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Abstract

Word embeddings are a powerful natural lan-
guage processing technique, but they are ex-
tremely difficult to interpret. To enable inter-
pretable NLP models, we create vectors where
each dimension is inherently interpretable. By
inherently interpretable, we mean a system
where each dimension is associated with some
human-understandable hint that can describe
the meaning of that dimension. In order to
create more interpretable word embeddings,
we transform pretrained dense word embed-
dings into sparse embeddings. These new em-
beddings are inherently interpretable: each of
their dimensions is created from and repre-
sents a natural language word or specific gram-
matical concept. We construct these embed-
dings through sparse coding, where each vec-
tor in the basis set is itself a word embedding.
Therefore, each dimension of our sparse vec-
tors corresponds to a natural language word.
We also show that models trained using these
sparse embeddings can achieve good perfor-
mance and are more interpretable in practice,
including through human evaluations.

1 Introduction

Word embeddings represent each word in a natural
language as a vector in a continuous high dimen-
sional space. Many different pretrained embed-
dings are readily available (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017),
and are used in a range of applications (Li and
Yang, 2018). This vector representation can be
said to encode the meaning of the word; not only
are similar words close together but linear relation-
ships between words are thought to have concep-
tual meaning. In the famous example, the vector
difference between ‘man’ and ‘woman’ is simi-
lar to the vector difference between ‘king’ and
‘queen’ (Landauer and Dumais, 1997; Mikolov
et al., 2013). This observation suggests that the

vector difference between ’woman’ and ’man’ rep-
resents a concept of gender within the vector space,
implying that dimensions or linear combinations
of dimensions in the vector space are related to
human-understandable concepts. However, in prac-
tice, interpreting these vector spaces is extremely
difficult. This obscures the behavior of any NLP
model built on top of word embeddings.

To enable interpretable NLP models, we create
vectors where each dimension is inherently inter-
pretable. By inherently interpretable, we mean a
system where each dimension is associated with
some human-understandable hint that can describe
the meaning of that dimension. This allows us to
directly interpret the coefficients of simple mod-
els trained on these vectors. By comparison, most
other systems of interpretable word embeddings
aim to create dimensions that humans may be able
to manually interpret after the fact.

To create our vectors, we represent word embed-
dings as the sparse linear combination of a basis
set of other word embeddings. Our primary contri-
bution is that, instead of learning an optimal basis
for our sparse vector space, we draw the columns
of the basis from the original set of dense word
embeddings. This strategy provides a natural la-
bel for each sparse dimension and allows us to
represent each natural language word as the lin-
ear combination of a small number of other natu-
ral language words. This representation is itself a
more ‘interpretable’ word embedding. This tech-
nique produces representations of words that have
interpretable dimensions. We show that these rep-
resentations are more interpretable and that models
trained on these embeddings perform almost as
well as models trained on standard dense embed-
dings. We show how the creation of inherently
interpretable vectors can help us understand the
behavior and structure of the original word embed-
dings.
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Recent work has created more interpretable
vectors through a variety of methods. However,
relatively few approaches create inherently inter-
pretable dimensions. Therefore, we believe that
our work, which creates inherently interpretable
embeddings through a simple novel method can be
the basis of future NLP tools where interpretability
is crucial.

As an example, we present one randomly se-
lected embedding from our system. More examples
can be found in the appendix.

carbon = 0.79 ∗ nitrogen

− 0.38 ∗ CAPITALIZATION + 0.3 ∗ fossil

− 0.21 ∗ POS-NOUN + 0.16 ∗ POS-ADJ

+ 0.14 ∗ C0− 0.14 ∗ PAST-TENSE

+ 0.13 ∗ wood + 0.11 ∗ global

+ 0.1 ∗ atoms− 0.095 ∗ POS-ADV

+ 0.092 ∗ aluminum

− 0.078 ∗ PLURAL-NOUN

+ 0.073 ∗ greenhouse

− 0.072 ∗ POS-PROPN

− 0.048 ∗ POS-VERB + 0.046 ∗ forestry

+ 0.03 ∗ PARTICIPLE + 0.017 ∗ sink

+ 0.012 ∗ POS-NUM

2 Previous Work

Park et al. (Park et al., 2017) find a more inter-
pretable rotation of word embeddings using tech-
niques associated with factor analysis. Other work
(Dufter and Schütze, 2019; Rothe and Schütze,
2016) rotates dense vectors using different meth-
ods.

Koc et al. (Şenel et al., 2020) tie concepts to
dimensions in a more direct way. They select a con-
cept for each dense dimension and identify words
that are associated with these concepts. A penalty
term pushes coefficients for these words towards
the fixed values.

Other work has focused on interpretability
through sparsity. Subramian et al. (Subramanian
et al., 2018) created more interpretable embeddings
by passing pretrained dense embeddings through a
sparse autoencoder.

