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Abstract

Metaphor is a widespread linguistic and cog-

nitive phenomenon that is ruled by mecha-

nisms which have received attention in the

literature. Transformer Language Models

such as BERT have brought improvements in

metaphor-related tasks. However, they have

been used only in application contexts, while

their knowledge of the phenomenon has not

been analyzed. To test what BERT knows

about metaphors, we challenge it on a new

dataset that we designed to test various as-

pects of this phenomenon such as variations

in linguistic structure, variations in convention-

ality, the boundaries of the plausibility of a

metaphor and the interpretations that we at-

tribute to metaphoric expressions. Results

bring out some tendencies that suggest that the

model can reproduce some human intuitions

about metaphors.

1 Introduction

Metaphor is a blooming affair. Since the publica-

tion of Lakoff and Johnson (1980) Metaphors we

live by, it has been shown that metaphors represent

a core cognitive mechanism, identified as a process

that aids human beings in the comprehension of

abstract concepts. Metaphors could be described

as a process to endow linguistic expressions with

new meaning: A concept of a target domain A is

understood in terms of a source domain B.

Metaphors are pervasive in language, and they

are a complex phenomenon to describe and catego-

rize. We can distinguish metaphors for their degree

of conventionalization, their linguistic structure

(e.g., “A is B”, “A of B”, etc.), and for the seman-

tic effect they create (Newmark, 1980; Charteris-

Black, 2004), namely concretizing metaphors, ani-

mating and personifying metaphors, and synaes-

thetic metaphors. All these categories can tell

us something about the degree of metaphoricity

that an expression conveys. Many psycholinguistic

studies have been carried out to understand how

metaphors are perceived by humans and to what

extent a metaphor is recognized as such (Lai et al.,

2009; Glucksberg, 2003; Al-Azary and Buchanan,

2017).

A key aspect is surely the distinction between

conventional metaphors (e.g., Her lawyer is a

shark) and novel (or creative, Birdsell (2018))

metaphors (e.g., Her mouth was a fountain of de-

light.). These types of metaphors are processed

differently by humans (Glucksberg et al., 1982;

Gentner and Bowdle, 2008). Moreover, the latter

constitutes an open class, as we have the ability to

create new metaphors and make sense out of them.

However, this ability is not erratic, but it is ruled

by cognitive mechanisms: For example, metaphors

have been shown to be justified by analogies be-

tween conceptual domains. This ability has also

clear boundaries: Due to the same mechanisms we

can evaluate the plausibility of a given expression,

and distinguish creative meanings from nonsense

expressions. For instance, even if both An ambas-

sador is a peacock and An ambassador is a fish

constitute semantic violations, we accept only the

first as a plausible metaphor. Another example are

the sentences The wind was a howling wolf and The

wind was a jumping seat (McGregor et al., 2019).

Transformer Language Models such as BERT

(Devlin et al., 2019) have brought important im-

provements in metaphor-related tasks (see section

2). However, such models have been used only in

application contexts, while analysis aimed at in-

vestigating directly what the models capture about

this phenomenon has not been conducted. In the

first part of our work, we tested whether BERT

predicts metaphors differing for linguistic struc-

ture and conventionality, with a particular focus on

whether the model is able to identify the boundaries

of metaphoric creativity. Of particular relevance

for the second aspect is the comparison of novel,

unconventional metaphors with nonsense expres-

sions.
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Our ability with figurative language also allows

us to assign new meanings to words when they

are used metaphorically, independently from the

conventionality of a metaphor. Therefore, we ex-

pect to find information about these meanings in

the model’s representations of different types of

metaphors.

