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Abstract
Tsetlin Machine (TM) is an interpretable pat-
tern recognition algorithm based on proposi-
tional logic, which has demonstrated compet-
itive performance in many Natural Language
Processing (NLP) tasks, including sentiment
analysis, text classification, and Word Sense
Disambiguation. To obtain human-level inter-
pretability, legacy TM employs Boolean input
features such as bag-of-words (BOW). How-
ever, the BOW representation makes it diffi-
cult to use any pre-trained information, for in-
stance, word2vec and GloVe word representa-
tions. This restriction has constrained the per-
formance of TM compared to deep neural net-
works (DNNs) in NLP. To reduce the perfor-
mance gap, in this paper, we propose a novel
way of using pre-trained word representations
for TM. The approach significantly enhances
the performance and interpretability of TM.
We achieve this by extracting semantically re-
lated words from pre-trained word representa-
tions as input features to the TM. Our experi-
ments show that the accuracy of the proposed
approach is significantly higher than the pre-
vious BOW-based TM, reaching the level of
DNN-based models.

1 Introduction

Tsetlin Machine (TM) is an explainable pattern
recognition approach that solves complex clas-
sification problems using propositional formu-
las (Granmo, 2018). Text- (Berge et al., 2019),
numerical data- (Abeyrathna et al., 2019), and im-
age classification (Granmo et al., 2019) are re-
cent areas of application. In Natural Language
Processing (NLP), TM has provided encouraging
trade-offs between accuracy and interpretability
for various tasks. These include Sentiment Anal-
ysis (SA) (Yadav et al., 2021; Saha et al., 2020),
Word Sense Disambiguation (WSD) (Yadav. et al.,
2021), and novelty detection (Bhattarai. et al.,
2021). Because TM NLP models employ bag-of-
words (BOW) that treat each word as independent

features, it is easy for humans to interpret them.
The models can be interpreted simply by inspecting
the words that take part in the conjunctive clauses.
However, using a simple BOW makes it challeng-
ing to attain the same accuracy level as deep neural
network (DNN) based models.

A key advantage of DNN models is distributed
representation of words in a vector space. By using
a single-layer neural network, Mikolov et al. intro-
duced such a representation, allowing for relating
words based on the inner product between word
vectors (Mikolov et al., 2013). One of the popular
methods is skip-gram, an approach that learns word
representations by predicting the context surround-
ing a word within a given window length. However,
skip-gram has the disadvantage of not considering
the co-occurrence statistics of the corpus. Later,
Pennington et al. developed GloVe – a model that
combines the advantages of local window-based
methods and global matrix factorization (Penning-
ton et al., 2014). The foundation for the above
vector representation of words is the distributional
hypothesis that states that “the word that occurs
in the same contexts tend to have similar mean-
ings” (Harris, 1954). This means that in addition to
forming a rich high-dimensional representation of
words, words that are closer to each other in vector
space tend to represent similar meaning. As such,
vector representations have been used to enhance
for instance information retrieval (Manning et al.,
2008), name entity recognition (Turian et al., 2010),
and parsing (Socher et al., 2013).

The state of the art in DNN-based NLP has
been advanced by incorporating various pre-trained
word representations such as GloVe (Pennington
et al., 2014), word2vec (Mikolov et al., 2013), and
fasttext (Bojanowski et al., 2017). Indeed, build-
ing semantic representations of the words has been
demonstrated to be a vital factor for improved per-
formance. Most DNN-based models utilize the
pre-trained word representations to initialize their
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word embeddings. This provides them with ad-
ditional semantic information that goes beyond a
traditional BOW.

