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Abstract

Preserving the structural properties of trees
or graphs when embedding them into a met-
ric space allows for a high degree of inter-
pretability, and has been shown beneficial
for downstream tasks (e.g., hypernym detec-
tion, natural language inference, multimodal
retrieval). However, whereas the majority of
prior work looks at using structure-preserving
embeddings when encoding a structure given
as input, e.g., WordNet (Fellbaum, 1998),
there is little exploration on how to use such
embeddings when predicting one. We ad-
dress this gap for two structure generation
tasks, namely dependency and semantic pars-
ing. We test the applicability of disk embed-
dings (Suzuki et al., 2019) that has been pro-
posed for embedding Directed Acyclic Graphs
(DAGs) but has not been tested on tasks that
generate such structures. Our experimental
results show that for both tasks the original
disk embedding formulation leads to much
worse performance when compared to non-
structure-preserving baselines. We propose en-
hancements to this formulation and show that
they almost close the performance gap for de-
pendency parsing. However, the gap still re-
mains notable for semantic parsing due to the
complexity of meaning representation graphs,
suggesting a challenge for generating inter-
pretable semantic parse representations.

1 Introduction

Numerous studies in NLP have focused on embed-
ding linguistic elements into metric spaces, where
instances are represented as vectors whose geomet-
ric distance reflects the semantic similarity among
instances (Mikolov et al., 2013; Baroni et al., 2014;
Pennington et al., 2014, inter alia). More recently,
some have gone beyond embedding words and se-
quences, and explored the encoding of a hierarchy
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(e.g., WordNet, Fellbaum, 1998) through mod-
elling its partial order structure (Vendrov et al.,
2015; Lai and Hockenmaier, 2017; Vilnis et al.,
2018). Consequently, given the size and depth of
such structures, attention has shifted to geometric
spaces (mostly hyperbolic) that could better repre-
sent order and containment relations (Nickel and
Kiela, 2017; Ganea et al., 2018; Dong et al., 2018;
Suzuki et al., 2019). Methods to embed elements
of hierarchies are structure-preserving, and there-
fore interpretable, in that the relative position in the
embedding space reflects the relation in the origi-
nal hierarchy (e.g., parent–child relation). Most of
these methods have been shown to be beneficial not
only on tasks pertinent to the encoded hierarchy it-
self (e.g., hyponymy relations), but on downstream
tasks including multimodal retrieval (Vendrov et al.,
2015) and video understanding (Surís et al., 2021).

However, whereas there is a plethora of studies
looking at preserving structure while encoding an
hierarchy given as input, there is little to no ex-
ploration on how to do this while predicting one.
In this work, we start one such exploration with
the quintessential structure generation task in NLP:
parsing. Given an input sentence, e.g., ‘Anna asked
Mary to stop’, parsing is the task of transducing a
natural language string into a structured linguistic
representation (e.g., the AMR graph in Fig. 1(a))
that encodes either syntactic or semantic proper-
ties of the string. Recent neural network based
approaches have achieved state-of-the-art perfor-
mance while being able to generalize both across
frameworks, as well as across trees and graphs
(Zhang et al., 2019; Lindemann et al., 2020; Ozaki
et al., 2020; Samuel and Straka, 2020; Procopio
et al., 2021, inter alia). However, not much can be
said about the representations these parsers learn
since the parsers are not explicitly trained to pre-
serve any of the geometric properties of their out-
put structure, and as such are not interpretable. We
believe that moving to interpretable, structured rep-
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Figure 1: Abstract Meaning Representation (AMR) graph for the sentence ‘Anna asked Mary to stop’ (a), with a
transitive closure between the nodes ‘ask’ and ‘person’; however, given the corresponding disk embedding repre-
sentation in (b), we cannot reconstruct such a relation. Therefore, we introduce a dummy node in every transitive
closure (c) so that graph relations and disk embedding containment are bijective (d).

resentations would allow for a better diagnostic of
what is learnt by a parser, while at the same time
laying the foundations to connect ‘deep’ natural
language understanding to other tasks, especially
in the multimodal domain.

How can we build such interpretable representa-
tions? Does interpretability impact performance?
Kádár et al. (2021) have attempted to answer these
questions in the context of parsing into depen-
dency trees by means of a structure-preserving loss
that forces embedding distances to be isometric to
tree distances. Whereas Kádár et al. show that
a structure-preserving embedding leads to compa-
rable performance with blackbox methods, their
method does not generalize to graphs. This is of
particular relevance to semantic parses that are of-
ten DAGs, and where it is unclear how to isometri-
cally embed multiple paths between a pair of nodes.

To this end, we turn to a method that allows
us to model transitive asymmetrical relations ex-
pressible as a DAG: disk embeddings (Dong et al.,
2018; Suzuki et al., 2019). Disk embeddings rep-
resent DAGs as a series of concentric disks, each
defined by a center vector and a radius (as the ones
in Fig 1(b)), and have been shown to outperform
other methods when encoding hypernym relations
in the WordNet hierarchy. However, it is not clear
whether such a method transfers well to more com-
plex architectures where embeddings are contextu-
alized given an input sentence, and structure predic-
tion often interacts with predicting other elements
of the tree or graph (node label, edge label, etc.).

In summary, our work makes the following con-
tributions:

Disk embedding losses for tree and graph
generation in parsing: we found the disk embed-
ding loss formulation of Suzuki et al. (2019) to

be sub-optimal w.r.t. parsing performance. We
found that simply adding a positive margin already
provides a large boost in performance, but the best
performance is obtained when an auxiliary loss that
considers local neighbourhood relations is added,
as well as when parent-child relations are over-
sampled.