Panigrahi et al. (Panigrahi et al., 2019) proposed
Word2Sense, a generative approach that models
each dimension as a ‘sense’ and word embeddings
as a sparse probability distribution over the senses.

The mathematical technique we use in this paper,
Sparse coding, which is defined as the representa-
tion of vectors as the sparse linear combination
of an overcomplete basis, is a well-studied opti-
mization problem (Coates and Ng, 2011; Hoyer,
2002; Lee et al., 2007). Previous work (Coates and
Ng, 2011) has also shown that basis vectors can
be efficiently selected from the set that is being
encoded.

Faruqui et al. (Faruqui et al., 2015) used non-
negative sparse coding to recode dense word em-
beddings into more interpretable sparse vectors
while learning a basis. However, because they cre-
ate their basis through direct optimization, the basis
vectors (and, consequently, the dimensions in their
transformed sparse space) do not have any inherent
interpretation and must be manually interpreted.

Zhang et al. (Zhang et al., 2019) also used non-
negative sparse coding to learn a set of word factors
to recode word2vec embeddings. The basis vec-
tors created in this way are highly redundant, so
they then use spectral clustering to remove near-
duplicate factors. Then, they are able to manually
infer reasonable post hoc interpretations for most
of the factors.

Concurrently with our work, Mathew et al. cre-
ate an inherently interpretable subspace from pairs
of antonyms. They then project embeddings into
that subspace, producing lower-dimensional dense
vectors (Mathew et al., 2020).

3 Model

Our work uses sparse coding to transform a set of
word embeddings from a dense and uninterpretable
space into a sparse and interpretable space. Let vD
represent a dense word embedding, and let B repre-
sent a matrix with basis vectors along the columns.
B has size (nS , nN ) where nd is the dimensionality
of the dense vectors and nS is the dimensionality
of the sparse vectors. We achieve sparse coding us-
ing regularized regression, inducing sparsity using
the L1 norm. Formally, this corresponds to finding
the sparse vector vS that minimizes the following
objective function

arg min
vS

||vD − vSB||22 + α||vS ||1 (1)

α is a hyperparameter that controls the level of
sparsity. The first term in Equation 1 ensures the
sparse vector corresponds to a vector in the dense
space that is similar to the original vector. The
second term is a sparsity-inducing penalty.
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Note that by ‘basis‘ we mean a set of vectors
in the dense space, each one corresponding to a
dimension in the transformed, sparse, space. Out of
necessity, these vectors are overcomplete (there are
more dimensions than vectors) and so they do not
form a basis according to the traditional definition.

Previous work using sparse coding to create in-
terpretable word embeddings has considered the
basis B to be part of the optimization problem
(Faruqui et al., 2015; Zhang et al., 2019). Our pri-
mary contribution is that, instead of learning an op-
timal basis, we draw the columns of the basis from
the original set of dense word embeddings. This
strategy provides a natural label for each sparse
dimension.

3.1 Grammatical Basis

We can roughly divide the ‘meaning’ carried by
a word embedding into grammatical and non-
grammatical properties. Here we use ‘grammatical
properties’ to mean properties that describe how
that word fits into the grammar of the language,
such as its part-of-speech, tense, or number. We
use ‘non-grammatical properties’ to mean all other
aspects of the meaning of a word. For instance,
we expect the embedding for the word ‘swimming’
to include a grammatical component representing
that this word is a present-tense participle and a
non-grammatical component that represents the
meaning ‘to swim’. Of course, this deconstruction
is imperfect. Nevertheless, this approach provides
a useful insight towards decomposing the meaning
of a word embedding.

Preliminary experiments showed that, with-
out special consideration, grammatical properties
would be captured in an unintuitive way. The gram-
matical components could not be easily isolated
to one subset of the nonzero dimensions. Ideally,
the grammatical information would be captured in
a small number of interpretable dimensions. In-
stead, each basis vector would capture part of the
grammatical component and part of the semantic
component. This duality creates difficulty when
interpreting our representations.

To address this, we construct a small number of
grammatical basis vectors and add them to the ba-
sis set. For instance, we construct a ‘POS-NOUN’
vector by taking the mean of all word embeddings
corresponding to nouns. For this work, we use a set
of 11 grammatical basis vectors, though the num-
ber and the construction of these are arbitrary. A

description of the grammatical basis vectors is in
the appendix.

Next, we make the grammatical basis vectors or-
thogonal using the Gram-Schmidt process. Finally,
we subtract the projection along the grammatical
basis vectors from all other (‘non-grammatical’)
basis vectors we use and renormalize them. This
procedure separates the grammatical meaning from
our non-grammatical basis vectors, ensuring that
non-grammatical bases are not also coding for
grammatical concepts.