However, in the case of TM, such word repre-
sentations cannot be directly employed because
they consist of floating-point numbers. First, these
numbers must be converted into Boolean form for
TM to use, which may result in information loss.
Secondly, replacing the straightforward BOW of a
TM with a large number of floating-point numbers
in fine-grained Boolean form would impede inter-
pretability. In this paper, we propose a novel pre-
processing technique that evades the above chal-
lenges entirely by extracting additional features
for the BOW. The additional features are found us-
ing the pre-trained distributed word representations
to identify words that enrich the BOW, based on
cosine similarity. In this way, TM can use the in-
formation from word representations for increasing
performance, and at the same time retaining the
interpretability of the model.

The rest of the paper is organised as follows.
We summarize related work in Section 2. The pro-
posed semantic feature extraction for TM is then
explained in Section 3. In Section 4, we present the
TM architecture employing the proposed feature
extension. We provide extensive experiment re-
sults in Section 5, demonstrating the benefits of our
approach, before concluding the paper in Section 6.

2 Related Work

Conventional text classification usually focuses on
feature engineering and classification algorithms.
One of the most popular feature engineering ap-
proaches is the derivation of BOW features. Several
complex variants of BOW have been designed such
as n-grams (Wang and Manning, 2012) and enti-
ties in ontologies (Chenthamarakshan et al., 2011).
Apart from BOW approaches, Tang et al. demon-
strated a new mechanism for feature engineering us-
ing a time series model for short text samples (Tang
et al., 2020). There are also several techniques to
convert text into a graph and sub-graph (Rousseau
et al., 2015; Luo et al., 2017). In general, none of
the above methods adopt any pre-trained informa-
tion, hence have inferior performance.

Deep learning-based text classification either
depends on initializing models from pre-trained
word representations, or on jointly learning both
the word- and document level representations. Var-
ious studies report that incorporating such word

representations, embedding the words, significantly
enhances the accuracy of text classification (Joulin
et al., 2017; Shen et al., 2018a). Another approach
related to pre-trained word embedding is to aggre-
gate unsupervised word embeddings into a docu-
ment embedding, which is then fed to a classifier
(Le and Mikolov, 2014; Tang et al., 2015).

Despite being empowered with world knowledge
through pre-trained information, DNNs such as
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
2019) can be very hard to interpret. One interpre-
tation approach is to use attention-based models,
relying on the weights they assign to the inputs.
However, more careful studies reveal that atten-
tion weights in general do not provide a useful
explanation (Bai et al., 2020; Serrano and Smith,
2019). Researchers are thus increasingly shifting
focus to other kinds of machine learning, with the
TM being a recent approach considered to provide
human-level interpretability (Berge et al., 2019;
Granmo, 2018; Yadav et al., 2021). It offers a very
simple model consisting of multiple Tsetlin Au-
tomata (TAs) that select which features take part
in the classification. However, despite promising
performance, there is still a performance gap to
the DNN models that utilize pre-trained word em-
bedding. Yet, several TM studies demonstrate high
degree of interpretability through simple rules, with
a marginal loss in accuracy (Yadav et al., 2021; Ya-
dav. et al., 2021; Saha et al., 2020).

A significant reason for the performance gap be-
tween TM-based and state-of-the-art DNN-based
NLP models is that TM operates on Boolean inputs,
lacking a method for incorporating pre-trained
word embeddings. Without pre-trained informa-
tion, TMs must rely on labelled data available for
supervised learning. On the other hand, incorpo-
rating high-dimensional Booleanized word embed-
ding vectors directly into the TM would signifi-
cantly reduce interpretability. In this paper, we
address this intertwined challenge. We propose a
novel technique that boosts the TM BOW approach,
enhancing the BOW with additional word features.
The enhancement consists of using cosine similar-
ity between GloVe word representations to obtain
semantically related words. We thus distill informa-
tion from the pre-trained word representations for
utilization by the TM. To this end, we propose two
methods of feature extension: (1) using the k near-
est words in embedding space and (2) using words
within a given similarity threshold, measured as
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cosine angle (θ). By adopting the two methods,
we aim to reduce the current performance gap be-
tween interpretable TM and black-box DNN, by
achieving either higher or similar accuracy.