Interpretability in parsing (though at the cost
of performance): through a comparison with non-
interpretable approaches, we found that whereas
for dependency trees the price to pay in terms of
performance for interpretability is small, for seman-
tic graphs the gap is higher, highlighting where fu-
ture work should focus its efforts. Importantly, we
found that most semantic parsing errors are local
and specific to the parser we use, where the lack of
explicit alignment between words and graph nodes
poses a challenge for disk embeddings, especially
in the case of named entity substructures.

2 Disk Embeddings: Background

As discussed above, disk embeddings (Dong et al.,
2018; Suzuki et al., 2019) provide an interpretable
model for transitive asymmetrical relations (i.e.,
partially ordered sets or posets), such as those rep-
resented by a DAG. They are a general frame-
work that allows to embed posets in a (quasi-
)metric space. Let’s define (X, d) as a quasi-metric
space with distance d and a closed disk D(x, r)
= {p ∈ X | d(p, x) ≤ r}, where x is the center
and r the radius. We can express the containment
relationship for two disks1 as

D(ci, ri) ⊃ D(cj , rj) ⇐⇒ d(ci, cj) < ri − rj . (1)

1Even though multi-dimensional disks are technically balls,
we will refer to them as disks throughout the paper.



285

Given a set of such disks, the ordering provided by
this subset relationship provides a poset.2

Disk embeddings seek to maintain order isomor-
phism between the posets of a graph G (XG, �G)
and their disk embedding representation (Xφ, �φ).
Such an isomorphism exists if there is a bijective
function f : XG → Xφ such that xG � yG ⇐⇒
xφ � yφ. In our case the bijective function f is
modelled via a neural network architecture intro-
duced in § 3.

To achieve isomorphism, we make use of the
protrusion `ij of disk xj = D(cj , rj) with respect
to disk xi = D(ci, ri) as the degree of contain-
ment:

`ij = d(ci, cj)− ri + rj . (2)

It follows from Eq. (1) that `ij < 0 (negative pro-
trusion) if and only if xj ⊂ xi. Moreover, the pro-
trusion `ij provides a continuous measure of the de-
gree of containment. Specifically it equals the max-
imum signed distance of points in disk D(cj , rj)
from the boundary of disk D(ci, ri). Here `ij < 0
indicates that D(cj , rj) is entirely contained in-
side D(ci, ri) (and, indeed, with a margin equal to
−`ij). While `ij > 0 indicates that some point in
D(cj , rj) is outside D(ci, ri) by a distance equal
to `ij .

Recovering DAGs from disk embeddings. We
wish to be able to represent a DAG with a disk
embedding and also be able to recover the edges
of that DAG from its disk embedding. However,
recovering the edges of the original DAG is not
always possible. To see this, suppose we have a
disk embedding formed by a 1-1 mapping of the
nodes of a DAG to disks.3 Moreover, suppose the
mapping is an order isomorphism, so the partial
ordering is preserved.

It is natural to consider an edge from disk xi
to disk xj if and only if xj ⊂ xi and there is no
other intervening node (i.e., there is no xk such
that xj ⊂ xk ⊂ xi). This process recovers a DAG
with the same partial ordering as the original DAG,
but it may be missing edges. This issue occurs, for
example, for the disk embedding shown in Fig. 1b,
which represents the same partial ordering as the
DAG in Fig. 1a. However, in decoding this disk em-
bedding, we would not decode the edge from ‘ask’

2The manner in which individual edges in a DAG are rep-
resented in a disk embedding is more subtle and is discussed
later.

3Note that disk embeddings must necessarily be acyclic
due to the subset relations.

to ‘person’, since ‘stop’ is an intervening node.
We remedy this problem by adding as many

dummy nodes as necessary to the original DAG
(as illustrated in Fig. 1c and Fig. 1d). Specifically,
for any edge (ni, nj) in the original DAG that can
be removed without changing the partial ordering,
we create a new dummy node mij , and replace that
edge by the two edges (ni,mij) and (mij , nj). Ev-
ery edge in the modified graph is then required
to reproduce the implied partial ordering, and this
modified DAG is therefore recoverable from an
order isomorphism.

3 Disk Embedding: Model

The disk embedding module takes as input the hid-
den representations of a sentence encoder (LSTM
or transformer); we discuss how these representa-
tions are obtained in the context of dependency and
semantic parsing in § 4.1 and 4.2 respectively. This
input undergoes a linear transformation followed
by a LeakyReLU activation to obtain Xg, that is
then used to learn disk embeddings.

To learn the centers C and the radii R of the
disks, we pass Xg through a n-layer MLP (where
n=2 in our case) as follows:

C = fa(W
(n)
c (X(n−1)

g ) + bc) (3a)

R = fa(W
(n)
r (X(n−1)

g ) + br) (3b)

where X(n−1)
g are the input representations from

the previous layer (X0
g is the input representation

Xg), W (n) are the weights for the nth MLP layer,
bc and br are the biases, and fa is a non-linearity
activation function (LeakyReLU in our case).

Centers and radii C and R are used to compute
the protrusion values `ij as in Eq. 2. We then use
the `ij values in a contrastive loss with a margin α
as follows:

Lc =
∑

(i,j)∈P

[`ij ]+ +
∑

(i,j)∈N

[α− `ij ]+ (4)

where [x]+ is the function max(0,x) and P and N
represent the sets of positive and negative pairs,
respectively, where positives are pairs of nodes
in an ancestor–descendant relation, and negatives
include all other pairs of nodes. Recall that `ij < 0
if node i is the ancestor of j, and > 0 otherwise,
hence for the positive samples we only incur in a
loss if the `ij > 0.