Note that we only perform this orthogonalization
with respect to a very small number of grammatical
basis vectors. We find that this procedure does
not remove more than 50% of the length of any
individual vector and 50% of vectors have less than
20% of their length removed.

When encoding a dense vector, instead of finding
the grammatical coefficients using sparse coding,
we set each grammatical coefficient to the projec-
tion along the corresponding grammatical basis
vector, which is equal to the dot product similarity
between the original vector and the grammatical
basis vector. Because the grammatical basis is or-
thogonal, we can do this for every grammatical
basis vector simultaneously. This residual is then
transformed using Equation 1.

Note that, although we do require hand-crafted
features to create the grammatical basis vectors,
our system does not use hand-crafted features in
the representation of new words. Once the gram-
matical feature vectors are defined, words can be
represented in our sparse space using no more in-
formation than their fasttext dense vectors.

3.2 Basis Selection

We cannot practically use all words as our basis
set, so we have to select a subset. First, we start
with the 30,000 most frequent words. We filter out
any words that are capitalized or that are not in
a standard English vocabulary (using the vocabu-
lary of the spaCy en core web sm model). Next,
we filter out any words that are not nouns, verbs,
or adjectives. This process removes many basis
vectors that may be hard to interpret. This gives
us approximately 11,000 remaining potential basis
words. From these, we will select 3,000 words to
use in the final basis.

We use an iterative algorithm that takes, at each
step, the potential basis vector with the highest
mean cosine similarity to all other vectors. To
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encourage diversity, this mean is weighted by the
lowest cosine dissimilarity that each vector has
with any already-selected basis vector. Formally,
at each step, we grow the set of basis vectors B by
adding the potential basis vector x from the set of
unchosen potential basis vectorsF\B that satisfies

arg max
x∈F\B

∑
v∈VD

(x · v)max
b∈B

(1− b · v)

Where VD is the set of dense vectors for the 30,000
most frequent words.

Note that, despite our use of the word ‘basis’,
this is not a basis in the traditional sense; the set
of basis vectors are not linearly independent, and
there are more basis vectors than dimensions in the
original space. However, because of the L1 penalty
term, our objective function still allows for optimal
decompositions.

3.3 End-to-end Process
In order to find the sparse vector representation, we
follow the following process, combining the above
elements.

1. Find the dense vector representation of the
word.

2. Compute the projection along each vector or-
thogonal grammatical basis. Store these pro-
jections as the first part of the resulting vector.
Subtract the projection along this basis before
moving on to the next step.

3. Optimize Eq. 1 using the FISTA algorithm
(Chalasani et al., 2013). Store the learned
sparse vector as the second part of the result-
ing vector.

4 Results

We will evaluate this model in multiple ways. In
particular, we care about two contradictory proper-
ties of our transformed vector space. First, we want
our vector space to be useful in downstream ma-
chine learning applications. We expect that, in most
applications, increased interpretability comes with
some performance cost. Therefore, we care about
the performance loss when moving from dense vec-
tors to our sparse vectors.

The other goal is that our sparse vectors should
be interpretable. It is much harder to articulate
exactly what interpretability is or how we can

measure it. Metrics such as the Word Intrusion
Task (Section2) can act as a useful proxy for in-
terpretability, and we use it as our primary quan-
titative measure of interpretability. But part of in-
terpretability is, by definition, subjective and any
metric is imperfect.

4.1 implementation
We use the FastText (Bojanowski et al., 2017)
pretrained 300 dimensional English vectors (with-
out subword information) trained on Wikipedia
2017, UMBC webbase corpus and statmt.org news
dataset as the dense vectors that we input into our
models. Unless otherwise mentioned, we only con-
sider the 30,000 most frequent words, for compu-
tational reasons. We normalize all vectors to have
mean 0 and unit length. After learning sparse vec-
tors, we normalize each sparse vector so that it
corresponds to a dense vector of unit length. When
comparing with the original dense vectors (Fast-
Text (Bojanowski et al., 2017)), we subtract the
mean of all vectors, to match our preprocessing.

In practice, the sparse penalty term will only
push coefficients very close to 0. We clamp any
coefficient with a magnitude of less than .001 to 0.
We found this threshold by taking the lowest cutoff
that does not introduce significant irregularities into
the tradeoff curves in Section 4.3.

We solve the regularized optimization problems
using the FISTA algorithm (Chalasani et al., 2013),
as implemented in the Python Lightning package
(Blondel and Pedregosa, 2016), using default hy-
perparameters. FISTA is an optimization algorithm
that can efficiently solve sparse coding problems.
We use the spaCy library (Honnibal and Montani,
2017) to check for out of vocabulary words and
perform part-of-speech tagging. We use the numpy
(Oliphant, 2006), CuPy (Okuta et al., 2017), and
Scikit learn (Pedregosa et al., 2011) libraries for
various linear algebra implementations. We use the
open-source Gensim library (Rehurek and Sojka,
2010) to manipulate word embeddings. For the
word analogy task evaluation, we use the 3CosAdd
method, as implemented by Gensim. Models pro-
cessed 30,000 words within a few hours, running
across 32 2.5 GHz processors with no GPU.

