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Abstract

The recent increase in dataset size has brought
about significant advances in natural language
understanding. These large datasets are usu-
ally collected through automation (search en-
gines or web crawlers) or crowdsourcing
which inherently introduces incorrectly la-
beled data. Training on these datasets leads to
memorization and poor generalization. Thus,
it is pertinent to develop techniques that help in
the identification and isolation of mislabelled
data. In this paper, we study the applicability
of the Area Under the Margin (AUM) metric to
identify and remove/rectify mislabelled exam-
ples in NLP datasets. We find that mislabelled
samples can be filtered using the AUM metric
in NLP datasets but it also removes a signif-
icant number of correctly labeled points and
leads to the loss of a large amount of relevant
language information. We show that models
rely on the distributional information instead
of relying on syntactic and semantic represen-
tations.

1 Introduction

Modern deep learning networks are becoming
deeper and powerful, and have led to significant ad-
vances in Natural Language Processing (NLP) (De-
vlin et al., 2019), Computer Vision (He et al., 2015),
and Speech Processing (Graves et al., 2013). How-
ever, these networks rely on large labeled datasets
to be effective.

The creation of large labeled datasets has fu-
eled the advances in NLP (Rajpurkar et al., 2016;
Bowman et al., 2015). Abundant labeled data in-
creases the likelihood of learning diverse phenom-
ena, which in turn leads to models that generalize
well (Linzen, 2020).

Curating expert annotated datasets is very time-
consuming and costly (Malik and Bhardwaj, 2011)
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therefore large language datasets are usually col-
lected through crowd-sourcing, by hiring human
annotators (Wang et al., 2019) or by crawling the
web. Such methods inherently introduce label noise
in the resulting data. Mislabelled training data is
particularly problematic for deep neural networks
with billions of parameters because they can over-
fit on the mislabelled data and achieve zero train-
ing error even on randomly assigned labels (Zhang
et al., 2016). Training models with noisy labels
can also lead to misclassification on easy examples
during test-time (Beigman and Beigman Klebanov,
2009).

It is prohibitively costly to manually remove mis-
labeled samples from large datasets. Hence, the
need arises to create an automated pipeline to an-
alyze and clean datasets. Area Under the Margin
(AUM) metric was designed to identify and elimi-
nate noisy data. It can be used as a plug-and-play
method within the training pipeline of any clas-
sification network with minimal overhead (Pleiss
et al., 2020). AUM shows promising results in iden-
tifying mislabelled samples in image classification
datasets.

Thus, in this paper, we investigate the appli-
cability of the AUM metric on text classification
datasets. We make the following contributions: (i)
We show that the AUM metric has lower efficacy
for filtering mislabelled data in NLP datasets than
image datasets. (ii) We hypothesize that AUM does
not work as expected in NLP datasets as it did in
image datasets because of the intrinsic nature of
the data samples. They have high intra-class and
low inter-class feature similarity (Ho et al., 2021),
which is usually not the case in NLP datasets. We
show samples from NLP datasets to corroborate
our hypothesis.



2 Related Work

Detecting mislabelled Instances. Pleiss et al.
(2020) and Swayamdipta et al. (2020), both use
model behavior on each sample over the training
process, also known as training dynamics, to iden-
tify mislabelled instances in classification datasets
but using different metrics. For each sample, Pleiss
et al. (2020) finds the difference in logit value of
the assigned class (gold label) and the highest other
logit value among the non-assigned classes aver-
aged over training epochs called the area under
the margin (AUM) metric. They also introduce a
fake class with samples having only mislabelled in-
stances by definition to find a threshold AUM value.
Samples with low AUM scores are likely to be mis-
labelled and the threshold AUM value is used to
filter out such mislabelled instances. Swayamdipta
et al. (2020) uses mean and standard deviation of
the gold label probabilities over the training epochs,
called confidence and variability scores, respec-
tively, for each sample. They classify samples with
low confidence and low variability as either misla-
belled or “hard-to-learn" for the model.