To test these aspects, we collected a dataset

of conventional and creative metaphors, matched

with control literal and nonsense sentences, eval-

uated by English native speakers for their degree

of metaphoricity and semantic plausibility. We car-

ried out two experiments. In Experiment 1 we

modeled the dataset of human judgments using

BERT as a language model, to evaluate whether

its pseudo-log-likelihood values correlate with the

human semantic plausibility scores. Our results

show that BERT seems to distinguish the literal,

metaphorical and nonsense expressions. In Ex-

periment 2, we used the landmark method intro-

duced by Kintsch (2000) to test the representation

of metaphorical meanings in BERT contextualized

embeddings. Despite limitations given by the size

of our dataset, we show that some consistent trends

about how the model processes metaphors can be

identified by analyzing the model’s representations.

We observed that several factors such as the layer

and the representations analyzed could influence

the model’s performance.

To sum up, we collected various evidence related

to what BERT learns about metaphorical language.

Such results pave the way for future investigation,

and can be of interest for those who use Transform-

ers Language Models in NLP applications or in

metaphor-related tasks.

2 Related works

The computational literature on metaphors has fo-

cused on two distinct tasks. Metaphor identifica-

tion involves deciding whether a sequence or a

single word is an instance of a metaphor or not. On

the other hand, Metaphor interpretation concerns

the description of the meaning of metaphorical ex-

pressions, and is typically cast as a paraphrasing

(Shutova, 2010) or a classification (Bizzoni and

Lappin, 2017) task. Even if some recent work

has approached the interpretation task (Su et al.,

2016; Mao et al., 2018; Rosen, 2018), much of

the literature in the last years has been devoted to

metaphor identification (Leong et al., 2018; Gao

et al., 2018; Dankers et al., 2019, 2020; Leong

et al., 2020). The use of deep learning for this task

has become widespread and has contributed to ad-

vance the state-of-the-art. While the most recent

models proposed for this task differ with respect

to the information they exploit, most of them use

Transformers Neural Language Models like BERT

in order to obtain an initial representation of the

processed sequence. This strategy is now very com-

mon and has led to general improvements in perfor-

mance: Four out of the six best systems that partic-

ipated in the 2020 shared task on the VUA corpus

(Steen et al., 2010) used it, and a system based only

on BERT and an additional layer outperformed

many other systems which were based on explicit

linguistic information (Leong et al., 2020). These

results strongly suggest that models like BERT al-

ready possess some knowledge that is relevant to

the detection of metaphors. However, to the best of

our knowledge, there is no study directly investigat-

ing what these models know about metaphors and

if this knowledge shares some aspects with that of

humans.

The application of this last question to other

aspects of language has characterized the field

of study known as BERTology (Rogers et al.,

2020). Researchers in this field intrinsically eval-

uate BERT and its variants on challenge sets (Be-

linkov and Glass, 2019), annotated datasets of vari-

ous sizes that target specific linguistic phenomena.

Part of the literature on this subject made use of

methods which we will adopt in our work. A first

method is to study the probabilities assigned by

the language model to the instances of a specific

linguistic phenomenon, to establish whether the

model is able to predict such phenomenon (Gold-

berg (2019); Ettinger (2020) among others). This

methodology can provide interesting insights when

applied to figurative language. Since these phenom-

ena can be seen as exceptions to general linguistic

rules, they require the model to apply some special

ability, which is independent and often in contrast

with the signals it has been exposed to during train-

ing.

Another possibility is to directly investigate the

model’s embeddings which are then used for tasks

like metaphor identification. Since these represen-

tations have been shown to be transferable to a high

number of linguistic tasks (Liu et al., 2019), they

must encode some sort of general knowledge about

linguistic expressions. Previous work (Bommasani

et al., 2020; Chronis and Erk, 2020) hypothesizes
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that they encode knowledge about meaning, and

therefore BERT and its variants can be seen as

Distributional Semantics Models (DSMs), (Lenci,

2018). Consequently, they applied the same meth-

ods used in distributional semantics to BERT, for

example comparing the model’s representations

via cosine similarity to see whether they reproduce

human judgments of similarity. However, BERT

as a DSM has a crucial property which previous

DSMs lack: The ability to produce contextualized

embeddings for each word token. As such, it can

positively contribute to the modeling of the mean-

ing of figurative expressions like metaphors, where

words acquire new senses which are highly context-

dependent. This is why BERT can be compared

with previous distributional models of metaphors,

and the evaluation methods used for these models

can be adapted to test BERT. In this work, we use

the landmark method proposed by Kintsch (2000),

which tested whether distributional representations

of metaphors reflect human intuitions about the

meaning of the expressions they model. We will

describe the method in more detail in section 3.2.

