
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 228–239
Online, November 11, 2021. ©2021 Association for Computational Linguistics

228

Relating Neural Text Degeneration to Exposure Bias

Ting-Rui Chiang
Carnegie Mellon University

tingruic@andrew.cmu.edu

Yun-Nung Chen
National Taiwan University
y.v.chen@ieee.org

Abstract

This work focuses on relating two mysteries
in neural-based text generation: exposure bias,
and text degeneration. Despite the long time
since exposure bias was mentioned and the nu-
merous studies for its remedy, to our knowl-
edge, its impact on text generation has not yet
been verified. Text degeneration is a prob-
lem that the widely-used pre-trained language
model GPT-2 was recently found to suffer
from (Holtzman et al., 2020). Motivated by the
unknown causation of the text degeneration,
in this paper we attempt to relate these two
mysteries. Specifically, we first qualitatively
and quantitatively identify mistakes made be-
fore text degeneration occurs. Then we inves-
tigate the significance of the mistakes by in-
specting the hidden states in GPT-2. Our re-
sults show that text degeneration is likely to be
partly caused by exposure bias. We also study
the self-reinforcing mechanism of text degen-
eration, explaining why the mistakes amplify.
In sum, our study provides a more concrete
foundation for further investigation on expo-
sure bias and text degeneration problems.

1 Introduction

One mythology in neural text generation is expo-
sure bias (Bengio et al., 2015; Pomerleau, 1989;
Thrun, 1995). In the context of text generation, ex-
posure bias refers to mistakes made by the model
at the beginning of text generation, which may
amplify, and lead the model to a state unseen in
training time, and may thus cause misbehavior in
the following generation. Phenomena related to
exposure bias were first observed in (Pomerleau,
1989) in the self-driving vehicles field. After that,
exposure bias was mainly discussed in the context
of imitation learning (Thrun, 1995; Ross and Bag-
nell, 2010; Ross et al., 2011). In 2015, Bengio et al.
(2015) introduced it in the context of neural text
generation. However, its impact on text genera-
tion is questionable from both the empirical and

the theoretical perspectives. Empirically, despite
the number of studies for its remedy (Bengio et al.,
2015; Huszár, 2015; Ranzato et al., 2016; Lamb
et al., 2016; Yu et al., 2017; Wiseman and Rush,
2016; Schmidt, 2019; Zhang et al., 2019a), phe-
nomena resulted from exposure bias have not yet
been explicitly identified. On the other hand, the-
ories attained in the context of imitation learning
may not be applicable to the above text genera-
tion tasks. For example, (Ross and Bagnell, 2010)
shows a O(T 2) trend of cost with respect to the
number of steps T in an episode. It implies that
the cost grows quadratically when T is large. How-
ever, most of natural language process tasks, e.g.
machine translation and image captioning, do not
generate very long text. The impact of exposure
bias is thus not clear for text generation tasks.

A younger mystery is the recently discussed
enigma of text degeneration (Holtzman et al., 2020).
It refers to the phenomenon in which bland or
strange repetitive texts may be generated when the
likelihood is the objective of generation, for exam-
ple, when some commonly used strategies, such
as greedy decoding and beam-search decoding, are
used. Especially, the prior work (Holtzman et al.,
2020) observed such problems in GPT-2 (Radford
et al.), a pre-trained language model that has been
shown useful in many NLP tasks (Radford, 2018;
Zhang et al., 2019b; Petroni et al., 2019; Talmor
et al., 2019; See et al., 2019). Despite many at-
tempts proposed to address this issue (Holtzman
et al., 2020; Welleck et al., 2020; Li et al., 2019),
its root cause remains unknown.

Motivated by the unknown issues, we wonder
whether text degeneration can be connected to the
well-known exposure bias. If text degeneration is
the misbehavior caused by exposure bias, it actu-
ally provides us a perfect opportunity to identify
the existence of exposure bias. One of misbehavior
of text degeneration is the occurrence of repetitive
loops. It is a phenomenon that a model tends to



229

GraphQL is an interesting technology originating at
Facebook. It is a query language that allows you to query
a database and then query the database for the results.\n
\n The query language is called QueryQL. It is a query
language ...

We first saw Anki Overdrive, the company’s follow-up
to the original game, in the early 2000s. It was a game that
was a bit of a hit, and it was a game that was a bit of a hit
that was a bit of a hit that was a hit that ...

Table 1: Randomly sampled examples generated by
GPT-2 by greedy decoding. The bold part are the text
conditioned on, and the italic part are the text in the
repetitive loop.

repeat a span of text during generation (an example
is shown in Table 1. This phenomenon is salient
enough to be detected automatically, and occurs
when greedy decoding strategy is used with high
probability1. The easiness of spotting can help
the identification of exposure bias. Therefore, this
work aims at looking for the indications of expo-
sure bias when repetitive loops are generated by the
greedy decoding strategy. We will focus on GPT-2,
because it is the only publicly available language
model trained on a massive amount of data at the
time this work is done, and is widely used by the
community.