3 Boosting TM BOW with Semantically
Related Words

Here, we introduce our novel method for boost-
ing the BOW of TM with semantically related
words. The method is based on comparing pre-
trained word representations using cosine simi-
larity, leveraging distributed word representation.
There are various distributional representations of
words available. These are obtained from dif-
ferent corpora, using various techniques, such as
word2vec, GloVe, and fastText. We here use GloVe
because of its general applicability.

3.1 Input Feature Extraction from
Distributed Word Representation

Distributed word representation does not necessar-
ily derive word similarity based on synonyms but
based on the words that appear in the same context.
As such, the representation is essential for NLP
because it captures the semantically interconnect-
ing words. Our approach utilizes this property to
expand the range of features that we can use in an
interpretable manner in TM.

Consider a full vocabulary W of m words, W =
[w1, w2, w3 . . . , wm]. Further consider a particu-
lar sentence that is represented as a Boolean BOW
X = [x1, x2, x3, . . . , xm]. In a Boolean BOW,
each element xr, r = 1, 2, 3, . . . ,m, refers to a spe-
cific wordwr in the vocabularyW . The element xr
takes the value 1 if the corresponding word wr is
present in the sentence and the value 0 if the word is
absent. Assume that n words are present in the sen-
tence, i.e., n of the elements inX are 1-valued. Our
strategy is to extract additional features from these
by expanding them using cosine similarity. To this
end, we use a GloVe embedding of each present
word wr, r ∈ {z|xz = 1, z = 1, 2, 3 . . . ,m}. The
embedding for word wr is represented by vector
we
r ∈ <d, where d is the dimensionality of the

embedding (typically varying from 25 to 300).
We next introduce two selection techniques to

expand upon each word:

• Select the top k most similar words,

• Select words up to a fixed similarity angle
cos(θ) = φ.

For example, let us consider two contexts: “very
good movie” and “excellent film, enjoyable”.
Figs. 1 and 2 list similar words showing the differ-
ence between top k words and words within angle
cos(θ), i.e., φ. In what follows, we will explain
how these words are found.

3.2 Similar Words based on Top k Nearest
Words

We first boost the Boolean BOW of the considered
sentence by expanding X with (k − 1)× n seman-
tically related words. That is, we add k − 1 new
words for each of the n present words. We do this
by identifying neighbouring words in the GloVe
embedding space, using cosine similarity between
the embedding vectors.

Consider the GloVe embedding vectors W e
G =

[we
1, w

e
2, . . . , w

e
m] of the full vocabulary W . For

each word wr from the sentence considered, the
cosine similarity to each word wt, t = 1, 2, . . . ,m,
of the full vocabulary is given by Eq. (1),

φt
r = cos(we

r , w
e
t ) =

we
r · we

t

||we
r || · ||we

t ||
. (1)

Clearly, φtr is the cosine similarity between we
r and

we
t . By calculating the cosine similarity of wr to

the words in the vocabulary, we obtain m values:
φtr, t = 1, 2, . . . ,m. We arrange these values in a
vector Φr:

Φr = [φ1
r, φ

2
r, . . . , φ

m
r ]. (2)

The k elements from Φr of largest value are then
identified and their indices are stored in a new
set Ar.

Finally, a boosted BOW, referred to as Xmod,
can be formed by assigning element xt value 1
whenever one of theAr contains t, and 0 otherwise:

Xmod = [x1, x2, x3, . . . , xm], (3)

xt =

{
1 ∃r, t ∈ Ar

0 @r, t ∈ Ar.

In addition, the vocabulary size for a particular
task/dataset can be changed accordingly, which is
usually less than m. Note that implementation-
wise, the GloVe library provides the top k similar
words of wr without considering the word wr itself,
having similarity score 1. Hence, using the GloVe
library, wr must also be added to the boosted BOW.