3 Data and Experiments

3.1 Dataset

We found that existing datasets of metaphors (see

Parde and Nielsen (2018) for a review) are not par-

ticularly well-suited to test how the model deals

with expressions with different structures and dif-

ferent degrees of metaphoricity and plausibility,

and more specifically with their interpretation. In

fact, to the best of our knowledge none of the

existing datasets presents, for different types of

structures, annotation regarding both the conven-

tionalization of a metaphor and its interpretation.

Moreover, nonsense sentences have never been in-

cluded in datasets used for computational modeling

of such phenomenon.

We therefore decided to create a new dataset.

Our dataset contains 47 conventional metaphors

and 53 creative metaphors. Metaphors have dif-

ferent linguistic structures: Attributive, or “A is

B” like in An ambassador is a peacock (Cacciari

and Glucksberg, 1994), Genitive or “A of B”, like

in There was an invisible necklace of now (Bam-

bini et al., 2014), Complex like in He planted the

seeds of doubt in my mind (Newmark, 1980) and

Single-Word or one-word-metaphors, like in The

mother broke the silence (Newmark, 1980). The

conventional metaphors were selected from BNC

Test sentence

Met I could almost taste victory.

Lit I can taste ginger in this cake.

Nonsense I could almost wash victory.

Table 1: Example of test sentences from the dataset.

and the English Web Corpus (2015, 2018) while the

creative metaphors from Katz et al. (1988), Rasse

et al. (2020), poetries, and the Web. We matched

each sentence with two control items (literal and

nonsense) with the same structure as the metaphors

(an example of a sentence with the corresponding

control items can be seen in Table 1).

The final dataset includes 300 items that have

been rated for their degree of semantic plausibil-

ity and metaphoricity by human subjects recruited

through the Prolific crowdsourcing platform.

Semantic Plausibility test To assess the seman-

tic plausibility of our sentences, we submitted a

survey to 20 English speakers. The participants

were asked to judge how meaningful a given sen-

tence was (metaphoric, literal, or nonsense), on a

Likert scale from 1 (meaningless) to 7 (meaning-

ful). Pairwise Wilcoxon comparisons showed that

each group was significantly different from the oth-

ers (p-value < 0.001). The participants rated con-

ventional metaphors as less meaningful (M= 4.86)

than literal expressions (M=5.45), but more plau-

sible than creative metaphors. Creative metaphors

were judged (M= 3.69) as more meaningful than

nonsense expressions (M= 2.7). Crucially, this test

shows that, on the one hand, subjects perceive that

metaphorical sentences somehow “deviate” from

literal ones, but on the other hand, they recognize

that metaphorical sentences, even the most creative

ones, differ from purely nonsense structures.

Metaphoricity test To assess the metaphoricity

of our sentences, we submitted a second survey to

20 English speakers. The participants were asked

to judge how metaphoric a given metaphorical or

literal expression was, on a Likert scale from 1 (lit-

eral) to 7 (metaphorical). Significance values for

the pairwise comparisons were corrected for mul-

tiple comparisons using the Bonferroni correction.

The results showed that creative metaphors were

rated as more metaphoric (M= 5.59) than conven-

tional metaphors (M= 4.64, p-value < 0.001), and

conventional metaphors obtained a significantly

higher score of metaphoricity than literal expres-
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sions (M= 1.94, p-value < 0.001). Therefore, this

test reveals that the conventionalized nature of con-

ventional metaphors does not alter their figurative

power with respect to literal sentences.

