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Abstract

Previous work on probing word representa-
tions for linguistic knowledge has focused
on interpolation tasks. In this paper, we in-
stead analyse probes in an extrapolation set-
ting, where the inputs at test time are deliber-
ately chosen to be ‘harder’ than the training
examples. We argue that such an analysis can
shed further light on the open question whether
probes actually decode linguistic knowledge,
or merely learn the diagnostic task from shal-
low features. To quantify the hardness of an
example, we consider scoring functions based
on linguistic, statistical, and learning-related
criteria, all of which are applicable to a broad
range of NLP tasks. We discuss the relative
merits of these criteria in the context of two
syntactic probing tasks, part-of-speech tagging
and syntactic dependency labelling. From our
theoretical and experimental analysis, we con-
clude that distance-based and hard statistical
criteria show the clearest differences between
interpolation and extrapolation settings, while
at the same time being transparent, intuitive,
and easy to control.

1 Introduction

The use of contextualised language models such
as ELMo and BERT has brought about remarkable
performance gains on a wide range of downstream
tasks (Peters et al., 2018a; Devlin et al., 2019);
but the question to what extent these models have
acquired linguistic knowledge remains open. One
way to investigate this question is through the use of
probing classifiers trained to solve diagnostic pre-
diction tasks that are considered to require linguis-
tic information, such as parts-of-speech, syntactic
structure, or semantic roles (Belinkov et al., 2017a;
Conneau et al., 2018; Tenney et al., 2019). How-
ever, what conclusions can be drawn from probing
experiments is disputed. In particular, a central
point of debate is how to know whether probes
‘decode linguistic knowledge’ or simply ‘learn to
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solve the diagnostic task’ (Hewitt and Liang, 2019).
We suggest that new methods that define more rig-
orous and harder challenges are needed to get fur-
ther insights into the capabilities and limitations of
probes and probing methodology.

In this paper, we propose to analyse probes in
the context of an extrapolation setting, where the
inputs at test time are deliberately chosen to be
‘harder’ than the training examples. While machine
learning models and neural networks in particular
have proved to be very effective learners in inter-
polation scenarios, where the examples at training
time and those at test time are drawn from the same
(idealised) underlying distribution, the ability of
these models to extrapolate from the training data
appears to be limited (Dubois et al., 2020). At the
same time, extrapolation has been proposed as a lit-
mus test for abstract reasoning in neural networks
(Barrett et al., 2018). In the context of probing, we
posit that the better the extrapolation capability of
a probe, i.e. the higher its performance even in situ-
ations where the training and the test examples are
substantially different, the more evidence we have
for claiming that the probe actually uses abstract
linguistic knowledge encoded in the input word
representations.

To construct extrapolation challenges, we pro-
pose a conceptually simple approach where we start
from standard probing datasets, stratify them based
on the ‘hardness’ of examples, and then use the
‘easy’ examples for training and the ‘hard’ ones for
testing (§ 3). The central decision in this approach
is how to measure ‘hardness’. Here we identify dif-
ferent scoring functions based on criteria grounded
in linguistic theories, statistical properties of the
base dataset, and learning behaviour. We apply
these scoring functions to create extrapolation chal-
lenges from two standard probing tasks, part-of-
speech tagging and syntactic dependency labelling
(§4), and use the results of our experiments to dis-
cuss the merits of our approach (§ 5).
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2 Related Work

The method that we propose in this paper synthe-
sises several strands of related work:

2.1 Probing (and its Limitations)

Probing aims at detecting linguistic knowledge in
word representations. While this can be done in
a zero-shot setting (Goldberg, 2019; Talmor et al.,
2020) or as a structural probe (Hewitt and Manning,
2019), a dominant approach is to train and evalu-
ate simple classifiers on relevant diagnostic tasks
(Belinkov et al., 2017b; Hewitt and Liang, 2019),
where the classifier receives one word representa-
tions at a time as its input. This is based on the idea
that the accuracy of the trained probe can indicate
to what extent the representations encode linguistic
knowledge that is useful for the diagnostic task.