Bhardwaj et al. (2010) uses statistical methods
to find annotators whose annotations differ con-
siderably from the remaining annotators and use
manual inspection to decide the verdict for sam-
ples annotated by these annotators. Müller and
Markert (2019) classifies training samples with
the lowest gold label probabilities on a robust
classifier as potentially mislabelled followed by
their manual review for final decision. Zhang and
Sugiyama (2021) detects samples with erroneous
labels using an instance-dependent noise model
along with instance-based embedding to capture
instance-specific label corruption.

Learning in the Presence of Noisy Labels. Sev-
eral efforts have been made to account for noise
in the data and prevent the model from memoriz-
ing wrong examples without actually identifying
and removing such examples from the training set.
Li et al. (2020) replaces the last layer of models
trained on noisy data with a linear layer trained on
a small set of clean data, Jindal et al. (2019) adds a
non-linear noise-modeling layer on top of the tar-
get text-classification model. Kang and Hashimoto
(2020) improves faithfulness in text generation by
adaptively removing high log loss examples during
the training process.

Percentile Acc. on Unfiltered Data Acc. on Filtered Data
1 87.91 ± 0.25 88.02 ± 0.79
10 87.79 ± 0.50 87.79 ± 0.61
50 87.87 ± 0.36 87.72 ± 0.48
90 87.79 ± 0.49 87.72 ± 0.48

Table 1: Accuracy on SST-2 dataset at different AUM
threshold percentiles; Sieving

Figure 1: Visualizing AUM values of SST-2 samples
along with their Data Map plotted as per Swayamdipta
et al. (2020) shows considerable overlap in samples
with low AUM values and samples identified as hard-to-
learn/mislabelled as per Data map (sampled with low
confidence and low variability scores).

Other types of Noise in text data. Depending
on the type of supervisory signal and data acqui-
sition method, language datasets can have noise
in the form other than labeling errors like spelling
errors, grammatical errors (Subramaniam et al.,
2009; Malik and Bhardwaj, 2011). Caswell et al.
(2021) provides large-scale systematic quality anal-
ysis of various web-crawled multilingual datasets
and found large amounts of samples with incon-
sistencies in language codes and mistranslations.
Robust-to-noise word embeddings (Malykh, 2019),
noisy data classifiers trained on clean data, and
synthetically generated noisy data (Xu and Koehn,
2017) are some efforts to deal with non-label noise
in language data. In this work, however, we only
study label noise.

Relation to annotator disagreement. The work
on dealing with noisy labels in classification
datasets can also be related to the work on studying
annotator disagreements. Previous work (Beigman



Sample Id Text Label
390 He I often sees Mary. 1
5766 Heidi believes any description of herself. 1
2801 Paula hit the sticks. 0
1522 That the sun is out was obvious. 0
8332 I wanted Jimmy for to come with me. 1

Table 2: Filtered examples from CoLA dataset (1 =
grammatically acceptable; 0 = grammatically unaccept-
able)

Figure 2: CoLA: Percentile threshold vs Validation ac-
curacy

and Beigman Klebanov, 2009; Beigman Klebanov
et al., 2008; Pavlick and Kwiatkowski, 2019) shows
that there can be two reasons for disagreements in
annotator labels in crowdsourced datasets: differ-
ence of opinion and attention slip. Former gener-
ally occurs when different groups of people agree
with a different assigned label for a sample based
on their understanding of the text. Latter gener-
ally occurs due to attention slip or genuine mistake
during annotation. As a direction of future work,
comparing samples identified as mislabelled using
the AUM method with samples that get relatively
low agreement among crowd worker annotators
can provide meaningful insights.

3 Implementation Details

3.1 Filtering data with AUM

We use the AUM metric and methodology from
Pleiss et al. (2020) to identify training samples with
AUM values below a threshold value as mislabelled.
To calculate this threshold, original training data
is distributed to make a fake class with equal sam-
ples from all the original classes. The classification
model is trained on this new dataset configuration
to generate the AUM values for all the data points.
Samples in fake class are by definition mislabelled
hence AUM values of fake class samples can be

used as a threshold for the samples in the original
classes. This method is repeated to find the misla-
belled samples among the samples which were in
fake class initially. In the second run, a fake class
is created such that it does not have any samples
which were in the fake class in the first run.