To the best of our knowledge, this paper is the
first work that attempts to relate text degeneration
to exposure bias. We first conclude two necessary
conditions of its occurrence based on the intuition
of exposure bias in literature in Section 3.4. We
then inspect the two necessary conditions qualita-
tively and quantitatively. In Section 4.1, we find
that before text repeating starts, GPT-2 generates
unnatural text. In Section 4.3, we show that the hid-
den states of GPT-2 deviate to an area less similar
to the states generated by encoding real text. The
above observations satisfy the intuition of exposure
bias that mistakes are made in the early stage and
are amplified afterward. According to the indica-
tions we discover, we conclude that exposure bias
is likely to co-occur with repetitive loops. Finally,
we investigate how the mistakes are amplified after
repetitive loops occur in Section 5. We discover
the self-reinforcing mechanism of text degenera-
tion. The results provide a possible outline of how a
model is trapped in repetitive loops. These findings
should be helpful for future studies on exposure
bias and remedies for text degeneration.

193% in our experiment.

2 Related Work

2.1 Exposure Bias in Imitation Learning
Imitation learning aims at imitating an expert policy
π∗ by learning from trajectories generated by the
expert, namely finding the policy

π̂ = arg min
π

Es∼dπ∗ I[π(s) = π∗(s)], (1)

where dπ∗ is the distribution of states visited by
the expert policy π∗. It is very similar to training
a language model with maximum likelihood ob-
jective, and has succeeded in many applications
(Pomerleau, 1989; Schaal, 1999; Muller et al.,
2006; Ratliff et al., 2006). However, it was men-
tioned in (Pomerleau, 1989) that when a model
makes a mistake and thus encounters a state that
the expert rarely encounters, it may fail to recover
from the mistake. It was the first time the concept
of exposure bias was mentioned. Similar issues
were also considered in (Thrun, 1995; Daumé et al.,
2009). Ross and Bagnell proved that the cost in a
trajectory grows at the rate O(T 2) instead of O(T )
if mistakes are made with a non-zero probability.
It can be seen as a theoretical analysis of exposure
bias. Nevertheless, in the context of text generation,
the total number of steps in a trajectory is finite and
is usually not large. Therefore, it is still not clear
how meaningful this growth rate of cost is for text
generation tasks. In Ross and Bagnell (2010); Ross
et al. (2011), theoretically-grounded algorithms are
proposed. However, they require the access of ex-
pert policy to annotate the trajectories generated by
the learnt agent. It is generally not feasible in text
generation tasks.

2.2 Exposure Bias in Text Generation
Then the concept of exposure bias is introduced
in the context of text generation by (Bengio et al.,
2015; Ranzato et al., 2016). Since then, there have
been many methods proposed to tackle this prob-
lem (Bengio et al., 2015; Huszár, 2015; Ranzato
et al., 2016; Lamb et al., 2016; Yu et al., 2017;
Wiseman and Rush, 2016; Schmidt, 2019; Zhang
et al., 2019a; Wang and Sennrich, 2020). They
proposed their remedies based on the assumption
that exposure bias is causing problems, and their
approaches were justified by the improvement of
performance when they are adopted. However, to
our knowledge, He et al. (2019) is the only study
attempting to verify the impact of exposure bias,
where they proposed metrics for estimating the im-
pact of exposure bias in models. Different from the



230

prior work, this paper focuses on directly check-
ing whether a specific phenomenon is the result of
exposure bias.

2.3 Neural Text Degeneration

The term neural text degeneration was first defined
recently in Holtzman et al. (2020), which focused
on GPT-2. Similar phenomenon was also observed
in LSTM language models (Strobelt et al., 2018).
Regarding its causation, Welleck et al. (2020) sum-
marized three possible reasons about repetitive
loops generated by GPT-2: i) The Transformer
architecture of GPT-2 prefers repeating. ii) Repeat-
ing is an intrinsic property of human language. iii)
The model is unable to model real language usage
due to the fixed training corpora. However, none
of them have been proven theoretically or verified
empirically.

Before this work, this phenomenon has not been
linked to exposure bias, and thus remedies different
from those for exposure bias are proposed. Holtz-
man et al. (2020) proposed sampling from the lan-
guage model with nucleus sampling. Welleck et al.
(2020) proposed to train neural language models
with an unlikelihood as a regularization. Li et al.
(2019) further applied unlikelihood training on dia-
logue tasks. Since in this work we discover the link-
age between exposure bias and text degeneration,
new approaches that specifically tackle exposure
bias may be found effective for text degeneration
in the future.

3 Background and Notations

To better elaborate the investigation of the above
problems, background knowledge and notations
are briefly introduced here.

3.1 Real and Artificial Passages

Considering that this paper focuses on analyzing
the issues in text generation, we first define real
passages as natural language and artificial passage
as the generated language for following study.

Real Passages and Real Distribution Real pas-
sages and real distribution are related to train-
ing data. Given Y denoting the training set, a
real passage y ∈ Y is a sequence of tokens
{y1, y2, · · · , yT }, and real distribution PY is the
distribution passages y ∈ Y are drawn from, and it

can be factorized as

PY (y) = PY (y1)
T∏
t=2

PY (yt | y1, y2, · · · , yt−1).

