non-entailment examples was still worse than
that on entailment examples, with the exception of
the multilingual model finetuned with JSICK. For
the problems involving factive adverbs, the model
failed to distinguish between non-entailment exam-
ples where only the premise contains a non-factive
adverb (e.g., Perhaps the child is sleeping # The
child is sleeping) and entailment examples where
both the premise and hypothesis contain a non-
factive adverb of the same type (e.g., Perhaps the
child chased the running cat = Perhaps the child
chased the cat). This result is consistent with a
previous study (Gupta et al., 2021) showing that
the model predictions do not change even when
there are repeated phrases in an inference pair.

4.4 Comparison with human judgements

To assess the difficulty of the JaNLI dataset, we col-
lected human judgements on a subset of the JaNLI
dataset through the Japanese crowdsourcing plat-
form Lancers®. We selected five examples for each
of 144 templates, that is, 720 inference problems in
total. We collected three annotations per pair and
paid annotators $0.10 per labeled pair. The annota-
tors were six native Japanese speakers. The quality
of the annotations was maintained by asking the
annotators to fully understand the guidelines until
they correctly answered all 10 test questions, 5 en-
tailment and 5 non-entailment inference examples
sampled from the basic training datasets.

As mentioned in Section 4.2, the overall accu-
racy of human performance was very high: 94.0%
(see Table 7). Also, Table 8 shows that humans
can make correct judgements across all types of
problems present in the JaNLI dataset, despite the
fact that some of them, in particular, garden-path
sentences with noun-modifying clauses, are known
to be hard to process based on reading time and
other tests (Miyamoto, 2008). Compared with the
accuracy for other linguistic phenomenon, the ac-
curacy for causative and passive was relatively low
(85% and 91.7%, respectively). For example, hu-
mans tend to predict the label for the following
entailment pair as non-entailment.

P REDNFOT & W THEKIET
teacher ga boy o ocean in swim-CAUSE
(The teacher made the boy swim in the
ocean)

®https://www.lancers.jp/
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H: BOT g TIKNTHD
boy ga ocean in swimming
(The boy is swimming in the ocean)

One possible reason why workers judge this en-
tailment pair as non-entailment is that while the
hypothesis sentence H can be interpreted to mean
that the boy is swimming spontaneously of his own
will, the premise sentence P involving a causative
verb in Japanese can be interpreted to mean that
the boy is forced to swim against his will (Kuroda,
1965; Tsujimura, 2013). A similar additional mean-
ing beyond a simple truth-conditional content (i.e.,
affectivity) is involved in Japanese passive construc-
tions as well (Kuno, 1973; Kuroda, 1979). It is
beyond the scope of this work to address the issue
of non-truth-conditional meanings.

Garden-path effects Table 10 shows detailed re-
sults on sentences with garden-path effects. As
expected, the human annotators achieved slightly
higher scores on garden-path problems involving
factors that make the interpretation of garden-path
sentences relatively easy (double-o, punctuation,
selectional restriction, the topic marker wa, and
scrambling) compared with normal garden-path
problems. By contrast, there was no consistent
tendency in this regard for the predictions of the
BERT models. This might indicate that, unlike
humans, the models do not distinguish problems in-
volving normal garden-path phenomena from those
involving factors that make them easier to interpret.

Number of NP arguments Table 11 shows re-
sults on problems involving garden-path sentences
for different numbers of NPs. While Japanese
psycholinguistic studies have shown that humans
tend to struggle with processing garden-path sen-
tences when they contain more NP-arguments (In-
oue, 1990), but there seems to be no such trend in
the case of NLI for both human judgements and
model predictions. This result indicates that the
number of NP arguments (at least up to four) does
not significantly affect the correctness of entailment
judgements.

5 Conclusion

We introduced the JaNLI dataset, which was de-
signed to assess the generalization capacity of pre-
trained language models on NLI in Japanese. Ex-
periments showed that both Japanese and multi-
lingual BERT models trained with basic Japanese
NLI datasets performed very poorly on the JaNLI

dataset. In addition, both Japanese and multi-
lingual models, in particular the latter, struggled
with learning some Japanese linguistic phenom-
ena even when augmented with a portion of the
JaNLI dataset. This suggests that there is still much
room for improving the generalization capacity of
pre-trained language models. Lastly, the compar-
ison between human performance and model per-
formance illustrated that whereas the models failed
to correctly predict labels for non-entailment exam-
ples, human judgement was near perfect. Further-
more, factors that ease the interpretation of garden-
path sentences for humans do not help model pre-
dictions. Overall, our dataset illuminates the vul-
nerabilities of the currently standard pre-trained
language models and indicate a new challenge for
cross-lingual generalization of NLI.
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A Templates

Table 12 shows examples of templates to generate
premises and hypothesis sentences for each lin-
guistic phenomenon (except garden-path sentences
with noun-modifying clauses, whose example is
shown in Table 2). Note that the conjugation of
verbs can change for causative and passive forms
in Japanese. Thus, when annotating a structural
pattern (heuristics) tag, if the verb stems are the
same in the premise and hypothesis sentences, we
take them to be the same word.