As discussed in Section 5, we observed that the
heuristic-based thresholding technique suggested
in Pleiss et al. (2020), wherein they used the AUM
value of the 99th percentile threshold sample as the
threshold to filter the data, does not show major
improvement in NLP datasets. We thus consider
the AUM threshold value as a hyperparameter and
fine-tune it. We also propose a method to rectify
the labels and reuse the data for training (discussed
in Section 4).

3.2 Experimental Setup

We finetuned a distillBERT-base model on SST-2
(Socher et al., 2013) and CoLA (Warstadt et al.,
2019), pretrained using a masked language mod-
eling (MLM) objective (Sanh et al., 2019) with a
default AdamW optimizer (Loshchilov and Hutter,
2017). We selected distillBERT for our experimen-
tation because it is small and fast while preserving
over 95% of BERT’s performance measured on
GLUE benchmark (Sanh et al., 2019).

Zhang and Sugiyama (2021) show the misla-
belled samples present in CoLA and SST-2 datasets,
and we use these results to validate the efficacy of
AUM to identify mislabelled data.

4 Experiments

Following the recommendations from Pleiss et al.
(2020), we test the efficacy of AUM on synthetic-
noisy and real-world NLP datasets to identify misla-
belled samples. To create synthetic-noisy datasets,
we injected noise in the real-world datasets by uni-
formly sampling data points and flipping their la-
bels. We run two experiments on both types of
datasets. First, we discard the samples classified by
AUM as mislabelled; we will refer to this process
as Sieving. Second, instead of discarding samples,
we rectify the label and reuse them for training; we
will refer to this process as Flipping. Since we train
on binary-classification tasks, we flip the label of
the samples which are classified as mislabelled.

As noted in Pleiss et al. (2020), the AUM thresh-
old for filtration is dataset dependent. The authors
provide a simple heuristic for classifying samples
as mislabelled; samples with AUM lower than the



Sample Id Text Label
41767 a damn fine and a truly distinctive and a deeply pertinent film Negative
42407 guts and Negative
62237 as original and insightful as last week ’s episode of behind the music . Negative
6886 loves the members of the upper class almost as much as they love themselves Negative

19153 of how horrible we are to ourselves and each other Positive
19159 he script is n’t up to the level of the direction Positive
62178 though it runs 163 minutes , safe conduct is anything but languorous . Positive

Table 3: Filtered examples from Stanford Sentiment Treebank (SST2)

Sample Id Text Label AUM
1432 I disliked the boy’s playing the piano loudly. 0 -0.501698
1433 The boy whose loud playing of the piano I disliked was a student. 1 0.163168
1434 The piano which I disliked the boy’s playing loudly was badly out of tune. 0 -0.349795
1435 The boy’s loud playing of the piano drove everyone crazy. 1 0.99208
1436 The boy’s playing the piano loudly drove everyone crazy. 1 0.521766
1437 That piano, the boy’s loud playing of which drove everyone crazy, was badly out of tune. 1 0.49058
1438 That piano, the boy’s playing which loudly drove everyone crazy, was badly out of tune. 0 -0.333451
1439 That piano, which the boy’s playing loudly drove everyone crazy, was badly out of tune. 0 -0.628104
1440 Did that he played the piano surprise you? 0 -0.290151
1441 Would for him to have played the piano have surprised you? 0 -0.430419
1442 Is whether he played the piano known? 0 -0.292625
1443 Did his having played the piano surprise you? 1 0.332026

Table 4: Cluster of data points in CoLA with high inter-class similarity; Dominant class - class with samples that
have high structural and vocab similarity (This similarity is not quantified numerically but was observed during
manual inspection of the data); Class 0 is the major class in this example but the high structural and vocab similarity
within class 1 reinforces the modeling process to present it as the dominant class

99th percentile threshold sample’s AUM will be
classified as mislabelled. Further, they also note
that the filtration performance is robust to this hy-
perparameter (percentile threshold). In our exper-
iments with CoLA and SST-2, we observed that
this does not translate well to NLP datasets. Indis-
criminately removing samples with AUM less than
the 99th percentile threshold consistently had poor
performance compared to the unfiltered dataset. As
the percentile threshold was reduced, the validation
accuracy increases as seen in Figure 2 for CoLA
and Table 1 for SST-2. It is because that samples
with AUM lower than a high percentile threshold
could be a hard-to-learn sample which helps gen-
eralization (Swayamdipta et al., 2020). To support
this hypothesis, we classified data points using the
method (refer to Section 2 for details) suggested
by Swayamdipta et al. (2020). We observed signif-
icant overlap in samples identified as mislabelled
using AUM and samples identified as hard-to-learn
using Swayamdipta et al. (2020) which can be seen
in Figure 1. As we reduce the percentile thresh-
old, we proportionately filter a larger fraction of
truly mislabelled data than hard-to-learn samples.