3.2 Models and Experiments

We carried out our experiments with the base (num-

ber of layers = 12, hidden size = 768) and the large

(number of layers = 24, hidden size = 1024) cased

versions of BERT. We used the pretrained model

that is provided by the HuggingFace library Trans-

formers (Wolf et al., 2020).

Experiment 1: Sentence plausibility scores To

get an estimate of how much BERT considers an

expression as plausible, we computed a probabil-

ity score for each sentence in our dataset. Then

we examined whether the scores vary with the sen-

tence types (metaphorical conventional, metaphor-

ical creative, literal, nonsense), and whether they

mirror human plausibility judgments.

As a measure of sentence plausibility, we used

the pseudo-log-likelihood score (PLL) (Wang and

Cho, 2019). The probability of a sentence can-

not be computed using autoencoding models like

BERT. In fact, these models are inherently bidirec-

tional, that is, they are trained to predict a word

given all the other words in the left and the right

context. Therefore, they cannot be used for estimat-

ing probabilities of sequences via the chain rule,

since this requires to compute the probability of any

word given the previous words in a sequence. The

PLL of a sentence W is obtained by masking one

token w at a time, calculating the token’s probabil-

ity given all the other context words, and summing

the log-probabilities for all the tokens as in Equa-

tion 1. Salazar et al. (2020) showed that the PLL

score, even if strictly speaking it is not a probabil-

ity, outperforms scores from autoregressive models

in a variety of tasks related to the acceptability of

sentences. This is probably due to the fact that the

PLL eliminates the discrepancy between the proba-

bilities of the first elements of a sequence and those

of the last elements.

PLL(W ) =

|W |∑

t=1

log P (wt | W \t) (1)

Experiment 2: The landmark method To de-

termine whether the model’s representations of

metaphorical expressions reproduce the shift from

a source literal domain to a new target one, we ap-

plied the landmark method, which was proposed

by Kintsch (2000) to test a model producing dis-

tributional representations of predicate-argument

metaphors (e.g., My lawyer is a shark). His aim

was to test to which extent these vectors encoded

information about the meaning of the argument

(lawyer), the inappropriate literal sense of the predi-

cate (shark) and the appropriate metaphorical sense

of the predicate (e.g., ferocious). To this end, he

selected three different sets of words, where the

words in each set were related to only one of those

meanings based on the author’s intuitions. For ex-

ample, justice and crime were selected because

they are related to lawyer, fish is related to the

literal sense of shark and viciousness is related

to the metaphorical sense of shark. These words

were used in Kintsch (2000) as landmarks, in that

their vector representations were compared to the

model’s representations of metaphors.

The landmark method gives us a straightforward

way of examining BERT’s internal representations

(i.e., the contextualized embeddings generated by

its layers) with regards to metaphorical meaning.

Since the essence of BERT is that each word token

is associated with a context sensitive embedding, if

the model is somehow “aware” of the figurative in-

terpretation of a metaphorical sentence, this should

be reflected in the embeddings of its words. We

performed two versions of our experiment, which

mainly differ for the representations that are exam-

ined. In the MetSentences version, we tested the

global metaphorical interpretation of a sentence,

by representing it with an embedding obtained by

summing the embeddings of its words. In the Met-

Words version, we examined the representations of

specific words that undergo the metaphorical shift.

For example, in This fighter is a lion, the word

lion is used metaphorically, while the other words

keep their literal meaning. In cases where the shift

involves more than one word (e.g., The heart is

the legendary muscle that wants and grieve), we

summed the embeddings of the metaphorical words

to obtain a representation that capture the informa-

tion that is common to both words.