Given that we have access to both positive
and negative instances (node pairs in an ancestor–
descendant relationship vs. all the rest), we can
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also formulate a Maximum Likelhood Estimation
(MLE) binary cross-entropy loss, where we directly
maximize the probability of a pair of nodes i and j
to be either in an ancestor–descendant relationship
or not.

aij = sigmoid(−`ij), (5)

LMLE = −
∑
i,j∈V,
i 6=j

%ij log aij + (1− %ij) log(1− aij), (6)

where ai,j is the probability of i and j being in an
ancestor–descendant relationship, and is obtained
by applying a sigmoid function to `ij over two
classes (ancestor–descendant vs. other). %ij is
an indicator function that is 1 if i and j are in an
ancestor–descendant relationship.

Structure auxiliary loss. A contrastive or MLE
loss optimizes a global pair-wise containment rela-
tionship between nodes; however, this might come
at the expense of local relations, which we still
seek to preserve. In order to incorporate infor-
mation about local neighbourhood structure, we
propose a (local) structure-preserving loss. The
goal of this loss is to maximize the probability
of correctly predicting the local relation between
two nodes out of a class of 6 relations, namely,
C = {parent, grandparent, child, grandchild, sister,
other}, where ‘other’ represents all relations with
a path length greater than 2.4 To predict these re-
lations we start by passing Xg through a biaffine
transform to obtain sij ; this is the same as the bi-
affine function used in dependency and semantic
parsing for edge prediction and since our parsers
are two such systems, we reuse their implemented
biaffine function. During training, we seek to pre-
dict the correct relationship between all pairs of
nodes using a cross-entropy loss. Computation is
as follows:

X1
b , X

2
b = ReLU(W

(1)
b Xg + b

(1)
b ) (7)

sij = X1T
b UX2

b +W
(2)
b X1

b +W
(3)
b X1

b + b
(2)
b (8)

Lstruc =
∑
i,j∈V,
i 6=j

− log(softmax(W
(4)
b sij + b

(3)
b )) (9)

where X1
b , X2

b are separate representations for an-
cestors and descendants respectively, whose dimen-
sionality is half that of Xg, W

(n)
b and U are the

weight and bb the bias. sij is the output of the bi-
affine transform, on top of which a linear followed

4We also experimented with maximizing the probability of
parent–child relations vs. others (|C| = 2) as well as including
sisters relations (|C| = 3) but found that a 6-way classification
consistently resulted in the best performance.

by a softmax transform are applied to obtain the
probability for the nodes i and j having the relation
class c ∈ C.

When used, the structure auxiliary loss is added
to either the constrastive or the MLE loss to obtain
the overall loss for a sentence, normalized by a
factor T . We use the number of node pairs as
T as opposed to the number of nodes, since we
observe that the former achieves consistently better
performance.

L =
1

T
(Lc/MLE + Lstruc) (10)

Decoding into parent–child relations. At test
time we recover the parent–child relations from
the protrusion values `ij by first using Eq. 5 to
get ancestor probabilities aij . Using this equation,
negative protrusion values are transformed to high
ancestor probabilities (≥ 0.5) and positive ones
to low probabilities (< 0.5). We then identify the
direct parent of each node as the ancestor with no
intervening node:

pij = aij [1−maxk∈V \{i,j}[aikakj ]] (11)

Note that for dependency parsing the parent–
child probabilities pij are fed as input to a Maxi-
mum Spanning Tree (MST) decoding algorithm to
obtain the final tree.

4 Parsing Systems

Our baseline dependency and semantic parsing
both determine edge presence between nodes using
the biaffine formulation of Dozat et al. (2017) (see
Eq. 7-9), which predicts the most likely parent for
each node, along with the grammatical relation be-
tween each pair of head and dependent, conditioned
on an encoded hidden representation. We replace
this with the disk embedding module described in
§ 3, leaving all other modules unchanged.

4.1 Dependency parsing
We use the dependency parser of Kádár et al.
(2021),5 which has been shown to perform on
par with SOTA systems while relying on structure-
preserving, interpretable representations. To gen-
erate the hidden representations h1, h2...h|S| for a
given sentence S=w1...w|S|, a highway-BiLSTM
encoder (Srivastava et al., 2015) takes as input a
sequence of |S| embeddings x1, . . . ,x|S|, where

5The parser of Kádár et al. (2021) is based on the parser
of (Qi et al., 2018) whose codebase is provided at https:
//github.com/stanfordnlp/stanfordnlp.
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each xi is a concatenation of word-level, character-
level, part-of-speech and morphological feature em-
beddings for wi. We use pre-trained word2vec
(Mikolov et al., 2013) and fastText embedding
(Bojanowski et al., 2017) to initialize word em-
beddings, whereas the remaining embeddings are
trained from scratch. A BiLSTM decoder then ap-
plies an MLP on top of the encoded representation
to generate the input to either the biaffine or the
disk embedding module.

4.2 Semantic parsing
Unlike dependencies, there is no one-to-one corre-
spondence between words in a sentence and nodes
in an AMR graph. A common solution is to use
an auto-regressive parser (e.g., Zhang et al., 2019;
Bevilacqua et al., 2021) that decodes nodes fol-
lowing an arbitrary graph linearization. However,
semantic parses, just like dependency trees, are in-
herently orderless, which is why we opted for a
non-autoregressive parser that predicts all nodes
in parallel at once.6 We use the PERIN parser
(Samuel and Straka, 2020) to parse sentences into
AMR graphs.7 The parser generates graphs in two
steps: first, a transformer encoder followed by a
transformer decoder take pre-trained XLM-R em-
beddings (Conneau et al., 2019) as input to generate
the hidden representations h1...h|S|.