(2)

Artificial Passages and Artificial Distribution
A artificial passage ŷ is a sequence of tokens
{ŷ1, ŷ2, · · · , ŷT } generated by a model. We denote
the set of generated passages as Ŷ , where each ŷ
is generated based on the conditional probability,
PM (ŷt | ŷ1, ŷ2, · · · , ŷt−1), predicted by an auto-
regressive language model M such as GPT-2. We
define artificial distribution PŶ as the distribution

of
{
ŷ ∈ Ŷ

}
detailed below. Note that PŶ could

be different from PM , depending on the decoding
strategy used. A decoding strategy is how a token
ŷt is chosen based on the conditional probability
PM (ŷt | ŷ1, ŷ2, · · · , ŷt−1). In this work, we con-
sidered the greedy strategy and the sampling-based
strategies, including the top-k candidates at each
step (Fan et al., 2018), nucleus sampling (Holtzman
et al., 2020). Details are included in the appendix.

3.2 States of GPT-2

GPT-2 is a pre-trained language model constituted
withL layers of Transformer blocks (Vaswani et al.,
2017). Considering that exposure bias is described
as a general problem of neural text generation mod-
els, we pick GPT-2 as an example model for the
study. When the tokens {yt}t=1,2,··· ,T−1, which
we refer to as the conditioned passage, are fed in,
we denote the states outputted by each layers as

[h
(y)
1,1, h

(y)
1,2, · · · , h

(y)
1,T ] =

transformer1(embedding([y1, · · · , yT ])), (3)

[h
(y)
l,1 , h

(y)
l,2 , · · · , h

(y)
l,T ] =

transformerl([h
(y)
l−1,1, · · · , h

(y)
l−1,T ])

∀l = 1, 2, ..., L. (4)

It predicts the conditional probability as

P (yT | {yt}t=1...T−1) = softmax(MLP(h
(ŷ)
L,T−1).

(5)
We refer to real states as the states outputted when
y ∼ Y is fed in, and artificial states as the states
when ŷ ∼ Ŷ is fed in. States of a token yt refer to
the set of states

{
h
(y)
l,t

}
l=1,2,··· ,L

.



231

3.3 Repetitive Loops
Let the time step at which a passage ŷ starts to
repeat be ρ, and the length of the repeated part be λ.
Then a passage ŷ, where a repetitive loop occurs,
is of the form

ŷ =ŷ1, ŷ2, · · · , ŷρ−1, ŷρ, · · · ŷρ+λ,
ŷρ, · · · ŷρ+λ, ŷρ, · · · ŷρ+λ, · · · (6)

We refer to the repeated part ŷρ, · · · ŷρ+λ as a loop-
ing sequence.

3.4 Exposure Bias
In the literature, exposure bias was conceptually
proposed (Bengio et al., 2015), which is described
as the discrepancy between the way the model is
used during training and the way during inference.
When training, at the time step t, the model ob-
jective is to maximize the probability of the cor-
rect token yt conditioning on the real past tokens
y1, y2, · · · , yt−1. However, during inference, ŷt is
predicted conditioning on the generated past to-
kens ŷ1, ŷ2, · · · , ŷt−1. Therefore, mistakes in the
early stage may lead the model to a state unseen in
training time, and errors may consequently amplify
quickly.

More explicitly, based on the description of bias
in Bengio et al. (2015), we summarize the neces-
sary conditions as follow: If some misbehavior,
such as repetitive loop, starts at time ρ is the result
of exposure bias, then the two indications must be
observed:

1. Mistakes are made in the early phase: In
the context of text generation, qualitatively,
it means the unnatural sequence is generated
before time step ρ. Quantitatively, it means
that PY (ŷ1, ŷ2, · · · , ŷρ−1), the likelihood that
the previous generated text is real, is low.

2. Mistakes are significant to the model: The
mistakes must be significant enough to lead
the model to a state unseen in training time.
Specifically, here we analyze the hidden states
of GPT-2. We posit that, if some misbehavior
is due to exposure bias, then the mistakes in
the early stage should be significant enough to
cause the model to generate an unseen state.

4 Relating Text Degeneration to
Exposure Bias

In this section, we investigate whether the condi-
tions in Section 3.4 are satisfied when text degener-

ation occurs.

4.1 Experimental Setting

As in Holtzman et al. (2020), we focus on the pre-
trained language model GPT-22. GPT-2 is trained
on the WebText dataset. We use the training, vali-
dation and testing subsets of WebText released by
OpenAI 3.

When generating passages, first 50 tokens from
passages y ∈ Y are given as the condition. There-
fore, for different conditions y, even if the decoding
strategy is deterministic, the generated passages ŷ
could be different. We empirically observe that
repetitive loops tend to occur later when the num-
ber of conditioned tokens is greater. We choose
to condition on 50 tokens, so the sequences before
repetitive loops are lengthy enough for analysis
while the computation power required is afford-
able.