3.3 Similar Words within Cosine Angle
Threshold

Another approach to enrich the Boolean BOW of a
sentence is thresholding the cosine angle. This is
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Figure 1: Similar words for an example “excellent film,
enjoyable” using 300d GloVe word representation.
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Figure 2: Similar words for an example “very good
movie” using 300d GloVe word representation.

different from the first technique because the num-
ber of additional words extracted will vary rather
than being fixed. Whereas the first approach al-
ways produces k − 1 new features for each given
word, the cosine angle thresholding brings in all
those words that are sufficiently similar. The cosine
similarity threshold is given by φ = cos(θ), where
θ is the threshold for vector angle, while φ is the
corresponding similarity score.

As per Eq. (2), we obtain Φr, which consists
of the similarity scores of the given word wr in
comparison to themwords in the vocabulary. Then,
for each given word wr, the indices of those scores
φtr that are greater than or equal to φ (φtr ≥ φ) are
stored in the set Ar. Similar to the first technique,
the words in W with the indices in Ar are utilized
to create Xmod as given by Eq. (3).

4 Tsetlin Machine-based Classification

4.1 Tsetlin Machine Architecture
A TM is composed by TAs that operate with lit-
erals – Boolean inputs and their negations – to
form conjunctions of literals (conjunctive clauses).
A dedicated team of TAs builds each clause, with
each input being associated with a pair of TAs. One
TA controls the original Boolean input whereas the
other TA controls its negation. The TA pair selects

a combination of “Include” or “Exclude” actions,
which decide the form of the literal to include or
exclude in the clause.

Each TA decides upon an action according to
its current state. There are N states per TA action,
2N states in total. When a TA finds itself in states
1 to N , it performs the “Exclude” action. When
in states N + 1 to 2N , it performs the “Include”
action. How the TA updates its state is shown in
Fig. 3. If it receives Reward, the TA moves to a
deeper state thereby increasing its confidence in
the current action. However, if it receives Penalty,
it moves towards the centre, weakening the action.
It may eventually jump over the middle decision
boundary, to the other action. It is through this
game of TAs that the TM shapes the clauses into
frequent and discriminative patterns.

Exclude Inlcude

Penatly Reward

Figure 3: A TA with two actions: “Include” and “Ex-
clude”.

With respect to NLP, TM heavily relies on the
Boolean BOW introduced earlier in the paper. We
now make use of our proposed modified BOW
Xmod = [x1, x2, x3, . . . , xm]. Let l be the number
of clauses that represent each class of the TM, cov-
ering q classes altogether. Then, the overall pattern
recognition problem is solved using l × q clauses.
Each clause Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ l of the TM is

given by Cj
i =

 ∧
k∈Iji

xk

∧
 ∧

k∈Īji

¬xk

, where

Iji and Īji are non-overlapping subsets of the input
variable indices, Iij , Ī

i
j ⊆ {1, . . . ,m}, Iij ∩ Īij = ∅.

The subsets decide which of the input variables take
part in the clause, and whether they are negated or
not. The indices of input variables in Iij represent
the literals that are included as is, while the indices
of input variables in Īij correspond to the negated
ones. Among the q clauses of each class, clauses
with odd indexes are assigned positive polarity (+)
whereas those with even indices are assigned nega-
tive polarity (-). The clauses with positive polarity
vote for the target class and those with negative
polarity vote against it. A summation operator ag-
gregates the votes by subtracting the total number
of negative votes from positive votes, as shown
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in Eq. (4).

f j(Xmod) = Σl−1
i=1,3,...C

j
i (Xmod)−

Σl
i=2,4,...C

j
i (Xmod).

(4)

For q number of classes, the final output y
is given by the argmax operator to classify the
input based on the highest sum of votes, ŷ =
argmaxj

(
f j(Xmod)

)
.