Overfitting is another issue that is facilitated by in-
discriminately removing samples with low AUM as
the proportion of easy-to-learn samples is increased
in the filtered dataset (Swayamdipta et al., 2020).

5 Results & Analysis

Table 1 shows the results for Sieving on the real-
world dataset (SST-2). This experiment also shows
how increasing the percentile threshold decreases
the increase in performance, hinting at the fact that
large amounts of relevant language information
might be getting filtered. Table 5 shows the result
for sieving and flipping on synthetic mislabelled
samples (SST-2). We expected to observe a drastic
dip in performance with noise injection and a rela-
tively large gain once filtered, but we only observed
a marginal dip after injecting noise and a marginal
increase after filtering in performance. For the
Flipping experiment, we only saw ~1% increase
after flipping 68 samples (<0.1 percentile thresh-
old) with the lowest AUM. We considered such a
low threshold in an attempt to flip only the truly
mislabelled data. Investigating further, we saw that
about 60-65% of the noise samples were filtered



Noise % Accuracy on Unfiltered Data Accuracy on Filtered Data(Sieving) Accuracy on Filtered Data(Flipping)
20 85.38 85.94 85.83
40 82.70 84.26 85.96

Table 5: Accuracy on Synthetic mislabelled Samples (SST-2); Seed: 100; Threshold Percentile: 90

Figure 3: Histogram of AUM values of synthetic noise and unaltered data. (Blue → Unaltered data, Orange →
Synthetic noise)

from our experiments. Figure 3 shows the distri-
bution of AUM values of the synthetic noise and
clean samples. The graphs clearly show that AUM
does help in identifying the mislabelled samples
to some extent (Table 2 and Table 3 show the mis-
labelled samples we detected in SST-2 and CoLA
with low AUM values) but a lot of correctly labeled
samples also get filtered depending on how noisy
the dataset is. Although there is a high correlation
between noise and correctly labeled samples being
filtered, the amount of noise alone does not explain
this behavior. This leads us to question the efficacy
of the AUM metric in NLP datasets.

On manual inspection of the CoLA dataset, we
found multiple clusters with high feature similar-
ities. Table 4 shows an example of such clusters.
We observed that the model is relying on superficial
features like word co-occurrence statistics (Sinha
et al., 2021), within these clusters and builds a bias
for the dominant class label in a particular clus-
ter. Thus the non-dominant class samples (which

usually are correctly labeled) get low AUM values
instead of the synthetic noise samples. This does
not go hand in hand with our previous observations
where Figure 3 shows that synthetic noise samples
have low AUM, but it is important to note that syn-
thetic noise samples also happen to be a part of
the non-dominant class in most cases (noise in an
acceptable dataset is non-dominant). Again, we
emphasize correlation does not imply causation.

In Table 4, the synthetically introduced noise
(marked in red) and members of class 0 (marked
in yellow) are both parts of the non-dominant class
which gives these samples a negative AUM. While
the red labeled samples are legitimate candidates
for removal, the removal of yellow samples causes
loss of correctly labeled data points. We observed
the same pattern through all clusters.



6 Conclusion

We report on the applicability of AUM on NLP
datasets. AUM does help in identifying mislabelled
samples available to some extent, but sieving these
samples indiscriminately removes large amounts
of relevant language information. We hypothesize
that the reason AUM works well in image datasets
is because of the intrinsic nature of the data sam-
ples, i.e., data samples in image datasets have high
intra-class and less inter-class feature similarity
whereas in NLP datasets, data samples have high
inter-class feature similarity as seen in Table 4 and
this coupled with the model dependency on su-
perficial features results in low AUM values for
the non-dominant class samples instead of the mis-
labelled class samples consequently reducing the
efficacy of the AUM metric in NLP datasets.
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