Unlike dependency parsing, the alignment be-
tween words and nodes in a graph is missing, so
the cross-entropy loss w.r.t. node labels cannot
be computed directly. The alignments have to be
bijective (one hidden state to one node only) but
should still accommodate for many-to-many corre-
spondences, as in the case of named entities (e.g.,
‘Mary’) that are mapped to entire subgraphs (e.g.,
person→ name→Mary). To meet both conditions,
each hi is transformed into k representations via
a function φ : hi → ŷi with ŷi ∈ Rdk. The parser
finds the best alignment between the set of vectors
Ŷ = {ŷi}, and the set of target nodes Y by scoring
all permutations Π(Ŷ) and selecting the one, π∗,
that maximizes the probability of a vector ŷi to cor-
respond to the label of a node y, i.e., p(ylabel); see
Eq. 12. Note that we require the two sets Y and
Ŷ to be the same size, and as such, we extend the
set Y of target nodes with NULL tokens; in prac-
tice this means that the words aligned to NULL are
dropped.

6Nonetheless, our disk embedding module is parser agnos-
tic and could be applied to auto-regressive models as well.

7https://github.com/ufal/perin

π∗ = argmax
π∈Π

|S|×k∑
i=1

1[ylabel 6=NULL]p(y
label
π(i) |ŷi; θ) (12)

where θ are the model parameters. Given a permu-
tation π∗, the parser then computes the weighted
sum of five different losses: the node label, the
edge presence, the edge label, the property (see
below), and the top node loss. For more detail, we
refer the reader to the original paper (Samuel and
Straka, 2020).

In our work, we solely focus on the edge pres-
ence classifier, that is a biaffine function followed
by a cross-entropy loss, as stated at the beginning
of this section. Note that there could be multiple
nodes with the same label; in particular, this is
the case for properties that are subgraphs describ-
ing named entities containing the same semantic
constants (e.g., ‘person’ and ‘name’ for the named
entities ‘Anna’ and ‘Mary’ in Fig. 1). An infelici-
tous consequence of the formula in Eq. 12 is that
‘Anna’ (or ‘Mary’) can be assigned either of the
‘name’ or ‘person’ nodes. To solve this problem,
the parser decides which mapping is optimal by
scoring edge attachments for all permutations of
property nodes and selects the argmax. We will re-
fer to this problem as the edge permutation problem
when analyzing the errors of the parser in § 8.

5 Data and settings

We use the English-EWT section of Universal De-
pendencies (UD; Nivre et al., 2020) for dependency
parsing, and the AMR2.0 dataset (Knight et al.,
2017) for semantic parsing.

Ablations. For both tasks, we perform an abla-
tion study on the development data to understand
the impact of the choice of the loss function, sam-
pling method, distance function and related settings
(see Table 1). Specifically, we consider the follow-
ing losses: the original loss formulation of Suzuki
et al. (2019) and an extended version where a mar-
gin is added to the positive pairs (+pos margin;
Eq. 4). Additionally, we report results for the MLE
loss (Eq. 6), and for when we add our auxiliary
structure loss (+struct; Eq. 9) to the contrastive or
MLE losses.

In Eq. 3a–3b, centers and radii are computed
separately, whereas in the original implementation
of Suzuki et al. they are learnt jointly as a single
vector in which the radius is the last dimension.
To understand whether capturing the interaction
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between centers and radii helps with learning better
disk embeddings, we create a (+shared) alternative
where we jointly learn the centres and radii as in the
original implementation. Finally, we build on the
intuition of centers and radii informing each other,
and propose an additional option on top of shared,
(+iter2 and +iter3), where we train an MLP to take
C, R and X(n−1)

g as input and iteratively refine the
centers and radii k times (where k ∈ {2,3}).

All the settings described assume that we include
all negative instances (node pairs that are not in an
ancestor–descendant relation) as part of the loss
computation; however this might lead to a class
imbalance problem as there are many more nega-
tives than there are positive instances (∼ 10:1 ratio).
We therefore experiment with different sampling
methods, including removing descendant–ancestor
negatives altogether. We found that only one sam-
pling method lead to performance improvement,
i.e., oversampling of parent–child nodes (+sam-
pling). In practice, we multiply the loss of every
parent–child pair by a factor (here 2) in order to
penalize errors coming from such pairs. We fur-
ther test the joint impact of this sampling approach
together with the auxiliary structure loss (+both).

Eq. 4 uses a constant margin α for negative sam-
ples. However, one can formulate a tailored lower
bound on the margin, σij , that depends on the re-
lationship between node i and j. We formally
prove the existence of such a lower bound in Ap-
pendix B, and provide an algorithm to identify it
(Algorithm 1). In practice, however, the use of
this tailored margin did not result in a performance
improvement for either the dependency or the se-
mantic parsing. For completeness, we include the
results in Appendix C, Table 4 (+tailored).

For all combinations, we compare two distance
functions: `2 and `1 norms. We include a list of
hyperparameter values in Appendix A.

Comparison with baselines. We then compare
the performance of our best systems (on test data)
against the dependency parser of parser of Kádár
et al. (2021), and the semantic parser of Samuel and
Straka (2020), respectively. We found that ∼ 3%
of the instances on the test set contain cycles which
cannot be modelled by disk embeddings. To assess
whether this impacts performance, we also provide
results when removing instances containing cycles.