4.2 Distributed Word Representation in TM

Consider two contexts for sentiment classification:
“Very good movie” and “Excellent film, enjoyable”.
Both contexts have different vocabularies but some
of them are semantically related to each other. For
example, “good” and “excellent” have similar se-
mantics as well as “film” and “movie”. Such se-
mantics are not captured in the BOW-based input.
However, as shown in Fig. 4, adding words to the
BOWs that are semantically related, as proposed
in the previous section, makes distributed word
representation available to the TM.

The resulting BOW-boosted TM architecture is
shown in Fig. 5. Here each input feature is first
expanded using the GloVe representation, adding
semantically related words. Each feature is then
transferred to its corresponding TAs, both in orig-
inal and negated form. Each TA, in turn, decides
whether to include or exclude its literal in the clause
by taking part in a decentralized game. The actions
of each TA is decided by its current state and up-
dated by the the feedback it receives based on its
action. As shown in the figure, the TA actions pro-
duce a collection of conjunctive clauses, joining
the words into more complex linguistic patterns.

There are two types of feedback that guides the
TA learning. They are Type I feedback and Type II
feedback, detailed in (Granmo, 2018). Type I feed-
back is triggered when the ground truth label is 1,
i.e., y = 1. The purpose of Type I feedback is to
include more literals from the BOW to refine the
clauses, or to trim them by removing literals. The
balance between refinement and trimming is con-
trolled by a parameter called specificity, s. Type
I feedback guides the clauses to provide true posi-
tive output, while simultaneously controlling over-
fitting by producing frequent patterns. Conversely,
Type II feedback is triggered in case of false posi-
tive output. Its main aim is to introduce zero-valued
literals into clauses when they give false positive
output. The purpose is to change them so that they
correctly output zero later in the learning process.

Based on these feedback types, each TA in a clause
receives Reward, Penalty or Inaction. The overall
learning process is explained in detail by Yadav et
al. in (Yadav et al., 2021).

Tsetlin Machine

very 
extremely

better

superb
perfect

fun

good
excellent

movie
film

Tsetlin Machine

very

good
movie

excellent
film

enjoyable

(a) (b)

Figure 4: (a) BOW input representation without dis-
tributed word representation. (b) BOW input using sim-
ilar words based on distributed word representation.

5 Experiments and Results

In this section, we evaluate our TM-based solu-
tion with the input features enhanced by distributed
word representation. Here we use Glove pretrained
word vector that is trained using CommonCrawl
with the configuration of 42B tokens, 1.9M vocab,
uncased, and 300d vectors.

5.1 Datasets
We have selected various types of datasets to in-
vestigate how broadly our method is applicable:
R8 and R52 of Reuters, Movie Review (MR), and
TREC-6. • Reuters 21578 dataset include two
subsets: R52 and R8 (all-terms version). R8 is di-
vided into 8 sections while there are 52 categories
in R52. •MR is a movie analysis dataset for binary
sentiment classification with just one sentence per
review (Pang and Lee, 2005). In this study, we
used a training/test split from (Tang et al., 2015)1.
•TREC-6 is a question classification dataset (Li
and Roth, 2002). The task entails categorizing a
query into six distinct categories (abbreviation, de-
scription, entity, human, location, numeric value).

5.2 TM Parameters
A TM has three parameters that must be initial-
ized before training a model: number of clauses
l, voting target T , and specificity s. We configure
these parameters as follows. For R8, we use 2,500
clauses, a threshold of 80, and specificity 9. The vo-
cabulary size is 5,000. For R52, we employ 1,500
clauses, the voting target is 80, and specificity is 9.
Here, we use a vocabulary of size 6,000. For MR,
the number of clauses is 3,000, the voting target is

1https://github.com/mnqu/PTE/tree/master/data/mr.
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Figure 5: Architecture of TM using modified BOW based on word similarity.

80, and specificity is 9, with a vocabulary of size
5,000. Finally, for TREC, we use 2,000 clause, a
voting target of 80, and specificity 9, with vocab-
ulary size 6,000. These parameters are kept static
as we explore various k and θ values for selecting
similar words to facilitate comparison. The code
and datasets are available online 2.