4.2 Comparison with Previous Work
To compare our work against other sparse coding
approaches, we will often reference the vectors
created by Faruqui et al. (Faruqui et al., 2015). That
work generates more interpretable vectors using
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Figure 1: The tradeoff curve between sparsity and re-
construction error. The dashed line shows the trade-
off curve achieved by Faruqui et al. using sparse cod-
ing without inherently interpretable dimensions (Sec-
tion 4.2).

sparse coding but without inherently interpretable
dimensions.

4.3 Reconstruction Error and Sparsity

Note that, because of the penalty term in Equation
1, VSB (the reconstructed vectors) are not exactly
equal to the original dense vectors VD. Therefore,
we expect a tradeoff between sparsity and this dif-
ference (which we call reconstruction error).

This tradeoff curve is displayed in Figure 1. De-
spite the additional constraints of an inherently
interpretable system, we suffer only a minor in-
crease in reconstruction error compared to tradi-
tional sparse coding. This reconstruction error is
the primary drawback of our system; reconstruc-
tion error adds a small amount of noise to every
model built on top of our sparse vectors. For the re-
mainder of this work, unless otherwise mentioned,
we will consider the vectors made with α = 0.35.
These vectors have, on average, 20 nonzero entries.

4.4 Analogy Task

In the word2vec vector space, famously, the vector
for ‘king’ plus the vector for ‘woman’ minus the
vector for ‘man’ is close to the vector for ‘queen’.
Analogy tasks quantitatively test these properties.
The task consists of analogies of the form A is to
A′ as B is to B′. The vector space is evaluated on
its ability to correctly determine the value of B′.

The performance of our vector space at this task
is displayed in Table 1. Our model performs poorly
on this task. This degradation comes from two
sources. First, the drop from the original vectors
to the reconstructed vectors that is due to recon-
struction error. Second, an additional degradation
is caused by the transformation from dense vectors
to sparse vectors, especially with cosine similarity.

Nonzero Total Gram. Sem.
FastText 300 0.88 0.85 0.94

Faruqui λ = 0.75 136 0.65 0.60 0.73
Ours α = 0.1 127 0.50 0.46 0.59

Recons. α = 0.1 300 0.83 0.80 0.88
Ours α = 0.35 20 0.20 0.22 0.15

Recons. α = 0.35 300 0.33 0.38 0.25

Table 1: Accuracy on the word2vec analogy evalua-
tion set for various vector spaces. The first column
shows the average number of nonzero entries in each
sparse vector. Accuracy is also broken down by non-
grammatical and grammatical categories. ’Recons’ de-
notes the performance of the reconstructed dense vec-
tors. All results are on a 50% held-out test set.

4.5 Classification

Next, we demonstrate that our model can be used
to build interpretable machine learning systems. To
this end, we train classifiers using our word embed-
dings as input. We demonstrate that these classi-
fiers are not only effective but also interpretable.

We evaluate our vectors on two datasets, the
IMDB sentiment analysis dataset (Maas et al.,
2011) and the TREC question classification dataset
(Li and Roth, 2002). For both of these datasets, we
use a logistic regression model and a bag of words
representation.

4.5.1 IMDB Sentiment Analysis Dataset

The IMDB movie review dataset consists of 50,000
passages taken from IMDB movie reviews, evenly
split between positive and negative reviews. The
task is to determine the sentiment of each passage
(Maas et al., 2011).

We train classifiers using various word embed-
ding spaces as inputs. While we could train deep
neural modesl on these vector spaces, neural mod-
els do not directly produce interpretable coeffi-
cients, and therefore we provide a demonstration
on simple logistic regression models. The results
are presented in Table 2. Our vector spaces demon-
strate improvement over the original dense vectors
(FastText (Bojanowski et al., 2017)), as well as the
traditional sparse coding approach of Faruqui et
al. This result holds despite a slight decrease in
performance caused by the reconstruction error (as
demonstrated by the low performance with recon-
structed vectors).

We can directly interpret our classifier’s coeffi-
cients. Here, we present the most significant coeffi-
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IMDB TREC
FastText 85.35 84.2
Faruqui λ = .75 85.54 84.4
Ours α = 0.1 87.51 86.2
Ours Recons. α = 0.1 85.08 81.4
Ours α = 0.35 86.46 84.0
Ours Recons. α = 0.35 83.00 75.8

Table 2: Accuracy on the IMDB sentiment analysis
dataset and the TREC question classification dataset.
We use a logistic regression classifier, which uses as
input a bag-of-words sum of various word embeddings.

cients (α = 0.1) 1:

ln
P (positive)

1− P (positive)
= −157 · dreadful

− 153 · horrible + 150 · fabulous− 140 · dull

− 132 · dreary− 107 · worsen

− 105 · ridiculous + ...