The full list of templates and lexical items
can be found at https://github.com/
verypluming/JaNLI.
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Templates for P and H Example Phenomenon/Pattern
TN E LTS

P: NP1 gaNP2o TV-0 child ga woman o looking Scrambling
(The child is looking at the woman)

= Hi: NP2 o NP1 ga TV-0 LM & Tk Y 5T\ D (The child is looking at the woman) FULL-OVERLAP

% Hy: NP1 o NP2 ga TV-0 T4 & M A HLTC D (The woman is looking at the child) FULL-OVERLAP

# Hs: NP2 gaNP1 o TV-0 M DS Tk & LT D (The woman is looking at the child) FULL-OVERLAP
BOT BN EEH I

P: NP1 ga NP2 ni TV-o0 passive boy ga young-man ni push-passive Passive
(The boy was pushed by the young man)

# Hy: NP1 ga NP2 o TV-0 BOT M #i# % MU 72 (The boy pushed the young man) ORDER-SUBSET

= Hy: NP2 ga NP1 o TV-0 HH W BDOT % U 72 (The young man pushed the boy) MIXED-SUBSET
BOFTHR Ay TN & EbETHS

P: NP1 ga NP2 o IV causative boy ga couple o laugh-causative Causative

(The boy is making the couple laugh)

# Hp: NPl galV
= Hy: NP2 ga IV

BDT W5 T\ D (The boy is laughing)
H w0 TIV IS T WS (The couple is laughing)

ORDER-SUBSET
ORDER-SUBSET

P: Factive-adverb NP1 ga IV

# Hy: NP1 galV

LLALES =T 7= Dk TW5
perhaps surfer ga swimming

(Perhaps the surfer is swimming)

Y=T7 7= HEKOTHD

(The surfer is swimming)

Factive adverb

CONSTITUENT

F—T7—=NMWoTWD Z & IEMEES
surfer ga sleeping certain Factive verb
(It is certain that the surfer is sleeping)
P—T7—=DNE->TWV5D
= Hy: NP1 galV (The surfer is sleeping) CONSTITUENT
FHEDPE THNNTWD 2E L
child ga garden de crying might Modal
(The child might be crying in the garden)
TR JE TRV T NS
(The child is crying in the garden)

< HE A W7 LN \ Py F 7L
= Hy: NP-place de NP1 ga IV MODAL (}Eh;cch%lg\m?gli;i;e cfr;ing%i;th; ;a;ée;)‘ MIXED-SUBSET
TP WL TRD>oTWa b THEZL
child ga beach de lying negation Negation
(The child is not lying on the beach)
T A M T Ri7zbo T3
(The child is lying on the beach)
Y3 s fi A - B DI TN
= Hy: NP-place de NP1 ga IV NEG ((?;f ;}fﬂ;gs’;jf lﬁnghfbifh)b TR MIXED-SUBSET

FEPZE»BEZ ZT0 5
child ga woman or man o looking NP-coordination
(The child is looking at the woman or the man)

TN LM LTS
: P2 - -
# Hy: NP1 gaNP2o tv-o (The child is looking at the woman) ORDER-SUBSET
TP B E LTV D
Hj: NP1 ga NP3 - -
7 H> g oo (The child is looking at the man) ORDER-SUBSET
HYTNWBATOD o FIBE I X—% TS
P: NP1 ga IV reason NP2 ga NP3 o TV-0  couple ga playing because child ga rider o looking
(Because the couple is playing, the child is looking at the rider)

v )L B E S
= Hq: NP1 galV n7 bAJl/V.T ® CONSTITUENT
(The couple is playing)
. T T4 X— % LTV D
: 30TV-
= Hz: NP2 ga NP3 o 0 (The child is looking at the rider) CONSTITUENT

DT E>TWD  FHEF T X— 2 LVHL TV

P: NP1 galV ka NP2 ga NP3 o TV-0 girl ga running or child ga rider o chasing
(The girl is running or the child is chasing the rider)
ZOF M E-TWS

Hy: NP1 galV
# Hy ga (The girl is running) CONSTITUENT
TFHRDP I X — % BLUHILTVD
: P30 TV-
7> Hy: NP2 ga NP3 0 N (The child is chasing the rider) CONSTITUENT

P: NP1 ga IV Factive-verb

P: NP1 ga NP-place de IV MODAL

# Hi: NP1 ga NP-place de IV SUBSEQUENCE

P: NP1 ga NP-place de IV NEG

Hy: NP1 ga NP-place de IV SUBSEQUENCE
> g p

P: NP1 ga NP2 ka NP3 o TV-0o

Sentence-subordination

Sentence-coordination

Table 12: Example templates for premise and hypothesis sentences for each linguistic phenomenon. “=" indicates
entailment and “#” non-entailment.
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