5.3 Performance When Using Top k Nearest
Neighbors

Here, we demonstrate the performance on each
of the datasets, exploring the effect of different
k-values, i.e., 3, 5 and 10. The performance of
the proposed technique for selected datasets with
various values of k is compared in Table 1. It
can be seen that by using feature extension, perfor-
mance is significantly enhanced. Both k = 3 and
k = 5 outperform the simple BOW (k = 0). How-
ever, for this particular dataset, k = 10 performs
poorly because extending each word to its 10 near-
est neighbors includes many unnecessary contexts
that have no significant impact on the classifica-
tion. In terms of accuracy, k = 5 performs best
for the R8 dataset. For the R52 dataset, the feature
extension with k = 5 and k = 10 performs poorly
compared to using k = 0 and k = 3. Here, k = 3
is the best-performing parameter. The improve-
ment obtained by moving from a simple BOW to a
BOW enhanced with semantically similar features
is obvious in the case of the R52 dataset. Similarly,
in the case of the TREC dataset, the performance of
simple BOW (k = 0) is markedly outperformed by
the feature extension techniques for all the tested
k-values, with k = 5 and k = 10 being good can-
didates. The advantage of k = 10 over k = 5 is
that k = 10 reaches its peak accuracy in an earlier

2https://github.com/rohanky/Glove-TM

Parameters R8 R52 MR TREC
k=0 96.16 84.62 75.14 88.05
k=3 97.08 88.59 75.21 88.72
k=5 96.80 70.60 76.06 89.16
k=10 87.44 66.94 77.51 89.82

Table 1: Comparison of feature extended TM with sev-
eral parameters for k.

epoch. Lastly, the performance of the MR is again
clear that the feature extension technique outper-
forms the simple BOW (k = 0) with a high margin.

5.4 Performance When Using Neighbors
Within a Similarity Threshold

This section demonstrates the performance of our
BOW enhancement approach when using various
similarity thresholds φ for feature extension. Here,
φ refers to the cosine similarity between a word
in the BOW and a target word from the overall
vocabulary. Again, similarity is measured in the
GloVe embedding space as the cosine of the angle θ
between the embedding vectors compared, cos(θ).
For φ, we here explore the values 0.5, 0.6, 0.7,
0.8, and 0.9, whose corresponding angles are 60◦,
53.13◦, 45.57◦, 36.86◦, and 25.84◦, respectively.
The performance of the various φ-values for the
selected dataset is shown in Table 2. For R8 dataset,
feature extension using φ = 0.7, φ = 0.8, and
φ = 0.9 outperforms the simple BOW (φ = 0)
where φ = 0.7 being the best. In case of the R52
dataset, all of the investigated φ-values outperform
the simple BOW (φ = 0) where φ = 0.5 and φ =
0.8 performs the best. Similar trend is observed
in case of TREC and MR dataset where feature
extension outperforms the simple BOW.

https://github.com/rohanky/Glove-TM
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Parameters R8 R52 MR TREC
φ = 0 96.16 84.62 75.14 88.05
φ = 0.5 88.08 89.14 73.24 90.04
φ = 0.6 90.86 88.05 74.34 87.83
φ = 0.7 96.53 88.51 76.55 89.38
φ = 0.8 96.25 88.94 75.12 88.27
φ = 0.9 96.39 87.50 74.59 87.39

Table 2: Comparison of feature extended TM with sev-
eral parameters for φ.

In most of the cases, however, a too strict simi-
larity threshold φ tends to reduce performance be-
cause fewer features are added to the BOW. Even
though using a looser similarity score thresholds
also introduces unnecessary features, these do not
seem to impact the formation of accurate clauses.
Overall, our experiments show that using φ-values
from 0.5 to 0.7 peaks performance.