6 Evaluation

For both dependency and semantic parsing tasks,
we compare our model output (a tree or a graph) to
a reference parse.

For dependency parsing, we report accuracy, cal-
culated using two standard measures: Unlabelled
Attachment Score (UAS), that is the percentage
of tokens that are assigned the correct head; and
Labelled Attachment Score (LAS) that is the per-
centage of tokens that are assigned the correct head
and the correct grammatical relation. We use UAS
for model selection.

For semantic parsing, we use Mtool8 to report
a set of fine-grained F1 scores that reflect the per-
formance of each classifier in the PERIN parser.
edge (presence), (node) label, top (node) reflect
the losses introduced in § 4.2; prop(erty prediction)
represents a dedicated score on how well we pre-
dict named entity subgraphs (the properties), as
well as how well we connect them to the rest of the
graph.9 Finally, all is a weighted average of these
F1 scores.10

All results are reported as an average of 3 runs,
along with standard deviations.

7 Results

The disk embedding loss formulation of Suzuki
et al. (2019) performs considerably worse than
all other settings. Results in Table 1 show that for
both semantic and dependency parsing, adding a
margin to positive instances (i.e., pushing positives
below a margin −α) leads to a considerable boost
in performance. Compare the row of results for
original(`2) with the rows for different variations
of pos margin(`2).

The structure auxiliary loss helps with per-
formance, often in conjunction with oversam-
pling parent–child pairs. Results in Table 1 show
that injecting information on the local neighbour-
hood structure, together with giving more weight
to parent–child relations helps both dependency
and semantic parsing; see results in the row corre-
sponding to pos margin(`1)+both. On top of these
settings, we also test whether performance can be
further improved by having a shared representation

8https://github.com/cfmrp/mtool
9Property scores can overlap with edge presence scores

in that they also assess edge prediction but only for property
nodes.

10We use Mtool instead of SMATCH scoring (Cai and
Knight, 2013) since Mtool provides a more fine-grained eval-
uation of the parser performance.
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dependency semantic
system UAS edge label prop top all
Kádár et al. (2021) 91.62(±.33) - - - - -
Samuel and Straka (2020) - 70.14(±.36) 88.15(±.05) 87.34(±.25) 90.37(±.11) 80.28(±.21)

original(`2) 70(±.94) 46.98(±2.23) 87.70(±.14) 58.36(±4.63) 89.44(±.69) 67.19(±1.85)

pos margin(`2) 87.64(±.15) 58.29(±1.19) 87.77(±.21) 80.23(±2.92) 90.03(±.35) 73.80(±1.27)

+struct 88.63(±.21) 61.33(±1.07) 86.04(±.07) 81.95(±1.15) 88.12(±1.17) 74.36(±.9)

+sampling 88.79(±.37) 59.58(±.23) 87.76(±.4) 80.78(±.78) 89.59(±.64) 74.38(±.15)

+both 89.63(±.16) 62.47(±.33) 86.15(±.18) 81.57(±2.88) 89.91(±.17) 75.26(±.4)

pos margin(`1) 87.88(±.21) 58.1(±.28) 87.50(±.09) 80(±2.69) 89.02(±1.14) 73.68(±.18)

+struct 89.23(±.31) 62.14(±.49) 86.2(±.26) 81.58(±2.31) 88.57(±1.32) 75.02(±.52)

+sampling 88.91(±.05) 59.49(±.38) 87.7(±.4) 80.52(±1.43) 89.40(±1.59) 74.36(±.31)

+both 90.08(±.21) 63.78(±.07) 86(±.20) 83.12(±.28) 88.93(±1.1) 75.83(±.02)

+both+shared 90.02(±.01) 63.75(±.5) 86.01(±.12) 83.04(±1.31) 89.88(±.7) 75.89(±.15)

+both+shared(iter2) 90.27(±.01) 63.22(±.8) 86.83(±.21) 83.73(±1.46) 88.98(±2.1) 76.51(±.6)

+both+shared(iter3) 90.12(±.12) 63.57(±1.6) 86.76(±.13) 83.34(±3.21) 90.61(±.36) 76.24(±1.21)

MLE 85.61(±2.63) 56.52(±.12) 87.71(±.11) 79.15(±2.3) 90.20(±.1) 72.60(±.7)

+struct 87.98(±.46) 59.74(±.08) 85.61(±.16) 80.37(±1.63) 90.57(±.2) 73.42(±.92)

Table 1: Results for dependency and semantic parsing on dev set to evaluate the impact of different settings and
loss functions.

of radii and centers, as well as by iteratively re-
fining this. Results show that doing so only leads
to a slight improvement. Finally, we can see that
all our contrastive loss formulations perform bet-
ter than our MLE loss, and that performance is
comparable with `2 and `1 distance. Further ex-
periments and analyses use the best setting of pos
margin(`1)+both+shared(iter2).

To have interpretability one has to pay a
price in performance. Table 2 shows results on
the test set for both dependency and semantic pars-
ing, for the SOTA parsers, as well as our best set-
tings. As can be seen, whereas the loss in perfor-
mance for dependency parsing is rather small, the
gap is wider for semantic parsing. We also no-
tice that removing instances with cycles does not
change this gap, and as such we can conclude that
the fact that disk embeddings cannot model these
instances is not responsible for a drop in perfor-
mance. We investigate this gap in performance
for semantic parsing as part of our analysis in the
following section.

system
dependency

semantic semantic
(w/o cycles)UAS LAS

K(2021) 90.93(±.08) 89.91(±.06) - -
SS(2020) - - 79.89(±.12) 78.86(±.09)

ours 89.17(±.02) 87.69(±.01) 75.21(±.19) 74.54(±.23)

Table 2: Comparison between our best dependency and
semantic parsers with a disk embedding loss, ours, and
the baselines, namely K(2021) (Kádár et al., 2021) and
SS(2020) (Samuel and Straka, 2020). Results are on
the test set.