Recent work has questioned the validity of this
methodology, suggesting that analysis should shift
focus to measuring ‘amount of effort’ rather than
task-based accuracy (Pimentel et al., 2020; Voita
and Titov, 2020). Moreover, many probing tasks
are relatively easy to learn with local context and
strong independence assumptions. It thus remains
unclear whether the probed word representations
actually encode linguistic knowledge, contain pre-
dictive but superficial features extracted from the
words’ linear context (Kunz and Kuhlmann, 2020),
or rather provide an effective initialisation for the
probing classifier (Prasanna et al., 2020).

2.2 Interpolation and Extrapolation

A growing body of research suggests that, while
deep neural models can reach remarkable perfor-
mance in interpolation settings, they often fail to
extrapolate, i.e. to generalise to inputs outside the
range of the training data. For example, Barrett
et al. (2018) show that in visual reasoning, popular
models such as ResNets perform at levels barely
above a random choice baseline in extrapolation
settings. As the ability to extrapolate is generally
considered a hallmark of intelligence, such find-
ings raise the question whether deep models are
capable of human-like reasoning. Similar concerns
come from observations that performance can suf-
fer greatly when models are confronted with adver-
sarial examples (Goodfellow et al., 2015; Jia and
Liang, 2017) or challenge sets (Zellers et al., 2018,
2019). Zellers et al. (2019) suggest that deep mod-
els may ‘pick up on dataset-specific distributional
biases’ instead of learning the actual task.
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In the domain of natural language understanding,
authors have shown that Transformers lack the ca-
pability to extrapolate to longer sequences (Dubois
et al., 2020) and number representations of higher
values (Weiss et al., 2018); and that even large neu-
ral models such as RoBERTa can compare ages
only within a restricted range (Talmor et al., 2020).
Evidently, test data outside the training distribution
is a great challenge, and contextualised language
models are easily broken on such data.

2.3 What are Hard Examples?

Most of the aforementioned works on extrapola-
tion and abstraction employ synthetic datasets or
adversarial attacks to challenge a model. Here we
propose a method based on the stratification of ex-
isting probing datasets according to a measure of
expected difficulty or ‘hardness’.

2.3.1 Readability Criteria

One way to quantify the difficulty of training ex-
amples is to use readability criteria, which are typi-
cally motivated on linguistic grounds or with ref-
erence to studies on human language processing
(Kocmi and Bojar, 2017; Platanios et al., 2019). A
widely used and widely applicable metric is sen-
tence length, which is intuitive and straightforward
to measure (Sherman, 1893), but only weakly corre-
lated with processing complexity (Bailin and Graf-
stein, 2001). There are also many more specific
measures, such as the respective averages of parse
tree height, length of arcs in syntactic dependency
trees, number of noun phrases and number of verb
phrases, or word frequency. These measures often
inform systems that help authors improve writing
quality, and automatically transform texts to make
them more understandable or accessibile (Zama-
nian and Heydari, 2012), but are also used to evalu-
ate systems such as dependency parsers (McDonald
and Nivre, 2007; Kulmizev et al., 2019).

2.3.2 Learning-Based Criteria

Instead of using inherent properties, another way
to quantify the hardness of training examples is
to look at the effort that a model has to put into
learning them. Here we take inspiration from de-
velopments in curriculum learning, which moved
from heuristic metrics on artificial datasets (Bengio
et al., 2009) to learning-specific metrics. In par-
ticular, self-paced learning employs the loss of a
model to rate and rank the difficulty of examples in
a dataset (Kumar et al., 2010; Hacohen and Wein-



shall, 2019). This approach is widely used, but
has also been criticised as being inherently model-
specific (Lalor and Yu, 2020). Other approaches
that have been successfully employed in curricu-
lum learning are rankings based on the norms of
word embeddings (Liu et al., 2020) and on model
uncertainty (Zhou et al., 2020).

3 Experimental Setup

In this section we present our specific approach to
creating extrapolation datasets, and the setup for
our empirical evaluation.'

3.1 Word Representations

Our word representations come from the English
BERT base (uncased) model (Devlin et al., 2019),
accessed via the the Transformers library (Wolf
et al., 2020). We probe on the hidden representa-
tions of words in all 13 layers, including the un-
contextualised layer O as a baseline. For words that
BERT tokenises into several word pieces, we use
the last piece as the representation for the word.