5.5 Comparison with Baselines

We here compare our proposed model with se-
lected text classification- and embedding methods.
We have selected representative techniques from
various main approaches, both those that lever-
age similar kinds of pre-trained word embedding
and those that only use BOW. The selected base-
lines are: •TF-IDF+LR: This is a bag-of-words
model employing Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) weighting. Logistic
Regression is used as a softmax classifier. •CNN:
The CNN-baselines cover both initialization with
random word embedding (CNN-rand) as well as ini-
tialization with pretrained word embedding (CNN-
non-static) (Kim, 2014). • LSTM: The LSTM
model that we employ here is from (Liu et al.,
2016), representing the entire text using the last
hidden state. We tested this model with and with-
out pre-trained word embeddings. • Bi-LSTM: Bi-
directional LSTMs are widely used for text classifi-
cation. We compare our model with Bi-LSTM fed
with pre-trained word embeddings. •PV-DBOW:
PV-DBOW is a paragraph vector model where the
word order is ignored. Logistic Regression is used
as a softmax classifier (Le and Mikolov, 2014). •
PV-DM: PV-DM is also a paragraph vector model,
however with word ordering taken into account.
Logistic Regression is used as a softmax classifier
(Le and Mikolov, 2014). •fastText: This base-
line is a simple text classification technique that
uses the average of the word embeddings provided

by fastText as document embedding. The embed-
ding is then fed to a linear classifier (Joulin et al.,
2017). We evaluate both the use of uni-grams and
bigrams. • SWEM : SWEM applies simple pool-
ing techniques over the word embeddings to ob-
tain a document embedding (Shen et al., 2018b).
•Graph-CNN-C: A graph CNN model uses con-
volutions over a word embedding similarity graph
(Defferrard et al., 2016), employing a Chebyshev
filter. •S2GC: This technique uses a modified
Markov Diffusion Kernel to derive a variant of
Graph Convolutional Network (GCN) (Zhu and Ko-
niusz, 2021). •LguidedLearn: It is a label-guided
learning framework for text classification. This
technique is applied to BERT as well (Liu et al.,
2020), which we use for comparison purposes here.
•Feature Projection (FP): It is a novel approach
to improve representation learning through feature
projection. Existing features are projected into an
orthogonal space (Qin et al., 2020).

From Table 3, we observe that the TM
approaches that employ either of our feature
extension techniques outperform several word
embedding-based Logistic Regression approaches,
such as PV-DBOW, PV-DM, and fastText. Sim-
ilarly, the legacy TM outperforms sophisticated
models like CNN and LSTM based on randomly
initialized word embedding. Still, the legacy TM
falls of other models when they are initialized by
pre-trained word embeddings. By boosting the
Boolean BOW with semantically similar features
using our proposed technique, however, TM out-
performs LSTM (pretrain) on the R8 dataset and
performs similarly on R52 and MR. In addition to
this, our proposed approach achieves quite simi-
lar performance compared to BERT, even though
BERT has been pre-trained on a huge text corpus.
However, it falls slightly short of sophisticated fine-
tuned models like Lguided-BERT-1 and Lguided-
BERT-3. Overall, our results show that our pro-
posed feature extension technique for TMs signifi-
cantly enhances accuracy, reaching state of the art
accuracy. Importantly, this accuracy enhancement
does not come at the cost of reduced interpretabil-
ity, unlike DNNs, which we discuss below. The
state of the art for the TREC dataset is different
from the other three datasets, hence we report re-
sults separately in Table 4. These results clearly
show that although the basic TM model does not
outperform the recent DNN- and transformer-based
models, the feature-boosted TM outperforms all of
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Model R8 R52 MR
TF-IDF+LR 93.74 86.95 74.59
CNN-rand 94.02 85.37 74.98