4.2 Qualitative Inspection on Generated
Tokens Prior to Repetitive Loops

We inspect the first condition about exposure bias
by subjectively examining the passages generated
before a repetitive loop occurs. For each pas-
sage ŷ generated by conditioning on {y}t=1,2,··· ,50,
we compare the pair ŷt=51,··· ,ρ−1 (generated) and
yt=51,··· ,ρ−1 (real), where ρ is the time step where
the repeating sentence first appears. We want to
check if the model does make mistakes during
t = 51, · · · , ρ − 1. We manually examine 50
randomly sampled pairs 4. We observe that the
generated passages are often less informative, less
relevant or coherent to {y}50t=1. As a result, without
knowing which passage in the pair is real, we can
still correctly identify the generated ones for 78%
of them. We also inspect the sequence pairs from
time 0 to ρ+ λ− 1, the time step after which the
model starts to repeat. In that case, our correctness
is even higher, up to 92%. Note that even though
the annotation is not done by many people, the fact
that the fake sentences can be identified accurately
is suffice to claim that a portion of passages gener-
ated in the early stage are perceivably dissimilar to
real language. Namely PY (ŷ1, ŷ2, · · · , ŷρ−1) and

2We use the implementation from Hugging Face
(https://huggingface.co/transformers/
index.html).

3https://github.com/openai/
gpt-2-output-dataset

4We didn’t use crowdsource, since this inspection needs to
be done very carefully, and workers could be uncareful.

https://huggingface.co/transformers/index.html
https://huggingface.co/transformers/index.html
https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset


232

PY (ŷ1, ŷ2, · · · , ŷρ+λ−1) is low from human judge-
ment. Thus, qualitatively we can say mistakes are
made before the repeating loop occurs. It satisfies
the first condition of expsure bias.

4.3 Quantitative Inspection on Generated
Tokens Prior to Repetitive Loops

We further inspect the first condition of expo-
sure bias quantitavely and objectively. We want
to estimate PY (ŷ1, ŷ2, · · · , ŷρ−1), the likelihood
ŷ1, ŷ2, · · · , ŷρ−1 is real. However, the true PY is
not tractable. Using an auto-regressive model to
estimate the likelihood is not feasible either, since
they may give higher probability to passages that is
also generated by auto-regressive models and thus
favor GPT-2. Thus we use a pre-trained masked lan-
guage model RoBERTa-Large (Liu et al., 2019). It
is trained non-autoregressively, so it does not favor
auto-regressively generated passages. Therefore it
should be a good proxy estimating the realness of
the passages generated by GPT-2.

Specifically, to estimate the likelihood of tokens
in a passage, real passages and artificial passages
with repetitive loops are fed in RoBERTa with
15% randomly selected tokens masked. Log likeli-
hood of recovering the masked tokens is calculated.
To anneal the randomness due to the selection of
masked tokens, this process is repeated 10 times
for each passage. Finally, the likelihood for each
time step is averaged.

Figure 1 shows that the likelihood of the gen-
erated passages is generally lower than real text
starting from the time step where the conditioned
passages end (dashed line). Especially, even though
the likelihood of the text generated with greedy de-
coding strategy grows after a few time steps, the
likelihood drop significantly at the beginning. Con-
sidering that the mask language model is sensitive
to the context around the masked token, it may in-
dicate that the text generated at the beginning is
very unnatural.

4.4 Significance of Mistakes Prior to
Repetitive Loops

We then check how significant the mistakes are to
the GPT-2 model. Though the previous sections
have shown the existence of the mistakes in the
early stage. However, to cause misbehavior, the
mistakes must be significant enough to cause GPT-
2 to behave differently. Therefore, we check how
differently GPT-2 processes the generated text com-
pared to the way it processes the real ones.

greedy
real
sample
nucleus
topk
shuffled

0 100 200 300 400 500

-12

-10

-8

-6

-4

Figure 1: The average log likelihood (y-axis) predicted
by RoBERTa at each time step (x-axis). The first dotted
line is the averaged length of prefix, and the second one
is the averaged ρ.

4.4.1 Measuring the Significance of Mistakes
To measure the significance of mistakes, we in-
spect the hidden states of GPT-2 when generat-
ing passages. For each layer l > 1 and time step
t, the artificial state h(ŷ)l,t is the result of applying
the transformer function l − 1 times over the in-
put sequence {ŷl−1,τ}τ=1...t−1, which is the pre-
fix of the artificial passage. Therefore, if a artifi-
cial state h(ŷ)l,t is significantly dissimilar to any real
states, then it implies that the generated passage
{ŷl−1,τ}τ=1...t−1 contains mistakes that are signif-
icant to the model, and that the mistakes do lead
the model to an unseen state. Thus, the similarity
between the artificial states and the real state indi-
cates how significant the mistakes in the passage
are.

Specifically, we measure how many real state is
similar to a artificial state. It is done by counting
the number of real states in the neighbor of the arti-
ficial state. A lower number of real neighborhoods
suggests that the artificial state is more unseen, and
thus implies higher significance of the mistakes.

Formally, given a hidden state h(ŷ)l,t at the time
step t in the layer l, we count the number of real
states in a support set HY

l,t which is close to h(ŷ)l,t :

N(h
(ŷ)
l,t ) =

∣∣∣{∥∥∥h(ŷ)l,t − h∥∥∥
2
< r
∣∣∣h ∈ HY

l,t

}∣∣∣ (7)

where r is the predefined radius.
We use different Hl,t depending on the layer l

and the time step t of the hidden state h(ŷ)l,t to be

considered. We compare h(ŷ)l,t only with the real
states of the same layer, HY

l,t only contains state of
the same layer. To reduces the required computa-
tion power, we also limit the set Hl,t to the state of
the tokens whose time step differ to t by less than
δ5. This limitation is reasonable, because we found

5We use δ = 5.