3.2 Probing Classifier

The probing classifier is the same in all exper-
iments: a feed-forward network with one hid-
den layer, 64 hidden units and ReLU activation.
We train this classifier with cross-entropy loss for
5 epochs using the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001 and a batch
size of 64. Our implementation uses PyTorch
(Paszke et al., 2017).

3.3 Tasks and Datasets

We use two prototypical diagnostic tasks which
have been widely studied in the probing literature:
part-of-speech (POS) tagging and syntactic depen-
dency labelling. The training and test data for
both tasks comes from the English Web Treebank
(EWT) as released by the Universal Dependencies
project (Nivre et al., 2020) (v2.5). More specif-
ically, we extract our examples from two 1,000-
sentence sets Syain and Siest, randomly sampled
from the training and the development section of
the EWT, respectively.> We write st to denote the
i1th sentence in S, wfj to denote its jth word, and

'All code necessary to reproduce our experiments is
publicly available at https://github.com/jekunz/
extrapolation.

2We sub-sample the full data to reduce training time and
save resources. Preliminary experiments showed the same
trends that we report here for the full data.
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x% to denote the BERT representation of w;;. We
omit the superscript when the base set (training or
development) is understood or irrelevant.

T1: Part-of-speech tagging This is our proto-
typical single-word labelling task. Examples take
the form e = (x5, y;;), where x;; is the representa-
tion of a single word wj;;, and y;; is the correspond-
ing gold-standard tag. The POS class of a word
captures some of its most basic syntactic properties,
and can be predicted with local or even without con-
text information at a high accuracy. For our data,
probes trained on contextualised word representa-
tions usually show a tagging accuracy above 95%,
with the highest-performing layers being the lower
middle or middle layers of a model (Peters et al.,
2018b; Tenney et al., 2019).

T2: Syntactic dependency labelling In this
task, which intends to capture the hierarchical struc-
ture of a sentence, we aim to predict the grammati-
cal relation for a given dependency arc. Examples
take the form e = ((xi;, zk), yir), Where ;; and
x;1 are word representations of the head and depen-
dent, respectively, and y;;, is the gold-standard de-
pendency label. The performance of simple probes
on this task is usually lower than for POS tagging,
as the syntactic information that is required to ac-
curately predict the labels is more complex and
depends on a larger context. Accuracy can how-
ever still exceed 90% in the highest-performing
layers, which are usually the higher middle layers.

3.4 Scoring Functions

We next introduce the inventory of measures that
we use to quantify the ‘hardness’ of training ex-
amples. Formally, each measure is a real-valued
function m whose domain is the set of all task-
specific examples. If m(e) > m(e’), we say that
example e is harder than example ¢’

3.4.1 Length-based Criteria
These scoring functions refer to two different no-

tions of length:

Sentence length (T1, T2) The most basic length
is that of the sentence s; from which the example
is derived. Using |-| to denote length,

(for T1)
(for T2)

m(Tij, yij) = |sil

m((zij, Tix), Yir) = |54


https://github.com/jekunz/extrapolation
https://github.com/jekunz/extrapolation

Arc length (T2) For dependency labelling, we
may also consider the length of the dependency arc:

3.4.2 Statistical Criteria

For part-of-speech tagging, we consider criteria
related to the distribution of the tags:

Tag proportions (T1) Here the hardness score
of an example is the inverse relative frequency of
the represented word’s gold-standard POS tag in
the training set. More formally, for a word w;;
from Siin and a tag t, let f(w;;, t) be the relative
frequency of ¢ among all possible tags for w;;; then
m(xij,Yi;) = 1 — f(wij,yi;). For examples e that
represent words which do not occur in Syin, We
let m(e) = 1; out-of-vocabulary words will thus
always yield the hardest examples.

Most frequent tag (T1) In a related setup, we
consider an example to be ‘easy’ if its gold-
standard tag is the most frequent tag (mft) in the
training set, and ‘hard’ otherwise. Formally,

m(:nij, yij) = 1—ﬂ[yij is the mft for Wij in Strain] .