Note that these are not coefficients on the frequen-
cies of individual words. Instead, these are coef-
ficients on vectors in the basis set. We can con-
sider them to be coefficients on concepts, which
are labeled by the displayed words. The coeffi-
cients make sense: positive concepts have positive
coefficients, while negative concepts have nega-
tive coefficients. This pattern continues for much
longer than displayed above, and we have omitted
other terms for space reasons. The first term to not
fall into this clear interpretation is the 24th-most
significant: ...+ 74 · shall + ..‘
At first, this term appears nonsensical. Looking
more closely at this dimension can reveal more
about our system. The top five words in the
dimension represented by ‘shall’ are the follow-
ing: ‘henceforth’, ‘herein’, ‘hereafter’, ‘thereof’,
‘hereby’. We can see here how both our vector
space and our regression model pick up on tone.
This dimension appears to correspond to a formal
and somewhat archaic tone, which is likely not
found in a negative internet comment.

4.5.2 TREC Question Classification Dataset
Our next classification task is more complex. The
TREC question classification dataset consists of
6,000 questions that are divided into 6 categories

1These weights are real-values and truncated for space.
Note that the weights are very large because they correspond
to sparse low-magnitude features.

based on the expected answer: abbreviations, de-
scriptions, entities, humans, locations, and nu-
meric.

Accuracy for various vector spaces is presented
in Table 2. Again, our model does better than the
unmodified input vectors we start with, despite
some loss from the reconstruction error. Both re-
sults suggest that our vector spaces are efficient in
regression-based settings, though the performance
at the word-analogy task suffers a serious degrada-
tion. It is likely that different qualities are needed
for these different tasks. The exact-match evalu-
ation of the word analogy task severely punishes
even slight noise in the vector space, and cosine
similarities are noisy in sparse vectors.

Once again, we directly interpret the coefficients
learned by logistic regression. For space, we dis-
play the most significant terms for the HUM cate-
gory. Questions in this category expect the name
of a human as the answer:

ln
P (HUM)

1− P (HUM)
= −77 · wonder

+ 66 · organizations + 54 · companies

+ 51 · poet + 49 · songwriter

+ 48 · identities + 42 · fan− 42 ·movie

− 39 · resulting + 36 · university

− 36 · diseases + 36 · successive+

35 · consist + 35 · cabinets + ...

Some of these coefficients, such as ‘songwriter’
or ‘identities’ are intuitive and reveal interesting
behavior of the classifier. Others, such as ‘wonder’,
are not. Manual inspection reveals that ‘wonder’
is used to represent words such as ‘How’ or ‘why’
but not ‘who’, though this behavior is likely noise.

4.5.3 Word Intrusion Task
To quantitatively measure interpretability, we use
human experiments. In particular, we use the word
intrusion task (Chang et al., 2009). In this task, hu-
mans are presented with five words, four of which
are associated highly with a particular dimension.
Participants are asked to choose the word that does
not belong. We use our vectors both with and with-
out providing the label of the dimension as a ‘hint’.

We use the following procedure for generating
questions. First, we filter candidate words, starting
with the 20,000 most frequent words and filtering
out words that are not lowercase, words that are
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Figure 2: An example of the user interface given to annotators. The following instructions were given to the
annotators: ‘You will be presented with a group of 5 words. Four of these words are similar in some way and the
other one is not. Pick out the word which is dissimilar. You may be provided with a hint about how the words are
similar.’

Accuracy CI
FastText 0.31 [0.27,0.34]
Faruqui 0.77 [0.74,0.80]
Ours 0.80 [0.77,0.83]
Ours (with Hints) 0.84 [0.81,0.86]

Table 3: Results on the word intrusion task. 95% nor-
mal confidence intervals are displayed.

not made up of only ASCII alphabetic characters,
and words with only one letter. Then we randomly
select a dimension. We pick the 4 highest words
along that dimension, and one word randomly se-
lected from the bottom 50% of words in that di-
mension, then randomize the order. Each example
is presented to three different Mechanical Turk an-
notators. An example of the interface presented to
annotators is seen in Figure 2.

The results of the word intrusion task are presented
in Table 3. When hints are provided, we see a
statistically significant improvement in accuracy
between our vectors and the sparse coding baseline
(p = .00055). In addition, using hints produces a
statistically significant improvement (p = .040), val-
idating our motivation for inherently interpretable
dimensions. Of course, any quantitative metric of
interpretability is imperfect. To qualitatively as-
sess interpretability, randomly selected vectors are
presented in the appendix.