We tested these two types of representations

with respect to the literal and metaphorical sense

of the word(s) that carry the metaphorical mean-

ing. Such information is crucial in determining

whether BERT interprets metaphorical expressions

successfully. We therefore defined two sets of land-

marks for each metaphorical sentence of our dataset



196

Sentence
metaphorical landmarks

literal landmarks

A smile is an ambassador.
message confident express

official embassy envoy

The flowers nodded in the wind
movement wave sway
assent head greeting

Table 2: Landmarks for two sentences from the dataset

(two examples of sentences from our datasets with

the corresponding sets of landmarks can be seen

in Table 2). The metaphorical landmarks are ele-

ments of the target conceptual domain to which the

metaphorical words in a sentence point. For exam-

ple, the words want and grieve in the sentence The

heart is the legendary muscle that wants and grieve

point to the target domain of emotion. The literal

landmarks can be synonyms, associates or words

morphologically derived from the literal sense of

one of the metaphorical words in the sentence. If

a sentence contains more than one metaphorical

word, we defined the set of literal landmarks so

that it contains at least one related word for each

metaphorical word in the sentence.

To obtain BERT contextualized embeddings of

the landmarks, we extracted a sentence from the

landmark’s lexical entry in WordNet or the Cam-

bridge Dictionary and we passed it to BERT. Each

landmark set was then represented with the aver-

aged embeddings of its words.

Given the limited size of our dataset, we chose

not to use the representations of the model as input

for another layer specifically optimized for choos-

ing the right set of landmarks. Therefore, we ana-

lyzed directly the model’s output. Specifically, we

compared the similarity (via cosine similarity) of

the representations of the metaphorical expressions

and the representations of the metaphorical/literal

landmarks. To see whether conclusions can be de-

rived from a simple analysis of the representations,

we evaluated the model in two ways. First, we

checked whether the similarity between the expres-

sions and the metaphorical landmarks is in general

significantly higher than the literal landmarks. We

also evaluated the model on a binary classification

task, measuring the accuracy in producing embed-

dings that are more similar to the metaphorical

landmarks than to the literal ones. To estimate the

added value of BERT contextualized embeddings

with respect to traditional static embeddings, we

compared BERT performance with a baseline com-

puted with GloVe vectors (Pennington et al., 2014)

(context window=2, dimension=300).

Since we are interested in exploring the inner

behavior of the model, we compared the repre-

sentations for each BERT layer. Recent studies

(Liu et al., 2019; Jawahar et al., 2019) have shown

that upper-intermediate layers produce general pur-

pose representations which are less dependent on

the language modeling objective and approximate

linguistic knowledge better. We surmise that this

ability could also reflect on the interpretation of

metaphors.

4 Results

Experiment 1 We calculated the Spearman ρ cor-

relation between the PLL and the semantic plau-

sibility human ratings. Both models show a fair

correlation: BERT base 0.504 and BERT large

0.496.

We then verified whether BERT mirrors the

human perceived contrast between conventional

metaphorical and literal sentences, and between

creative metaphorical and nonsense sentences.

The models’ results (first two boxplots of figure

4.1) show that the creative metaphors (BERT base:

M= −4.1; BERT large: M= −4.04) were rated by

the models with significantly higher scores than

nonsense expressions (BERT base: M= −4.96;

BERT large: M= −4.93, p-value < 0.003). Fur-

thermore, the conventional metaphors (BERT base

M= −3.62 ; BERT large M= −3.46) were con-

sidered less likely than literal ones (BERT base

M=−3.01; BERT large M= −3.04), but they were

rated with higher scores than creative metaphors,

though these two differences are not statistically

significant (p-value > 0.05). These results partially

reflect human judgments (right boxplot of figure

4.1).