3.4.3 Learning-based Criteria

Here we implement ideas from curriculum learning.
We first train an ensemble of 10 classifiers on all
examples derived from Sy.,in. Each classifier has
the same architecture and training regime as our
probe (§ 3.2), but uses a different random seed. We
then use this ensemble to define the hardness of
each example e as follows:

Sample-specific loss (T1, T2) Here we let m(e)
be the sample-specific loss for e, relative to its
gold-standard tag or label, averaged over the 10
classifiers in the ensemble.

Speed of learning (T1, T2) Here we want to
classify an example as ‘hard’ if the probe needs
a long time (a large number of updates) to learn it
reliably. To implement this idea, at seven specified
checkpoints early into training, we let each of the
classifiers in the ensemble predict the tag or label
of each example e, and define
m(e) =1/(c+1),

where c is the total number of correct predictions.
For our checkpoints, we use the partially trained
classifiers after 2" batch updates, for 1 < ¢ < 7.
As a consequence, the minimal value for c is 0
(never correctly classified), and the maximal value
is 7 - 10 (correctly classified at every checkpoint,
by every classifier).
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3.5 Easy Sets and Hard Sets

The last step of our approach is to use our scoring
functions to split the set of all task-specific exam-
ples into an ‘easy’ set and a ‘hard’ set. Here, for
each specific experiment we choose two values m1
and msy and let

Deasy = {e | m(e) < ml}
Dhard = {6 | m(e) > mg}

The difference mo — mq denotes the distance be-
tween Deysy and Diyq. The specific criteria accord-
ing to which we choose the split points vary:

Linguistic criteria For sentence length we base
our choice on the classification of Flesch and Gould
(1949). Specifically, for De,sy we use the lengths
less than 17 words (m; = 17), corresponding to
(at most) ‘fairly easy’ readability, understood by
88% of adults in the referenced study. For Dp,q we
use the lengths greater than 29 words (me = 29),
classified as (at least) ‘very difficult’, understood
by 4.5% of adults.

Distributional criteria For the remaining scor-
ing functions, we choose split points based on the
empirical distribution of the scores: We let m; be
the 50th percentile (i.e., the median score), and
mg be the 75th percentile. The only exception to
this rule is for the most frequent tag criterion, as
explained in § 3.4.2.

Note that, with our strategies of choosing split
points, the sizes of the specific ‘easy’ and ‘hard’
sets that we use for each experiment differ from
the full set, getting as low as half the number of all
examples. To assess the impact of this reduction,
in control experiments we randomly sub-sampled
the ‘standard’ training sets down to 50% of their
original size, but only observed a moderate drop in
accuracy (at most 1%).

3.6 Evaluation
For each experiment, we consider two setups:

* In the extrapolation setup, we train on the exam-
ples in De,sy and test on those in Dyyyg.

* In the control setup, we also test on the examples
in Dygeq, but train on the full set of examples.

For both setups, we report the mean over 10 random
seeds of the best accuracy of each classifier among
the 5 epochs for which it was trained.
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Figure 1: Extrapolation based on sentence length. From left to right: part-of-speech tagging (T1), linguistic
criterion; dependency labelling (T2), linguistic; T1, distributional criterion; T2, distributional. In all plots, the
x-axis corresponds to the BERT layer used for prediction, and the y-axis corresponds to the mean accuracy.

To interpret an experiment, we compare the two
accuracy values: If the accuracy in the extrapola-
tion setup is significantly lower than that of the
control, we want to conclude that the probe lacks
the ability to extrapolate from ‘easy’ examples, and
that there is thus no evidence that the probe makes
use of linguistic knowledge in the probed represen-
tations. On the other hand, similar scores in the two
setups indicate that we have chosen a test set that is
hard even for interpolation learning, in which case
we do not want to draw this conclusion.

For comparison, we also report the mean ac-
curacy in the standard setup, where we train and
evaluate on the full datasets.

4 Results

We now present our experimental results for each
of the scoring functions.

4.1 Sentence Length

The results for sentence length can be seen in Fig-
ure 1. The accuracies for the extrapolation setups
are the highest among all scoring functions, and
the differences to the standard setups are by far the
smallest. Indeed, for part-of-speech tagging (T1)
the difference is so small that a large part of it can
probably be explained by the decreased number
of training examples: the difference between the
control and the extrapolation setup is mostly 1-2
points, and never exceeds 3 points. For dependency
labelling (T2), the difference is more pronounced,
but sentence length remains the measure with the
smallest difference between the two setups.