233

-40 -20 0 20 40

-10

0

10

20

30

40

50

-100 -80 -60 -40 -20 0 20

-50

0

50

-20 0 20 40 60 80 100 120

-50

0

50

100

-60 -50 -40 -30 -20 -10 0 10

-40

-20

0

20

40

-50 -40 -30 -20 -10 0 10

-20

0

20

40

-40 -30 -20 -10 0 10

-20

-10

0

10

20

30

Figure 2: Hidden states projected to their first two prin-
cipal components. Figures from left to right include
states in layers 1, 3, 5, 7, 9, 11. Colors from red to
green indicate the time steps from 0 to 512.

the position of the states are time-step-dependent.
We found this by projecting the real states to their
first two principle components with PCA (Pearson,
1901). As shown in figure 2, states of nearby time
steps are clustered together. Formally, the support
set of real neighbors is written as

HY
l,t = {h(y)l,τ | τ ∈ [t− δ, t+ δ], y ∈ Y }. (8)

Note that the constitution of HY
l,t depends on a set

of real passages Y . We will discuss the choice of
Y in the next section.

4.4.2 Experimental Setting
Roughly speaking, we perform our experiment with
two sets of passages Ysup and Ycond. We use Ycond
to generate real states, and from them we build
HYcond
l,t for all layer l and time step t. HYcond

l,t can
be used to evaluate any state of layer l and t. As for
Ycond, we use it to generate states to be evaluated.
By using the prefix of y ∈ Ycond as condition, we
can use it to generate artificial passage Ŷ and artifi-
cial states. We also generate real states by encoding
the whole y ∈ Ycond with GPT-2. We expect that
the states of y ∈ Ycond to be similar to the states
of y ∈ Ysup, while the artificial state ŷ ∈ Ŷ to be
dissimilar to the artificial ones. Specifically, we
conduct the experiment with the following steps:

1. We prepare two disjoint sets of sequences
Ycond and Ysup. There two sets are parts of the
union of the training, validation and testing
subsets of WikiText released by OpenAI (as
described in Section 4.1).

2. For all y in Ysup, we collect a set of real states
hsup by using GPT-2 to encode y. These real
states are used to construct the Hl,t as men-
tioned in 8.

3. For all y in Ycond, we generate artificial se-
quences ŷ by conditioning GPT-2 on the first
50 tokens of ycond ∈ Ycond. We experiment
with the generation strategies mentioned in
Section 3.1. The hidden states ĥ are also col-
lected.

4. For all y in Ycond, we also use GPT-2 to en-
code the whole passage y and collect the states

hcond. Since the sequences y ∈ Ycond are real,
the states hcond are real too.

5. Finally, we evaluate how the states collected
with Ycond are similar to the real states from
Yreal. We calculate N(ĥ), the numbers of
artificial states’ real neighbor in hsup. We also
use ycond calculate N(hcond). It is referred to
as "real" in Figure 3 and 4.

We prepare Ysup and Ycond in two ways:

compare-seen The training split is used as Ysup.
It is seen when training. Real passages in the vali-
dation split and the testing split are used as Ycond.

compare-unseen The union of the validation
split and the testing split is split into two disjoint
subsets by ratio 9:1. They are used as Ysup and
Ycond respectively. Ysup is unseen when training.

4.4.3 Sanity Check
We experiment with a set of shuffled states as a san-
ity check of our approach. It verifies whether the
number of neighbors is an indicative measure of
the significance of mistakes. The shuffled set is con-
structed by first shuffling the real passages in the
Ycond, and is then encoded with GPT-2. The shuf-
fled passages have the same 1-gram distribution as
real natural language, but have low likelihood to be
real. We expect them to have low numbers of real
neighbors.

The results show that the number of real neigh-
bors is a good indication of mistakes for middle
layers from layer 5 to layer 9 when r = 1024 for
both the compare-seen and compare-unseen set-
tings. For smaller r ∈ 32, 64, 128, 256, 512, the
results are not stable. The average number of neigh-
bors for different time steps at the seventh layer is
plot in figure 3. We include the results of other
layers in the appendix. The figure shows that the
number of neighbors of the shuffled states are con-
sistently low for all time steps. It implies that the
number of neighbors is indicative for detecting un-
real passages. However, it is less indicative whenR
is small. We posit that it is due to the high sparsity
of the states due to their high dimensionality 6.

4.4.4 Results
Figure 3 also plots the number of real neighbors
(h) for states generated with greedy strategy and
the sampling-based strategies (ĥ). For the greedy
strategy, the number of neighbors declines rapidly

6Each state ∈ R1536



234

real
greedy
sample
topk
shuffled

0 200 400 600 800
0

20

40

60

80

100

real
greedy
shuffled
sample
topk

0 200 400 600 800
0

20

40

60

80

100

Figure 3: Number of neighbors in the seen-case (top)
and unseen-case (bottom) at layer 7. The x-axis is the
time step of the tokens. The y-axis is the number of
real neighbors with the radius.

when the time step increases. Note that we ob-
serve that repetitive loops occur in about 93% of
the sequences. It shows that GPT-2 indeed fails to
recover from mistakes, and the mistakes are ampli-
fied through time. It is aligned with the description
of exposure bias. On the other hand, compared
with real sequences (the control group), the num-
ber only decreases slightly when sampling-based
strategies are used. In contrast to the case of greedy
decoding, repetitive loops are rarely observed when
those sampling-based methods are used (< 1% for
all of the strategies). It implies that if GPT-2 has
misbehavior when using those strategies, the mis-
behavior is less likely to be related to exposure
bias.