4.6 Summary

Our method still has some serious drawbacks.
Sparse coding, by its nature, introduces a substan-
tial amount of noise in the form of reconstruction
error and sparse coding has the potential to assign
very different sparse vectors to similar dense vec-
tors. We hope that future work will produce sparse
embeddings that are interpretable by construction
without some of the shortcomings of our work.

4.7 Conclusions and Future Work

In this work, we presented a method to create word
embeddings that are interpretable by construction.
Each dimension of these embeddings corresponds
precisely to a natural language word. These embed-
dings can be presented in a human readable form,
and we have shown that most of these representa-
tions are intuitive. We have also shown that these
embeddings can be used to produce an extremely
interpretable classification model that still delivers
performance comparable to or better than a classi-
fication model based on the original embeddings.

Unlike most previous work on interpretable word
embeddings, our method does not require humans
to interpret and label each dimension. We have
previously seen how this feature allows us to easily
create interpretable classification models. It also
allows us to gain a deeper understanding of the orig-
inal dense vector space. Previous approaches may
have obscured nuanced or hard to interpret behav-
ior. In particular, a human manually interpreting a
dimension may not appreciate subtle behavior of
the system. Several sections of this work, which
have manually examined individual word represen-
tations in our system, have revealed the nuanced
behavior that our system demonstrates.

Our method still has some serious drawbacks.
While we have examined a number of these flaws,
many are tied closely to the sparse coding method
we have chosen to use. Sparse coding, by its na-
ture, introduces a substantial amount of noise in
the form of reconstruction error. In addition to the
reconstruction error, sparse coding has the poten-
tial to assign very different sparse vectors to similar
dense vectors. We hope that future work will pro-
duce sparse embeddings that are interpretable by
construction without some of the shortcomings of
our work.

Much of the promise of sparse coding methods
remains to be proved. In particular, we believe it



184

will be fruitful to study the representation of syntac-
tic concepts. We have seen that our attempts to dis-
entangle syntactic concepts from our semantic ba-
sis vectors were not entirely successful. We would
also like to better understand how these methods
are applicable in deep learning models.

There is still a large amount of analytical work
left to be done on evaluation. The word intrusion
task, while an effective quantitative method, does
not offer a complete view of interpretability. Part
of this problem is that we do not have any way
to quantify interpretability where it is most useful:
when building downstream classification models.
More fundamentally, we do not have any underly-
ing framework for understanding what it means for
a word embedding to be interpretable.

We believe that interpretable word embeddings
have great potential for helping us understand and
interpret models in a wide range of NLP tasks.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer.

https://doi.org/10.5281/zenodo.200504
https://doi.org/10.5281/zenodo.200504
https://doi.org/10.5281/zenodo.200504
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf


186

Sascha Rothe and Hinrich Schütze. 2016. Word embed-
ding calculus in meaningful ultradense subspaces.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 512–517.
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5 Appendix

A Gramtacic Basis Descriptions

Our approach makes use of four types of grammat-
ical basis vectors:

1. We use the first principal component of the
embeddings of the 30,000 most frequent
words. Previous work on word embedding
has referred to this as the common discourse
vector, or c0, and has shown that this vector
encodes words that appear commonly in all
contexts, such as ‘the’.

2. We take the mean of all vectors of capitalized
words and use this as a grammatical basis vec-
tor to represent capitalization.

3. For a variety of parts-of-speech, we use the
mean vectors for words with that part-of-
speech (POS). Specifically, we encode a vec-
tor for each of the following: nouns, verbs,
adjectives, adverbs, and numbers.

4. We create mean vector differences for the fol-
lowing grammatical concepts: the relationship
between singular and plural nouns, the rela-
tionship between present-tense verbs and their
present participle form, and the relationship
between present-tense verbs and their past-
tense forms. For each of these relationships,
we manually collect approximately 50 exam-
ple word pairs that fit that relationship. We
manually filter for word pairs where either the
grammatical relationship does not change the
form of the word (i.e., ‘deer’) or for word pairs
where the grammatical change is likely to pro-
duce a more complicated change in meaning
(i.e., ‘math’ and ‘maths’). We average the dif-
ferences between pairs of each relationship
type and use it as the vector for that relation-
ship.

The choice and construction of these grammati-
cal basis vectors is highly arbitrary, and different
grammatical basis vectors could easily be used in
different applications or in follow up work.

B Implementation

B.1 Comparison to Faruqui et al.
To compare to the sparse coding approach of
Faruqui et al., we use their publicly available im-
plementation with the following settings: We use

the same input vectors without preprocessing, a
dimensionality of 3000, L2 regularization penalty
τ = 10−5, as suggested in their paper, and various
L1 regularization penalties (λ).