The distributional split criterion gives m; = 23
and mo = 34, so both the longest sentences in the
‘easy’ set and the shortest sentences in the ‘hard’
set are longer than with the linguistic criterion. The
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linguistically motivated split shows a larger gap
between the standard setups and the extrapolation
setups. This is particularly clear for T2, with a gap
as high as 8 points in layer 10.

4.2 Arc Length

The extrapolation accuracy of the probe based on
arc length (Figure 2) is comparatively low, suggest-
ing that this setup is more challenging than extrapo-
lation based on sentence length. The control shows
that the ‘hard’ set is clearly harder than the unfil-
tered test set; but there is an additional substantial
accuracy drop in the extrapolation setup.

When using the distributional split criterion, we
get m; = 2 and my = 4, and the extrapolation
accuracy does not exceed 46% in any layer. As
mq = 2 results in a training set that only consists
of arcs of length 1, we perform an additional exper-
iment with a different split, decreasing the distance
between Deysy and Dpyrg by setting my = 3. This
increases accuracy to at most 62%, which is con-
siderably higher than before but still far below the
control, which reaches up to 85% on the ‘hard’ set.

100 T T 100 T T
60 | 1 60 —AA/AAAAMAAAA[
s | s | | |
40 0 6 12 40 0 6 12
Layer Layer

Figure 2: Extrapolation based on arc length. Left: Stan-
dard distributional setup. Right: Modified setup.
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Figure 3: Extrapolation for T1 based on the most fre-
quent tag (left) and tag proportions criteria (right).

4.3 Most Frequent Tag and Tag Proportions

The results for the extrapolation splits based on the
most frequent tag and the tag proportions criteria
are shown in Figure 3.

Splitting based on the most frequent tag criterion
leads to an extrapolation setup that is consistently
more challenging than the standard setup. We ob-
serve a very low accuracy in the first layers, while
the higher layers are significantly more predictive.
The relative difference in accuracy between the
extrapolation setup and the control is also most pro-
nounced in the early layers, although the pattern is
less clear in terms of absolute numbers. The gap
to the standard (interpolation) setup is substantial:
11-35 points for the control, and 23—42 points for
the extrapolation setup.

When using the tag proportions criterion for the
extrapolation split, the ‘hard’ set is now easier, as
around half of the examples have a tag that is the
most frequent one for the word form. The simpler
nature of this challenge is visible in the results:
While the performance of the control only sees a
modest increase (especially in the lower layers),
the difference between the control and the extrapo-
lation setup shrinks more clearly, presumably be-
cause the augmentation of the test set with easier
examples has a high proportional effect on the pre-
viously very low results of the extrapolation probe.

4.4 Speed of Learning

Using the learning-based scoring function, the dif-
ference between the control and the extrapolation
setup is the largest among all settings. The accu-
racy of the control is similar to that in the standard
setup, suggesting that the ‘hard’ set may in fact
not be (much) harder after all. For the dependency
labelling task (T2), control accuracy even slightly
exceeds accuracy on the standard set, in all layers
but the uncontextualised layer O.
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Figure 4: Extrapolation based on speed of learning.
Left: Tagging (T1). Right: Dependency labelling (T2).

Training the probe on the ‘easy’ set only, how-
ever, has a disastrous effect: in the extrapolation
setup, the accuracy drops dramatically. Interest-
ingly, accuracy continues to decrease in higher lay-
ers, whereas the typical curve for syntactic probes
peaks in the middle layers (Tenney et al., 2019).

4.5 Sample-specific Loss

With the loss-based split (Figure 5), the results for
the control setups are the lowest among all scor-
ing functions. In this setting, by construction, the
‘hard’ set consists of the examples with the highest
loss, making it challenging even in an interpolation
setting. For the tagging task, we see an extreme
drop of accuracy in layers 6-8, the layers on which
the other two setups perform best.> The probes
in these layers appear to be completely unable to
extrapolate to the harder examples.