We further inspect the number of neighbors of
the artificial state prior to the time step ρ+λ, when
a repetitive loop starts. We want to know whether
the model does make significant mistakes before
ρ+ λ. It is not shown in Figure 3, as it only shows
the significance of mistakes in the late stage. To
this end, we plot the number of neighbors again
in Figure 4. Different from Figure 3, in Figure 4,
the x-axis is the time step relative to ρ + λ, so
the significance of mistakes before repetitive loops
can be manifested. In particular, we compare the
number of real neighbors around the real states and
the artificial states. Formally, for each artificial pas-
sage ŷ conditioning on y1,2,··· ,50, we compare the
number of neighbors around the state of n(ŷ)l,t , and
the state of the real passage following the condition
n
(y)
l,t . Here we set the y-axis of Figure 4 to be the

difference (n
(ŷ)
l,t − n

(y)
l,t ).

Surprisingly, in Figure 4, the compare-seen and
compare-unseen settings show different trends. At
the beginning, the number of neighbors decreases
relatively slowly in both of the two settings. At
around x = −10, the number in both of them drop
to less than zero. It indicates that at this time step,
some significant mistakes are made. However, the
number in the compare-seen setting dramatically
grows while the number continues decreasing in
the compare-unseen setting. The low number of
neighbors in the compare-unseen indicates the low
realness of the generated passages. The high num-
ber of neighbors in the seen-setting indicates that
the model encodes those unreal passages to space
close to the states of training data. It may imply
that, at this moment, the model fails to general-
ize, so it incorrectly encodes the unreal passages
as seen ones. Finally, the mistakes are amplified.
Consequently, the number in both of the settings
drops to less than zero. In sum, Figure 4 shows the
significance of mistakes made before it starts re-
peating a looping sequence. Therefore, the second
indication of exposure bias is observed.

Table 2: Similarity between the conditioned passage
and the generated passage of the same length.

Conditioned Sentences Similarity (mean/std)

Looping sequences 0.7327 / 0.3226
First sentences 0.2157 / 0.1911
Last sentences 0.1837 / 0.1848

Repeat # Looping Seq. First Sent. Last Sent.

1 0.451 / 0.368 0.148 / 0.155 0.131 / 0.144
2 0.681 / 0.423 0.331 / 0.373 0.337 / 0.377
3 0.888 / 0.282 0.492 / 0.435 0.578 / 0.431

Table 3: The ROUGE-L (mean/std) between the sen-
tences in the generated repetitive loops and x, when
GPT-2 conditions on the pattern c, x, · · · , x.

5 Mechanisms after a Repetitive Loop
Starts

While the above experiments show the indications
of exposure bias, in this section we further investi-
gate how the early stage mistakes cause the model
to degenerate. Figure 4 indicates some mistakes
are made prior to time step ρ + λ. Thus, in this
section, we investigate the characteristics of the



235

Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

0 50 100

0

200

400

600

Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

0 50 100

-40

-30

-20

-10

0

10

Figure 4: Number of neighbors for setting compare-
seen (upper) and compare-unseen (lower). The x-axis
is the time step of the tokens relative to ρ + λ. The
y-axis is (n

(ŷ)
l,t − n

(y)
l,t ).

sequence generated prior to ρ+ λ, the looping se-
quence ŷρ · · · ŷρ+λ (as defined in Section 3.3).

5.1 The Looping Sequence is Loop-Inducing

We investigate how the looping sequences are loop-
inducing by using them as conditions when gen-
erating text. We construct a looping sequence set
that is constituted with all looping sequences gen-
erated when conditioning on the first 50 tokens of
real sequences. In a generated sequence ŷ, since ŷρ
may not be a start point of a grammatical sentence,
we use the sequence ŷρ+δ+1, · · · , ŷρ+λŷρ · · · ŷρ+δ,
where δ is chosen based on the punctuation in it
7. As control groups, we also construct two real
sequence sets, first sentence set and last sentence
set. They consist of the first sentence and the last
sentence of the articles in WikiText validation split
and testing split.

To measure how those sequences are looping-
inducing, we calculate the similarity between x
and ŷ, where x is the sequence used as condition,
and ŷ is the generated passage. Specifically, we
measure ROUGE-L (Lin, 2004)8 between x and
the first length(x) tokens of ŷ. A higher score
implies higher similarity, and thus more looping-
inducing. Results shown in Table 2 indicate that
looping sequences are indeed more loop-inducing.

7For example, if the looping sequence is "an apple. It is",
we use "It is an apple."

8We use the implementation in https://github.
com/google-research/google-research/
tree/master/rouge.