B.2 Word Intrusion Task Implementation

C Randomly Selected Word
Representations

We randomly select 25 words and display their
complete sparse vector representations here:

carbon = 0.79 ∗ nitrogen

− 0.38 ∗ CAPITALIZATION + 0.3 ∗ fossil

− 0.21 ∗ POS-NOUN + 0.16 ∗ POS-ADJ

+ 0.14 ∗ C0− 0.14 ∗ PAST-TENSE

+ 0.13 ∗ wood + 0.11 ∗ global

+ 0.1 ∗ atoms− 0.095 ∗ POS-ADV

+ 0.092 ∗ aluminum

− 0.078 ∗ PLURAL-NOUN

+ 0.073 ∗ greenhouse

− 0.072 ∗ POS-PROPN

− 0.048 ∗ POS-VERB + 0.046 ∗ forestry

+ 0.03 ∗ PARTICIPLE + 0.017 ∗ sink

+ 0.012 ∗ POS-NUM

reefs = 0.68 ∗ islands

− 0.66 ∗ CAPITALIZATION + 0.4 ∗ C0

+ 0.35 ∗ PLURAL-NOUN

+ 0.28 ∗ POS-VERB

+ 0.25 ∗ rocks

+ 0.19 ∗ dredging

+ 0.18 ∗ oysters + 0.12 ∗ POS-ADJ

+ 0.096 ∗ POS-NUM + 0.096 ∗ POS-ADV

+ 0.089 ∗ POS-PROPN + 0.086 ∗ tropical

+ 0.075 ∗ underwater + 0.068 ∗ dunes

+ 0.063 ∗ seas + 0.06 ∗ diver

− 0.058 ∗ PAST-TENSE

+ 0.042 ∗ sandstone

− 0.025 ∗ demon + 0.02 ∗marine

− 0.019 ∗ PARTICIPLE

− 0.014 ∗ POS-NOUN

− 0.012 ∗ french− 0.0041 ∗ witches
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Coulson = 0.85 ∗ hacking