While for POS tagging (T1), extrapolation accu-
racy is generally very close to that of the control,
for dependency labelling (T2) we observe a larger
distance between all setups, but in particular be-
tween the extrapolation setup and the control.

3To put this into context, we recall that we tried to control
for a too high model-specificness by averaging the losses of
10 different models.

100 T 100 T T
80 |- 4 80 —,/"’M“““—
60 |- | 60| N
40 |- 4 40} .
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Layer Layer

Figure 5: Extrapolation based on loss. Left: Tagging
(T1). Right: Dependency Labelling (T2).



5 Discussion

While for all experiments, the accuracy in the ex-
trapolation setup is substantially lower than in the
standard interpolation setup, it is still above random
guessing, which suggests that probes are able to
extract some useful information from the word rep-
resentations even under this experimental regime.
However, the success of extrapolating from ‘easy’
to ‘hard’ examples varies depending on the choice
of the scoring function. In this section we discuss
these findings and the limitations of our method.

5.1 Scoring Functions

We start by arguing for the merits of the different
scoring functions in the context of probing.

Sentence length Sentence length is the least
discriminating metric in the experimental results,
which is in line with our expectations and with
previous work on curriculum learning discussed in
§ 2.3: for word-level tasks, sentence length is not a
strong indicator for hard examples. In the case of
part-of-speech tagging (T1), there is no consider-
able difference between interpolation and extrap-
olation accuracy. For dependency labelling (T2),
such a difference is present; but it is small com-
pared to other choices of scoring functions. The
non-correlation between sentence length and hard-
ness is quite intuitive: long sentences also contain
many simple examples, and even short sentences
may contain complex syntactic constructions. At
the same time, the observed difference between the
two tasks suggests that the higher-level the task is,
and the wider the context it depends on, the more
meaningful sentence length can be as a criterion
for creating extrapolation challenges.

Arc length In contrast to sentence length, arc
length provides a useful criterion for extrapolation.
While the comparatively low accuracy in the con-
trol setup shows that longer arcs are a challenge
in themselves, restricting the training set to short
arcs limits the accuracy of the probe even further.
Extrapolation capability is limited even in the soft-
ened setup where we decrease the distance between
training and test set (Figure 2, right). Thus, under
this scoring function, we find no evidence that the
probe extracts useful linguistic knowledge from the
word representations — a conclusion that establishes
a difference between our extrapolation setup and re-
sults for interpolation-based learning (Tenney et al.,
2020; Hewitt and Liang, 2019).
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Most frequent tag and tag proportions Even
the most frequent tag criterion is an informative
setup. Our empirical results (Figure 3) suggest
that the probe seems to heavily rely on word form-
specific information at least in the first layers, while
it focuses on more generalisable information in the
later layers, and thus exhibits better extrapolation
capabilities.

Based on the differences between the extrapola-
tion setup and the control, we argue that the most
frequent tag criterion is better motivated and pro-
vides more insights than tag proportions.

Speed of learning The ‘speed of learning’ crite-
rion creates a very challenging extrapolation setup,
compared to the standard setup (and the control).
Probes trained on the full set perform well on the
supposedly hard extrapolation test set, sometimes
even better than on the standard test set. It is the
training set that makes the difference: by only in-
cluding fast-success examples, we are likely to miss
patterns. The extrapolation setup favours patterns
that are easy to learn, making it superfluous for
the classifier to try harder and extract features that
generalise better, even if these may not necessarily
be extremely hard to learn — the number of such
examples may simply be too small to learn the
pattern in the first phase. As a consequence of
this behaviour, the speed of learning criterion has
a low interpretability. Without further qualitative
analyses, we can only make assumptions about the
nature of the ‘easy’ and ‘hard’ datasets, and in par-
ticular about the examples that are left out from
either. And obviously, if patterns are completely
missed, we cannot expect the model to extrapolate
to harder examples of this very pattern.

Sample-specific loss The most opaque of all
scoring functions is arguably the loss-based cri-
terion. It is even less transparent than the learning-
based criterion, where we can possibly identify the
learned (and missed) patterns in an error analysis.
With the loss-based criterion, we will be unlikely
to identify commonalities between examples that
share the same ranking with respect to the scoring
function. While the loss-based criterion strongly
discriminates between the standard setup and the
extrapolation setup, this is largely an effect of the
construction of the test set, which in the latter setup
will contain all examples that are classified incor-
rectly. For tasks where the performance of a stan-
dard probe is already low, the test set will solely



consist of misclassified examples. Applying the
loss of fully trained probes on the test set can there-
fore be seen as circular.