8 Analysis

Do errors correlate with the (graph) distance
and the relation between nodes? Now that we
have access to interpetable representations, we can
inspect which relations in a parse tree/graph are
challenging to embed correctly. We begin by defin-
ing two types of errors w.r.t. the protrusion `ij
for a predicted edge (i, j): one where `ij > 0
and one where −α < `ij < 0 (note that a correct
`ij < −α). We use 0 instead of α as the cut-
off point because, although not below the desired
margin, the sigmoid in Eq. 5 will still correctly
predict the disk for i containing that of j. We plot
these errors against the graph distance between
all node pairs,11 and report the % of errors over
the total number of node pairs for different values
of graph distance. Fig. 2(a) shows that there is
an inverse correlation between errors and distance,
with parent–child (distance of 1) and grandparent–
grandchild relations (distance of 2) displaying the
highest numbers of incorrect protrusions; this is
particularly striking in the case of semantic parsing
and we elaborate more on this when discussing the
role of edge permutations below. However, we can
see that a large number of incorrect protrusions fall
in (−α, 0), especially in the case of dependency
parsing, for which the sigmoid will still predict a
correct containment.

What makes semantic parsing harder? We

11In a graph, where there could be multiple paths between
a pair of nodes, we take the length of the longest path as the
graph distance.
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(a)

(b)

Figure 2: A detailed breakdown of % protrusion error
(i.e., `ij > −α) for dependency and semantic parsing,
for different values of graph distance (a); (b) shows this
% for parent–child pairs (pairs with distance 1), catego-
rized according to whether both, either or neither nodes
are subjected to edge permutation.

start answering this question by looking at the re-
sults on the dev set where properties (prop) are the
ones whose performance is impacted the most. We
referred to this in § 4.2 as the edge permutation
problem for nodes in named entity substructures
which pose a challenge in the absence of explicit
alignment information; we hypothesize this might
cause a drop in performance and if so, we expect
performance to drop more when there are more
permutations. Fig. 3 shows that there is indeed
an effect of the number of permutations on perfor-
mance, with the baseline system performing better
on instances with a large number of permutations.
Interestingly, in the absence of permutations, our
parser performs comparably to the baseline system.

Edge permutations could also be the main reason
behind the large % of local errors in Fig. 2(a). To
confirm this, we take a closer look at the break-
down of % protrusion errors for parent–child pairs
according to whether both, either or neither node
is subjected to permutation. Fig. 2(b) shows that
when both or either node is permuted, the contain-

Figure 3: Performance on edge prediction for our
disk embedding formulation vs. the baseline semantic
parser. Instances are divided based on the number of
edge permutations computed (with 1 meaning no per-
mutations), as shown on the X-axis.

ment relationship is usually incorrectly predicted.
Note, however, that whereas the number of these
incorrect predictions are large, the overall perfor-
mance is not overly affected, because when match-
ing a predicted and a gold graph, we look at the
node label and not at the node id. Using the exam-
ple in Fig. 1(b), from a matching perspective, we
would obtain the same graph swapping the parent
node ‘name’ of ‘Anna‘ with the one of ‘Mary’.

We also analyze the difference in performance
between trees and graphs, as well as the effect
of the number of nodes on performance; due to
space limitations we include these results in Ap-
pendix D.1. In Appendix D.3, we discuss whether
the size of the parses warrants moving to the hyper-
bolic space.

9 Conclusions and Future Work

We have explored disk embeddings as a means to
obtain interpretable representations when training
a parser that preduces a tree/graph. We showed that
previously proposed disk embedding formulations
are sub-optimal for the task of parsing, and accord-
ingnly explored alternatives that improve parsing
performance. Nonetheless, our results suggest that
we still need to pay a cost in performance to attain
interpretability; this cost is small when parsing into
trees, but notable for graphs. We also speculate that
this cost might be due to properties of the parser
we use, especially in cases where the absence of an
alignment between words in a sentence and nodes
in a graph allows for many permutations.
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Our work can be considered as a first attempt
to bring parsing and ‘deep’ natural language un-
derstanding into the realm of interpretability and
representation learning, so that trees and graphs
could be used in downstream tasks (e.g., image
retrieval), similarly to how word embeddings have
been used.
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ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Hiroaki Ozaki, Gaku Morio, Yuta Koreeda, Terufumi
Morishita, and Toshinori Miyoshi. 2020. Hitachi
at mrp 2020: Text-to-graph-notation transducer. In
Proceedings of the CoNLL 2020 Shared Task: Cross-
Framework Meaning Representation Parsing, pages
40–52.



292

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Luigi Procopio, Rocco Tripodi, and Roberto Navigli.
2021. Sgl: Speaking the graph languages of se-
mantic parsing via multilingual translation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
325–337.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D Manning. 2018. Universal dependency pars-
ing from scratch. In CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies.

David Samuel and Milan Straka. 2020. Ufal at mrp
2020: Permutation-invariant semantic parsing in
perin. arXiv preprint arXiv:2011.00758.

Rupesh Kumar Srivastava, Klaus Greff, , and Jürgen
Schmidhuber. 2015. Highway networks. In Pro-
ceedings of the Deep Learning Workshop at the In-
ternational Conference on Machine Learning.

Dídac Surís, Ruoshi Liu, and Carl Vondrick. 2021.
Learning the predictability of the future. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12607–12617.