5.2 Any Repeating Sequence is
Loop-Inducing

We further discover that any sequence that is re-
peated is loop-inducing, regardless of contexts. We
create the conditioned sequence by concatenating
c with x repeated from 1 to 3 times, where c is the
first 5 sentences from a random article of WebText,
and x is either from the looping sequence set or the
real sets. Measurement, the same as in Section 5.1
is applied on x and the generated passages. The
results are shown in Table 3, and it shows that even
when the conditioned sequence is real, it is more
loop-inducing if it is repeated more times.

5.3 The Self-Reinforcing Mechanism of Text
Degeneration

In sum, in this section, we discover the self-
reinforcing mechanism of text degeneration. First,
Section 5.1 a looping sequence is loop-inducing.
Thus, after a looping sequence is generated, it
is likely to be repeated. Second, Section 5.2
shows that when a sequence is repeated, then GPT-
2 would be more likely to continue repeating it.
Therefore, it shows how GPT-2 fails to recover
from the mistake.

6 Conclusion

In conclusion, we provide a deeper insight into
the relation between exposure bias and text degen-
eration. We qualitatively and quantitatively show
that mistakes are indeed made in the early stage
of generation. In Particular, some significant mis-
takes are made prior to ρ+ λ, the time step when
the model starts repeating. We then show why
the model fails to recover from the mistakes. The
looping sequence, which is the sequence generated
prior to ρ+ λ, and repeated sequences are looping-
inducing. That is how the model fails to recover
from the mistakes, and how the mistakes amplify.

Our contributions are four-fold: 1) We explicitly
formulate the necessary indications for the detec-
tion of exposure bias. 2) For each condition, we
design the associated experiments for validation.
3) By the experiments, we show that text degen-
eration is likely to be partly caused by exposure
bias. 4) Finally, we provide a possible explanation
how GPT-2 fails to recover from the mistake. Our
formulation and the conducted experiments build a
solid foundation for future study on exposure bias.

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge


236

Acknowledgements

We would like to than Ting-Yun Chang for in-depth
discussions. We are thankful to the anonymous
reviewers for their insightful comments on the pa-
per. This work was financially supported from the
Young Scholar Fellowship Program by Ministry of
Science and Technology (MOST) in Taiwan, under
Grant 110-2636-E-002-003.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing, 75(3):297–325.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Tianxing He, Jingzhao Zhang, Zhiming Zhou, and
James Glass. 2019. Quantifying exposure bias
for neural language generation. arXiv preprint
arXiv:1905.10617.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Ferenc Huszár. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary? arXiv preprint arXiv:1511.05101.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying
Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. 2016. Professor forcing: A new
algorithm for training recurrent networks. In Ad-
vances In Neural Information Processing Systems,
pages 4601–4609.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean
Welleck, Y-Lan Boureau, Kyunghyun Cho, and Ja-
son Weston. 2019. Don’t say that! making incon-
sistent dialogue unlikely with unlikelihood training.
arXiv preprint arXiv:1911.03860.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and
Yann L Cun. 2006. Off-road obstacle avoidance
through end-to-end learning. In Advances in neural
information processing systems, pages 739–746.

Karl Pearson. 1901. Liii. on lines and planes of clos-
est fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Dean A Pomerleau. 1989. Alvinn: An autonomous
land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–
313.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Nathan D Ratliff, J Andrew Bagnell, and Martin A
Zinkevich. 2006. Maximum margin planning. In
Proceedings of the 23rd international conference on
Machine learning, pages 729–736.

Stéphane Ross and Drew Bagnell. 2010. Efficient re-
ductions for imitation learning. In Proceedings of
the thirteenth international conference on artificial
intelligence and statistics, pages 661–668.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–
635.

Stefan Schaal. 1999. Is imitation learning the route
to humanoid robots? Trends in cognitive sciences,
3(6):233–242.

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732


237

Florian Schmidt. 2019. Generalization in generation:
A closer look at exposure bias. In Proceedings of
the 3rd Workshop on Neural Generation and Trans-
lation, pages 157–167, Hong Kong. Association for
Computational Linguistics.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
massively pretrained language models make better
storytellers? In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 843–861, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018. Seq2seq-vis: A visual
debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer
graphics, 25(1):353–363.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sebastian Thrun. 1995. Learning to play the game of
chess. In Advances in neural information processing
systems, pages 1069–1076.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1296–1306, Austin, Texas. Association
for Computational Linguistics.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019a. Bridging the gap between train-
ing and inference for neural machine translation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343, Florence, Italy. Association for Computational
Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2019b. Dialogpt: Large-scale
generative pre-training for conversational response
generation. arXiv preprint arXiv:1911.00536.

A Sample-based Decoding Strategies

• Sampling: ŷt is directly sampled
from the conditional probability
PM (ŷt | ŷ1, ŷ2, · · · , ŷt−1).

• Top-k sampling (Fan et al., 2018): At the time
step t, ŷt is sampled from the conditional prob-
ability:

PY (ŷt | ŷ1, ŷ2, · · · , ŷt−1) ∝{
PM (ŷt | ŷ1, ŷ2, · · · , ŷt−1) if ŷt ∈ top-k,
0 otherwise.