Experiment 2 In the MetSentences setting, the

embeddings of both models (base, large) for the

metaphorical sentences have significantly higher

cosine similarity with the embeddings of the

metaphorical landmarks (e.g. layer 10 (base) M=

0.83582; layer 20 (large) M = 0.58177) than with

the embeddings of the literal landmarks (e.g. layer

10 (base) M= 0.82691, p-value < 0.03 ; layer 20

(large) M = 0.56087, p-value < 0.01) in the upper

intermediate layers (base: 9,10,11; large: 11-22, p-

value < 0.05). The accuracy of the models (which

is shown in figure 4.2) varies along the layers with

the same tendency.
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Figure 4.1: Boxplots of BERT pseudo-log-likelihood scores and the human ratings of semantic plausibility. For

each distribution, the boxplot indicates the median, the quartiles, the maximum and the minimum of the distribution

and the outliers when they are present.
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Figure 4.2: Models’ accuracy for MetSentences

As can be seen in Figure 4.2, BERT accuracy

outperforms the GloVe baseline (0.47) in the layers

0-1, from 3 to 11 (BERT base), from 2 to 4 and

from 10 onward (BERT large). This baseline is

outperformed by more than 10 percentage points

in some layers (10-11 BERT base; 10-12,17-21,23

BERT large). The layers 10 (base) and 20 (large)

produce the highest accuracy values: 0.61 (base)

and 0.63 (large). Examples of sentences that are

classified correctly (the model’s representations are

more similar to the metaphorical landmarks than

to the literal ones) and sentences that are classified

wrongly by the best BERT large layer are reported

in Table 3.
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Figure 4.3: Models’ accuracy for MetWords

In the MetWords setting and in both models,

the similarities to the two landmark sets are not

significantly different (p-value > 0.05). The only

exceptions are the first layers where, in contrast

with our expectations, the metaphorical expression

embeddings are significantly more similar to the

literal landmarks embeddings than to the metaphor-

ical ones. As can be seen from figure 4.3, the

accuracy generally increases along the layers apart

from the final ones, in the same way as we saw for

MetSentences.

In MetWords (cf. figure 4.3), BERT accuracy

overcomes the correspondent GloVe baseline (acc=

0.13) by a margin ranging from 10 (layers 0,2) to
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Best perfomance
Acc.0.63

Conventional
Creative

Correct
What is the source of your anger?
Laughter is the mind sneezing.

Wrong
Lawyers are real sharks.
Prejudice is the child of ignorance.

Table 3: Examples of correct and wrong sentences from

the layer with the best performance (20 BERT large)

36 (layer 11) points in BERT base and from 07 (lay-

ers 4-7) to 33 (layers 19,23) points in BERT large.

Instead, BERT accuracy almost never goes beyond

the MetSentences version of the baseline, except

the layers 10-11 of BERT base with a difference no

higher than 2 points.

We also evaluated the influence of the conven-

tionality of a metaphor on the success of the mod-

els’ interpretation1. Data (see the right plot in fig-

ure .4) show that, in BERT-large, the proportion of

the correct conventional metaphors is higher than

the proportion of the correct creative ones up to a

margin of 10 points in MetSentences (layers 2-5,

10, 16-17, 24 BERT large). In this setting, this

disparity decreases along the layers of the model

and it disappears in the layers close to 20 (BERT

large). In BERT base (cf. the left plot in figure

.4), the proportion of correct creative metaphors

overcomes the proportion of correct conventional

metaphors at the layers 0, 3-4, 6-12. On the other

hand, the wrong cases in MetSentences (see figure

.7) are mostly creative metaphors. As well as for

the correct representations, the disparity tends to

decrease along the layers of both models and in

BERT large it disappears at the layer 23, in BERT

large at the layer 7). On the other hand, these differ-

ences persist in the MetWords version at all layers

and in both models (see figures .5 and .6).

5 Discussion

Likelihood of metaphors with respect to other

expressions. The likelihood scores that the mod-

els assign to metaphorical expressions lie halfway

between those of literal and nonsense sentences, in

line with human judgments of semantic plausibility

(compare the first two plots in Figure 4.1 with the

last one). Most importantly, BERT discriminates

unconventional creative metaphors from nonsense

sentences and seems to discriminate highly con-

ventionalized metaphors from literal expressions,

1These data are reported in the Appendix due to space
constraints

even though the difference is not significant in the

second case.