CNN-non-static 95.71 87.59 77.75
LSTM 93.68 85.54 75.06

LSTM (pretrain) 96.09 90.48 77.33
Bi-LSTM 96.31 90.54 77.68

PV-DBOW 85.87 78.29 61.09
PV-DM 52.07 44.92 59.47
fastText 96.13 92.81 75.14

fastText (bigrams) 94.74 90.99 76.24
SWEM 95.32 92.94 76.65
LEAM 93.31 91.84 76.95

Graph-CNN-C 96.99 92.74 77.22
S2GC 97.40 94.50 76.70
BERT 96.02 89.66 79.24

Lguided-BERT-1 97.49 94.26 81.03
Lguided-BERT-3 98.28 94.32 81.06

TM 96.16± 1.52 84.62± 1.8 75.14± 1.2
TM with k 97.50± 1.12 88.59± 1.2 77.51± 0.6
TM with φ 96.39± 1.0 89.14± 1.5 76.55± 0.9

Table 3: Comparison of feature extended TM with the
state of the art for R8, R52 and MR. Reported accuracy
of TM is the mean of last 50 epochs of 5 independent
experiments with their standard deviation.

those models except understandably BAE:BERT
(Garg and Ramakrishnan, 2020).

Model TREC
LSTM 87.19
FP+LSTM 88.83
Transformer 87.33
FP+Transformer 89.51
BAE: BERT 97.6
TM (Dragos, et al., 2021) 87.20
TM 88.05± 1.52
TM with k 89.82± 1.18
TM with φ 90.04± 0.94

Table 4: Comparison of feature extended TM with the
state of the art for TREC. Reported accuracy of TM
is the mean of last 50 epochs of 5 independent experi-
ments with their standard deviation.

5.6 Interpretation
The proposed feature extension-based TM does not
only impact accuracy. Perhaps surprisingly, our
proposed technique also simplify the clauses that
the TM produces, making them more meaningful
in a semantic sense. To demonstrate this property,
let us consider two samples from the MR dataset:
S1=“the cast is uniformly excellent and relaxed”
and S2=“the entire cast is extraordinarily good”.
Let the vocabulary, in this case, be [cast, excellent,

relaxed, extraordinarily, good, bad, boring, worst]
as shown in Fig. 6.

the cast is uniformly
excellent and relaxed

the entire cast is
extraordinarily good

the cast is uniformly
excellent/good and

relaxed

the entire cast is
extraordinarily
good/excellent

TM with a simple BOW

TM with a feature extended BOW

Figure 6: Clause learning semantic for multiple exam-
ples compared to simple BOW based TM.

As we can see, that the TM initialized with nor-
mal BOW uses two separate clauses to represent
two examples. However, augmenting feature on
TM uses only one clause that learns the semantic
for multiple examples.This indeed makes interpre-
tation of TM more powerful and meaningful as
compared to simple BOW based TM.

6 Conclusion

In this paper, we aimed to enhance the performance
of Tsetlin Machines (TMs) by introducing a novel
way to exploit distributed feature representation
for TMs. Given that a TM relies on Bag-of-words
(BOW), it is not possible to introduce pre-trained
word representation into a TM directly, without
sacrificing the interpretability of the model. To
address this intertwined challenge, we extended
each word feature by using cosine similarity on the
distributed word representation. We proposed two
techniques for feature extension: (1) using the k
nearest words in embedding space and (2) includ-
ing words within a given cosine angle (θ). Through
this enhancement, the TM BOW can be boosted
with pre-trained world knowledge in a simple yet
effective way. Our experiment results showed that
the enhanced TM not only achieve competitive ac-
curacy compared to state of the art, but also outper-
form some of the sophisticated deep neural network
(DNN) models. In addition, our BOW boosting
also improved the interpretability of the model by
increasing the scope of each clause, semantically
relating more samples. We thus believe that our
proposed approach significantly enhance the TM
in the accuracy/interpretability continuum, estab-
lishing a new standard in the field of explainable
NLP.
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