(9)

• Nucleus sampling (Holtzman et al., 2020): At
the time step t, ŷt is sampled from the condi-
tional probability

PY (ŷt | ŷ1, ŷ2, · · · , ŷt−1) ∝{
PM (ŷt | ŷ1, ŷ2, · · · , ŷt−1) if ŷt ∈ V (p)

0 otherwise.
,

(10)

and for a predefined p ∈ (0, 1], V (p) is the
minimal set that satisfies∑
v∈V (p)

PM (v | ŷ1, ŷ2, · · · , ŷt−1) ≥ p (11)

B Dataset

We use the subsets of WebText released by
OpenAI (https://github.com/openai/
gpt-2-output-dataset). It is an English
dataset. There are 25000, 5000, 5000 passages
in the train, validation, testing splits respectively.
For experiments in Section 4.3 and Section 4.4),
we only use the passages with more than 512
tokens. After passages with less than 512 tokens
are removed, there are 5269 passages in the union
of the validation split and the testing split.

https://doi.org/10.18653/v1/D19-5616
https://doi.org/10.18653/v1/D19-5616
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426
https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset


238

C Detail of Experiments

C.1 Quantitative Inspection of Generated
Tokens Priors to Repetitive Loops
(Section 4.3)

Implementation of RoBERTa from Python package
transformers 2.8.0 by Hugging Face (https:
//huggingface.co/transformers/) is
used.

C.2 Significance of Mistakes Prior to
Repetitive Loops (Section 4.4)

We use Faiss (Johnson et al., 2017) to calculate the
number of neighbor vectors within a radius. For
Figure 3, the number of neighbors is calculated
for 20 time steps. For Figure 4, the number of
neighbors is calculated at time steps {-32, -16, -10,
-8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 16, 32, 64, 128}
relative to ρ+ λ.

Seen-setting: We sampled 2500 passages from
the WebText training split. Each line in Figure 4 is
the average over 500 passages generated by each
decoding strategy. The result in Figure 4 is the
average over 1000 passages.

Unseen-setting: We first combine the validation
split and the testing split as the set of all real unseen
text Ȳ . Then we split it into 10 equal-sized subsets
Ȳ1, Ȳ2, · · · , Ȳ10. We repeat the following process
3 times:

• From {Ȳ1, Ȳ2, · · · , Ȳ10}, a subset Yreal is se-
lected, and the rest Ȳ \Yreal is used as the
support set Ysupport.

• Real states are collected by encoding passages
in Ysupport with GPT-2. When we are calculat-
ing the number of neighbors, only these real
states are counted.

• Artificial passages are generated by condition-
ing on the first 50 tokens for passages in Yreal
using the decoding strategies.

• The number of neighbors is calculated for
each decoding strategies.

Finally, the result is averaged to plot Figure 3 and
Figure 4.

C.3 Automatic Detection of Looping
Sequence

Given a passage x1, x2, · · · , xT , we first search
for the length of a repetitive loop by com-
paring xT−λ+1, · · ·xT and xT−2λ+1, · · ·xT−λ

for λ = 4, 5, · · · , l/2, 1, 2, 3. If there ex-
ists some λ such that xT−λ+1, · · · , xT =
xT−2λ+1, · · · , xT−λ, then we search ρ as the
first place such that xρ+iλ, · · · , xρ+(i+1)λ−1 =
xT−2λ+1+δ, · · · , xT−λ+δ for some δ ∈ [0, λ − 1]
and all i such that ρ+ iλ < T .

D Computing Infrastructure

Each of our experiments were run on a workstation
with 187 GiB RAM. A workstation is equipped
with either two Intel Xeon 5218 CPUs or two Intel
Xeon 4110 CPUs. Every experiment can be run
with 1 Nvidia GTX 2080Ti GPU.

https://huggingface.co/transformers/
https://huggingface.co/transformers/


239

real
greedy
sample
topk
shuffled

0 200 400 600 800
0

10000

20000

30000

40000

50000

60000 real
greedy
sample
topk
shuffled

0 200 400 600 800
0

500

1000

1500

2000

2500

real
greedy
sample
topk
shuffled

0 200 400 600 800
0

50

100

150

real
greedy
sample
topk
shuffled

0 200 400 600 800
0

20

40

60

80

100

real
greedy
sample
topk
shuffled

0 200 400 600 800
0

20

40

60

80

100

120
real
greedy
sample
topk
shuffled

0 200 400 600 800
0

20

40

60

Figure 5: Number of neighbors for compare-seen setting. The figures are the number of layer 1, 3, 5, 7, 9, 11, from
left to right, top to bottom. The x-axis is the time step of the tokens. The y-axis is the number of real neighbors
with the radius.

real
greedy
shuffled
sample
topk

0 200 400 600 800
0

2000

4000

6000

8000

10000 real
greedy
shuffled
sample
topk

0 200 400 600 800
0

5000

10000

15000

20000

real
greedy
shuffled
sample
topk

0 200 400 600 800
0

50

100

150

200
real
greedy
shuffled
sample
topk

0 200 400 600 800
0

20

40

60

80

100

real
greedy
shuffled
sample
topk

0 200 400 600 800
0

10

20

30

40

50

60 real
greedy
shuffled
sample
topk

0 200 400 600 800
0

10

20

30

40

50

60

Figure 6: Number of neighbors for compare-unseen setting. The figures are the number of layers 1, 3, 5, 7, 9,
11, from left to right, top to bottom. The x-axis is the time step of the tokens. The y-axis is the number of real
neighbors with the radius.