This result raises some interesting questions

that need to be further investigated. Where does

BERT’s ability to discriminate metaphorical expres-

sions come from? How does BERT know that, for

example, the sentence A smile is an ambassador

(PLL=−6.02) is more plausible than the sentence

A smile is a fishing man (PLL=−6.89)? It is likely

that the model has not received explicit training on

this, since it has probably never or rarely encoun-

tered any of such expressions during learning. Does

this ability share some aspects with the human abil-

ity of producing novel metaphors? A possible an-

swer is that the creative metaphors that are in our

dataset are grounded on associations that manifest

themselves more frequently in language. For ex-

ample, the creative metaphor The sea whispered on

the sand represents a personifying mapping which

is expressed by other more frequent expressions

such as whispering wind. The model might learn

these mappings from training data in the form of

associations between groups of words, and then

extend them to similar constructions.

An analysis of the model’s representations, al-

though it does not allow us to draw firm conclu-

sions about BERT capability to capture our in-

tuitions about metaphorical meaning, brings out

fairly clear trends with respect to the model’s inter-

pretation of metaphors, some of which are consis-

tent with findings in the previous literature.

General evaluation of BERT. Our second ex-

periment reveals that in some cases BERT repre-

sentations of metaphorical expressions are signifi-

cantly more similar to the metaphorical landmarks

than to the literal ones. This result is not stable but

varies considerably across configurations (see be-

low). Moreover, in both versions of Experiment 2,

BERT is almost always above the GloVe baseline

(as can be seen from the plots in Figures 4.2 and

4.3). For MetWords this is not surprising, since

in that case we examined only the static vector of

a word, which is obviously more similar to the lit-

eral than to the metaphoric landmarks. However, it

is less obvious for MetSentences, where the base-

line is outperformed by 16% in some layers (BERT

classified correctly 16 more sentences out of 100).

Analysis of internal representations. At

upper-intermediate layers, we find significantly

more metaphorical than literal information in the

model’s representations, and the accuracy in the
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landmark task typically rises until it reaches its

peak (see the plots in Figures 4.2 and 4.3). This

behavior is probably explained by the fact that,

at higher layers, the model produces more con-

textualized embeddings (Ethayarajh, 2019), and

contextual information is relevant to understanding

metaphorical meaning shifts. This also explains

why BERT large achieves higher scores than the

base version: The deeper the model, the stronger

the contextualization.

This result is consistent with the previous find-

ings about the distribution of linguistic abilities in

different layers of the model. It has been shown

(Liu et al., 2019; Jawahar et al., 2019) that upper-

intermediate layers are the ones that perform best

in probing tasks involving different types of linguis-

tic knowledge. Our results are also consistent with

findings from metaphor identification (Liu et al.,

2020). The error analysis of our results shows that

the first layers of the model do not encode much

information that is useful for the task and is not

present in the subsequent layers. In the MetSen-

tences setting, 27 out of the 37 errors made from

the layer 20 of BERT large (the layer with the high-

est accuracy) are common to layer 1.

Sentence vs. word representations. In Met-

Words (where we examined only the embeddings

of the specific words that are used metaphorically),

BERT representations are never significantly bi-

ased in favor of the metaphorical reading. As

can be seen by comparing the plots in Figures 4.2

and 4.3, results are almost always worse than in

the MetSentences setting and below the additive

GloVe baseline. In MetWords, the performance is

affected by the fact that the BERT embeddings of

a single word token encode a significant amount of

information about its literal sense. The salience of

this information diminishes as the representation

is fed to the higher layers of the models, but it is

not enough for the models to achieve performances

comparable to those in the MetSentences version.