Summary To summarise, from a perspective of
transparency, controllability, and demonstrable suc-
cess in separating the data into easier and harder ex-
amples, we argue that the most interesting metrics
for the identification of extrapolation challenges
are arc length and the most frequent tag criterion.
The learning-based scoring functions, which have
the potential to be less ad-hoc, are hard to inter-
pret, give unsurprising results, and are therefore
less useful as an analysis tool.

Another benefit of arc length and the most fre-
quent tag criterion is that they are applicable to a
wide range of tasks. The most frequent tag criterion
can be applied to any word labelling task that has
a limited number of labels. Examples for further
tasks where it can be applied include named entity
recognition and word sense disambiguation. Arc
length can be applied to all tasks that can be formu-
lated as operating on pairs of words. Besides other
parsing tasks such as semantic dependency parsing,
this is the case for e.g. coreference resolution or
negation scope detection (Kurtz et al., 2020).

5.2 Contributions and Limitations

The strong differences between the standard setup
and the extrapolation setup and the great variability
of results across scoring functions illustrate that the
interpretation of probing classifiers remains chal-
lenging. A more extensive analysis, be it with auto-
mated techniques such as our extrapolation splits
or with a qualitative analysis, is a necessity for a
deeper understanding of a probing classifier’s re-
sults. Unlike previous restrictions of the model or
the training data as proposed by Hewitt and Liang
(2019), our approach offers (given an appropriate
scoring function, such as arc length or the most
frequent tag criterion), more control over and trans-
parency about the nature of the restrictions imposed
by the modification of the data.

While the extrapolation setup helps approximat-
ing the nature of the features the probe uses, it does
not ultimately solve the problem of the lacking
interpretability of probing classifiers themselves.
Negative results in the extrapolation setup do not
imply that the linguistic knowledge of interest is
not present in the representation. The probe may
just have focused on other features — the amount of
predictors to approximate a given target function
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is infinite. However, classical interpolation-based
setups using probing classifiers tend to overesti-
mate the information present in the representations,
as classifiers can learn a task even from randomly
initialised word embeddings (Zhang and Bowman,
2018; Hewitt and Liang, 2019). Therefore we ar-
gue that, at this time, we need to be more aware of
false positives than of false negatives in probing.
Extrapolation probes have the potential to reduce
the false positive rate while providing new insights
into the generalisability of the features they use.

6 Conclusion

We identified and suggested several ways to define
the difficulty of training and validation examples
based on linguistic, statistical, and learning-based
criteria, to create extrapolation splits for natural
language datasets. We demonstrated the usefulness
of these measures for the analysis of two linguistic
tasks, and proposed an evaluation protocol with
baselines and metrics.

Our experimental results suggest that a probe
trained on BERT hidden representations is capa-
ble of applying patterns learned from easier ex-
amples to harder examples to some extent; but in
well-motivated scenarios where the scoring func-
tion is an appropriate measure of difficulty of the
examples, its competence is clearly limited com-
pared to an interpolation probe. In our experi-
ments, the most informative scoring functions are
the distance-based arc length criterion that we ap-
plied to syntactic dependency labelling, and the
word-specific most frequent tag criterion for part-
of-speech tagging. These functions allow for a
clear and transparent extrapolation setup, while at
the same time being simple and also computation-
ally efficient. Sentence length, as expected, did not
turn out to be a strong indicator for hard examples,
while learning-based criteria show a high margin
between interpolation and extrapolation setups, but
limited interpretability and qualitative insights.

We conclude that enriching probing experiments
with automated extrapolation setups can be a valu-
able supplement to standard probing methods, as it
gives us an instrument to test the generalisation ca-
pability of the probe, and thereby the robustness of
the features it uses. In addition to interpretation pur-
poses, well-chosen extrapolation splits can provide
a cheap but valuable extension of the evaluation of
a model, testing its generalisation capabilities and
verifying the progress made.
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