Ryota Suzuki, Ryusuke Takahama, and Shun Onoda.
2019. Hyperbolic disk embeddings for directed
acyclic graphs. In International Conference on Ma-
chine Learning, pages 6066–6075. PMLR.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Ur-
tasun. 2015. Order-embeddings of images and lan-
guage. arXiv preprint arXiv:1511.06361.

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew Mc-
Callum. 2018. Probabilistic embedding of knowl-
edge graphs with box lattice measures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 263–272.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. Broad-coverage semantic parsing
as transduction. arXiv preprint arXiv:1909.02607.



293

A Hyperparameters

Hyperparameters for the disk embedding modules
of both dependency and semantic parsing are listed
in Table 3; all hyperparameters not related to the
disk embedding module are the same as in the orig-
inal implementations. Both were tuned separately
on the +pos margin(`2) system. All models were
trained on a single TitanX GPU v100.

semantic dependency
batch size 8 5000

accumulation step 4 -
decoder lr 6e-4 1e-3

layers (disk MLP) 2
center dim. 800
weight init. -0.01∼0.01

activation (Eq. 3a-3b) leakyReLU
dropout 0.0
margin 1 2

Table 3: Hyperparameters used in the disk embedding
module for semantic and dependency parsing.

B Tailored bounds on protrusions

Suppose we have a DAG, G = (V,E), with an
associated order-isomorphic disk embedding for
a given margin of α > 0. That is, given any two
distinct nodes a and b in the DAG we must have
|`ab| ≥ α. Here we prove a stronger lower bound of
the form |`ab| ≥ σabα where σab ≥ 1 depends on
the relationship of a and b in the DAG. Moreover,
the signs of `ab are such that `ab ≤ −σabα when a
is an ancestor of b, and `ab ≥ σabα otherwise.

Suppose a is an ancestor of b, that is, for some
k > 0, there is a path (nk, nk−1, . . . , n0) in the
DAG with a = nk, b = n0. If there are several such
paths from a to b we choose one that is the longest.
Then, since we have assumed the corresponding
disk embedding satisfies the margin α, we have that
ni is an ancestor of ni−1 and therefore `ni,ni−1 ≤
−α. Therefore

k∑
i=1

`ni,ni−1 ≤ −kα. (13)

Moreover from the definition of `ni,ni−1 in (2),

we have

k∑
i=1

`ni,ni−1 =

k∑
i=1

d(ci, ci−1)−
k∑
i=1

(ri − ri−1)

=
k∑
i=1

d(ci, ci−1)− (rk − r0)

≥ d(ck, c0)− (rk − r0) (14a)

= `nk,n0 ≡ `a,b. (14b)

Here we have used the triangle inequality in (14a).
Together (14b) and (13) imply

`a,b ≤ −σab α with σab = k, (15)

where k is the maximum length of any path from a
to b.

For the protrusion from the descendant b to the
ancestor a, namely `b,a, we use

`b,a ≥ σb,a α, for σb,a = σa,b. (16)

Here (16) is a simple consequence of (15) and the
relation

`ninj + `njni = 2d(ci, cj) ≥ 0, (17)

which follows easily from (2).

Figure 4: An example of a tight "other" relationship be-
tween nodes a and b in the situation described in The-
orem B.1. Here |P1| = |P2| = 2, and `a,b, is depicted
by the length of the red line, where each hash mark de-
notes a subsegment of length α. Note the lower bound,
namely `a,b = [|P1|+ |P2|+ 1]α, is achieved.

The remaining case is when a and b are in an
"other" relationship, that is, they are not in an
ancestor–descendant relationship (or vice versa).
For this case it is useful to first define a feasible
pair of paths (see Fig. 4). Define (P1, P2) to be
a feasible pair of paths for nodes a and b if P1 is
a path (xi, xi−1, . . . , x0) ending at x0 = a, P2 is
a path (yj , yj−1, . . . , y0) starting at yj = b, and
where no node in either path is a descendant of a
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node in the other path. The following theorem pro-
vides a lower bound on the protrusion `ab in terms
of such a feasible pair (P1, P2).

Theorem B.1. Suppose P1 and P2 are a feasible
pair of paths for nodes a and b, as described above.
Then

`ab ≥ [|P1|+ |P2|+ 1]α, (18)

where |P | denotes the number of edges (i.e., the
length) of the path P .

Proof. Since b is an ancestor of y0, the bound (15)
implies `b,y0 ≤ −|P2|α. Moreover, since xi is
neither an ancestor nor descendant of y0, we have
`xi,y0 ≥ α. By subtracting these two inequalities
we find that

`xi,y0 − `b,y0 ≥ [|P2|+ 1]α. (19)

From (2) we find

[|P2|+ 1]α ≤ `xi,y0 − `b,y0 (20a)

= d(cxi , cy0)− d(cb, cy0)− rxi + rb
(20b)

≤ d(cxi , cb)− rxi + rb (20c)

= `xi,b, (20d)

where we have used the triangle inequality in (20c).
Similarly, since the path P1 starts at xi and ends at
x0 = a we have

`xi,a ≤ −|P1|α.

Moreover, all the disks xk, for k = 0, . . . , i are in
the other relationship to node b. Subtracting this
inequality from (20) then gives

[|P1|+ |P2|+ 1]α ≤ `xi,b − `xi,a (21a)

= d(cxi , cb)− d(cxi , ca)− ra + rb (21b)

≤ d(ca, cb)− ra + rb (21c)

= `a,b, (21d)

where we have again used the triangle inequality in
(21c). Eqn. (21) is the desired result.