Another major difference between the two ap-

proaches concerns metaphor conventionality. In the

MetSentences setting, the improvements that we

observe when using higher layers mainly concern

creative metaphors (this can be seen from the plots

in .4 and .7). While in the first layers the models

generally classify correctly more conventional than

creative metaphors, the difference tends to reduce

as we climb up the layers. In other words, the inter-

pretation of creative metaphors seems to benefit the

most from the process of contextualization. On the

other hand, this does not occur in the MetWords

version (see .5 and .6), where the number of con-

ventional metaphors among the items that were

correctly classified by the model is always higher

than the number of creative metaphors.

An important difference between conventional

and creative metaphors can account for both these

results. Since creative metaphors are idiosyncratic

and context-dependent, it is more likely that the

model needs global information about all sentence

components to “understand” metaphorical aspects

of their meaning. This ability manifests itself more

clearly in the later layers of the model, where

a larger amount of contextual information has

been processed through the repetition of the self-

attention mechanism. Accordingly, the informa-

tion crucial to the interpretation of these metaphors

will more likely be a feature of the representation

of the entire sequence. In contrast, conventional

metaphors occur more systematically in language

and eventually become lexicalized. As such, they

should be already encoded in the general repre-

sentations that the model creates for single words,

since these representations account for the behavior

of a word in all the contexts in which it has been

encountered. The process of interpreting highly

conventionalized metaphors is thus akin to disam-

biguation, since the relevant meaning is already

encoded in the original embedding of a word and

the model only needs to recover it by using contex-

tual information. Therefore, the process is likely to

be successfully accomplished earlier by the model.

6 Conclusion

In this paper, we adopted different methods used

in the literature on the analysis of neural language

models to explore how BERT captures various hu-

man evidence about a linguistic phenomenon that

is relatively underexplored in this field, namely

metaphors. In Experiment 1, starting from the

assumption that metaphorical sentences are more

plausible than nonsense sentences (even if they

are “deviant” from literal ones), we tested whether

BERT can make a distinction between literal, non-

sense and metaphorical expressions with various

degrees of conventionality. We show that BERT

can distinguish between these types of expressions,

assigning them different degrees of plausibility in

much the same way as humans do.

In Experiment 2, we wanted to test BERT’s
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ability to understand the figurative meaning of

metaphorical sentences and the lexical meaning

shifts these sentences activate, in comparison with

their literal meaning. Despite the limited size of

our dataset, we can derive some trends. In partic-

ular, we observed that the shift is captured by the

model’s representations (without fine-tuning and

when compared via cosine similarity) to a fair ex-

tent, especially when it can exploit more contextual

information (in upper layers and at the sentence

level). We take the results of this experiment as the

starting point for future work aimed at investigat-

ing how the model can perform when it receives

explicit training on this specific task.

There are many directions for future works, in-

cluding testing the model using landmarks which

do not derive from subjective intuitions, but which

are obtained from human judgments. Some of the

hypotheses formulated here (for example, BERT

ability to derive metaphorical mappings from train-

ing) need to be verified on a larger dataset of

metaphors, where different conceptual domains in-

volved in the phenomenon can be explored. More-

over, the use of datasets made of longer portions

of texts could help BERT in improving its ability

to encode metaphorical meanings, since we have

shown that contextualization improves the model’s

ability, with positive effects in particular on the

interpretation of creative metaphors.
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Figure .4: Experiment 2. Distribution of correct answers with respect to the conventionality of the metaphor along

the layers in BERT base (on the left) and BERT large (on the right) in MetSentences version.
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Figure .5: Experiment 2. Distribution of correct answers with respect to the conventionality of the metaphor along

the layers in BERT base and BERT large in MetWords version.
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Figure .6: Experiment 2. Distribution of wrong answers with respect to the conventionality of the metaphor along

the layers in BERT base and BERT large in MetWords setting.
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Figure .7: Experiment 2. Distribution of wrong answers with respect to the conventionality of the metaphor along

the layers in BERT large and BERT base in MetSentences version.

MetSentences

layers

W
ro

n
g

 a
n

s
w

e
rs

 d
is

tr
ib

u
ti
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conventional large

Creative large

Conventional base

Creative base