We apply Theorem B.1 by defining σab, in the
case a is neither an ancestor nor descendant of b, to
be the maximum lower bound (18) over all feasible
pairs, (P1, P2), for these nodes a and b. That is

σab = max
(P1,P2)

{|P1|+ |P2|+ 1} . (22)

Given a DAG, Algorithm 1 below computes this
σab for two nodes a and b in an "other" relationship.

Algorithm 1: compute_margin(G, ni, nj)
Input: graph G, nodes ni and nj in ‘other’ relation
Output: maximum lower bound σij
Initialize q with all ancestors of ni, including ni;
Initialize σi,j = 1;
while q is not empty do

ny = q.pop();
if nj is reachable from ny then

continue;
else
G′ = copy(G);
Remove all descendants of ny in G′;
lgj = 0;
for each descendant nw of nj in G′ do

if longest_path(nw, nj) > lgj then
lgj = longest_path(nw, nj);
ng = nw;

end
lyi = longest_path(ni, ny);
σij = max(σij , lyi + lgj + 1);

end
end

C Using a tailored bound on protrusion

Eq. 4 can then modified to include σij as shown
below:

Lc =
∑

(i,j)∈P

[σijα+ lij ]+ +
∑

(i,j)∈N

[σijα− lij ]+

(23)

Note that in this formulation a margin is used for
positive samples as well. Results in Table 4 shows
that a tailored margin, even in combination with
the auxiliary structure loss as well as parent–child
oversampling, does not lead to any gain over our
best system (pos margin(`1)+both).

D Analysis

D.1 Is performance worse for larger
trees/graphs?

Instances with no permutations might also be easier
because they are shallower or contain less nodes.
Fig. 5 shows that there is an effect due to the num-
ber of nodes. However Fig. 6 shows that perfor-
mance starts to diverge at more than 25 nodes
which doesn’t fully explain performance for in-
stance with less than 10 permutations.

D.2 Is there a difference in performance
between trees and graphs?

Given the difference in performance between de-
pendency and semantic parsing in Table 1, one can
hypothesize that it is easier to preserve the structure
of trees than graphs. To answer this question, we
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dependency semantic
system UAS edge label prop top all
Kádár et al. (2021) 91.62(±.33) - - - - -
Samuel and Straka (2020) - 70.14(±.36) 88.15(±.05) 87.34(±.25) 90.37(±.11) 80.28(±.21)

original(`2) 70(±.94) 46.98(±2.23) 87.70(±.14) 58.36(±4.63) 89.44(±.69) 67.19(±1.85)

pos margin(`1)+both 90.08(±.21) 63.78(±.07) 86(±.20) 83.12(±.28) 88.93(±1.1) 75.83(±.02)

+tailored (`2) 88.6(±.65) 52.13(±1.02) 88.79(±.07) 74.09(±2.2) 89.66(±.92) 69.95(±.33)

+struct 89.21(±.05) 61.37(±.35) 86.67(±1.75) 81.86(±1.31) 88.97(±.92) 74.70(±.31)

+sampling 89.14(±.91) 54.47(±1.12) 87.94(±.1) 76(±1.15) 88.93(±1.56) 70.91(±.38)

+both 89.87(±.64) 62.91(±.34) 86.91(±.01) 83.42(±.42) 89.2(±.89) 75.54(±.35)

+tailored (`1) 88.65(±.16) 52.38(±.58) 88.84(±.25) 73.44(±1.78) 89.81(±.87) 69.72(±.71)

+struct 89.4(±.04) 61.92(±.17) 86.73(±.15) 82.40(±.62) 89.64(±1.62) 75.05(±.06)

+sampling 89.12(±.43) 53.98(±.68) 87.78(±.11) 75.98(±1.92) 89.71(±.34) 70.82(±.18)

+both 89.92(±.4) 62.89(±.65) 86.89(±.11) 82.61(±1.02) 89.11(±.83) 75.60(±.43)

Table 4: Results for the +tailored setting for dependency and semantic parsing on dev set. Performance of the
baseline parsers, the original formulation (Suzuki et al., 2019), as well as our best system (pos margin(`1)+both,
see Table 1) are also reported for comparison.

Figure 5: Analysis of number of permutations w.r.t. the
number nodes in a graph.

Figure 6: Analysis of the number of nodes in a graph
w.r.t. parse prediction performance per instance for the
baseline biaffine and the disk embedding system. In
orange, an histogram over the proportion of instances
in a particular size bin is also reported.

first divide the AMR dev set into instances whose
gold parse is a tree vs. those that are graph. We
then compare the average of the per-instance F1
scores for edge presence as given by the predictions
of the baseline system (Samuel and Straka, 2020)
vs. those of our best disk embedding model. We
confirm that indeed graphs are harder, and, in line
with the results of dependency parsing, the gap be-

tween the baseline system and our disk embedding
formulation is larger for graphs (∆ =1.95) than
trees (∆ =0.77).

D.3 Do we need to move to hyperbolic space?
To answer this question, we plot the difference be-
tween the radii for all pairs of ancestor–descendant
disks (|ri − rj |), as well as the norm of the differ-
ence between the center of a disk and the mean of
all centers of the disks in a graph (||ci − c̄||). We
hypothesize that moving to the hyperbolic space is
justified if an exponential growth is observed when
the graphs get larger. However, Fig. 7 shows that
this is not the case.

Figure 7: Boxplots analysis the absolute difference be-
tween radii of two disks (above) and the norm of the
difference between the center of a disk in a graph and
the average over the all disk centers in the same graph
(below). Both are plotted against the number of nodes
in a graph on the x axis.