+ 0.72 ∗ C0 + 0.59 ∗ POS-PROPN

+ 0.25 ∗ CAPITALIZATION

− 0.23 ∗ POS-ADJ

− 0.19 ∗ POS-NOUN + 0.17 ∗ butler

− 0.17 ∗ southern + 0.15 ∗ POS-VERB

− 0.14 ∗ website− 0.12 ∗ com

− 0.12 ∗ roaring + 0.1 ∗ solicitors

− 0.094 ∗ POS-ADV + 0.074 ∗ oats

− 0.068 ∗ cathedral− 0.064 ∗ PARTICIPLE

+ 0.061 ∗ inquiry− 0.06 ∗ dances

− 0.056 ∗ fan + 0.042 ∗ POS-NUM

− 0.029 ∗ provinces− 0.029 ∗ finals

− 0.02 ∗ dance− 0.017 ∗ waters

− 0.013 ∗ tango− 0.013 ∗ shame

− 0.012 ∗ PAST-TENSE

− 0.005 ∗ PLURAL-NOUN

roundabout = 0.72 ∗ bypass

+ 0.4 ∗ roadway− 0.28 ∗ CAPITALIZATION

+ 0.22 ∗ plaza− 0.16 ∗ PLURAL-NOUN

+ 0.11 ∗ POS-ADJ + 0.11 ∗ clumsy

+ 0.1 ∗ airfield + 0.088 ∗ POS-ADV

− 0.08 ∗ biological + 0.079 ∗ C0

+ 0.051 ∗ POS-NOUN + 0.043 ∗ PAST-TENSE

+ 0.039 ∗ PARTICIPLE + 0.028 ∗ caravan

+ 0.025 ∗ ironic + 0.021 ∗ POS-VERB

− 0.021 ∗ POS-NUM− 0.0038 ∗ POS-PROPN

+ 0.003 ∗ nonsensical

Hub = 0.49 ∗ bustling

+ 0.47 ∗ C0 + 0.4 ∗ portal

+ 0.39 ∗ infrastructure + 0.32 ∗ POS-NOUN

+ 0.31 ∗ CAPITALIZATION + 0.31 ∗ central

− 0.13 ∗ POS-PROPN− 0.1 ∗ PLURAL-NOUN

+ 0.069 ∗ outage + 0.068 ∗ centre

+ 0.061 ∗ POS-NUM + 0.058 ∗ connectivity

+ 0.058 ∗ PARTICIPLE − 0.057 ∗ POS-ADJ

+ 0.043 ∗ PAST-TENSE − 0.043 ∗ POS-VERB

+ 0.027 ∗ POS-ADV

environmental = 0.43 ∗ sustainability

+ 0.43 ∗ economic + 0.38 ∗ POS-ADJ

− 0.3 ∗ CAPITALIZATION− 0.27 ∗ POS-VERB

+ 0.27 ∗ regulatory− 0.2 ∗ PAST-TENSE

+ 0.18 ∗ biological + 0.17 ∗ campaigner

+ 0.17 ∗ POS-NUM + 0.14 ∗ thermal

− 0.14 ∗ POS-ADV− 0.12 ∗ POS-NOUN

+ 0.1 ∗ health− 0.1 ∗ C0

+ 0.087 ∗ PARTICIPLE + 0.087 ∗ POS-PROPN

− 0.084 ∗ PLURAL-NOUN + 0.073 ∗ outdoor

+ 0.055 ∗ chemical + 0.0055 ∗ cultural

Churchill = 0.84 ∗ wartime

+ 0.6 ∗ C0 + 0.41 ∗ CAPITALIZATION

+ 0.4 ∗ quotation + 0.38 ∗ POS-PROPN

+ 0.36 ∗ statesman− 0.21 ∗ PARTICIPLE

− 0.14 ∗ astronomer− 0.14 ∗ POS-NOUN

− 0.11 ∗ POS-ADJ− 0.1 ∗ PAST-TENSE

+ 0.082 ∗ POS-VERB + 0.078 ∗ POS-NUM

+ 0.064 ∗ POS-ADV + 0.045 ∗ advising

− 0.025 ∗ architectures + 0.022 ∗ PLURAL-NOUN

+ 0.017 ∗ pint + 0.013 ∗ fascism

resident = 0.54 ∗ citizens

+ 0.49 ∗ native + 0.37 ∗ visiting

− 0.19 ∗ PLURAL-NOUN + 0.12 ∗ PAST-TENSE

+ 0.11 ∗ caretaker− 0.099 ∗ CAPITALIZATION

− 0.094 ∗ C0 + 0.082 ∗ PARTICIPLE

+ 0.082 ∗ ward + 0.077 ∗ POS-NOUN

− 0.039 ∗ POS-ADV + 0.022 ∗ proprietor

+ 0.022 ∗ POS-VERB− 0.0065 ∗ POS-NUM

+ 0.0045 ∗ POS-PROPN + 0.0036 ∗ POS-ADJ
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backers = 0.64 ∗ sponsors

+ 0.4 ∗ POS-NOUN− 0.4 ∗ CAPITALIZATION

+ 0.33 ∗ advocates + 0.28 ∗ PLURAL-NOUN

+ 0.19 ∗ POS-PROPN + 0.18 ∗ businessman

+ 0.18 ∗ businessmen + 0.16 ∗ fans

− 0.15 ∗ POS-ADJ + 0.12 ∗ PARTICIPLE

+ 0.12 ∗ PAST-TENSE − 0.12 ∗ POS-ADV

+ 0.092 ∗ whose + 0.082 ∗ opposition

+ 0.065 ∗ POS-VERB + 0.056 ∗ candidacy

+ 0.055 ∗ touted + 0.047 ∗ startups

− 0.024 ∗ POS-NUM + 0.024 ∗ rebels

+ 0.014 ∗ reformist + 0.013 ∗ investment

− 0.002 ∗ C0

rudimentary = 0.84 ∗ basics

− 0.65 ∗ C0 + 0.49 ∗ POS-ADJ

− 0.41 ∗ POS-VERB + 0.41 ∗ apparatus

− 0.36 ∗ POS-NOUN + 0.35 ∗ improvised

+ 0.15 ∗ POS-ADV + 0.099 ∗ CAPITALIZATION

+ 0.072 ∗ PARTICIPLE + 0.069 ∗ PLURAL-NOUN

+ 0.062 ∗ POS-NUM + 0.059 ∗ develop

+ 0.05 ∗ PAST-TENSE + 0.043 ∗ POS-PROPN

admire = 0.73 ∗ admirable

− 0.66 ∗ PARTICIPLE − 0.65 ∗ C0

+ 0.31 ∗magnificent + 0.23 ∗ CAPITALIZATION

+ 0.16 ∗ criticize + 0.16 ∗ POS-NOUN

− 0.16 ∗ PAST-TENSE + 0.14 ∗ loves

+ 0.1 ∗ POS-PROPN + 0.1 ∗ beauty

− 0.098 ∗ POS-NUM− 0.068 ∗ PLURAL-NOUN

+ 0.066 ∗ devotion− 0.061 ∗ POS-ADV

− 0.058 ∗ POS-ADJ + 0.039 ∗ openness

+ 0.02 ∗ charming− 0.00015 ∗ POS-VERB

re-add = −0.65 ∗ PARTICIPLE

− 0.47 ∗ POS-NUM + 0.44 ∗ deleted

+ 0.43 ∗ POS-VERB + 0.41 ∗ cruft

− 0.41 ∗ C0− 0.3 ∗ PAST-TENSE

+ 0.28 ∗ section + 0.19 ∗ CAPITALIZATION

+ 0.17 ∗ categorization + 0.16 ∗ unblock

+ 0.15 ∗ POS-ADV + 0.11 ∗ POS-PROPN

+ 0.098 ∗ reversion− 0.09 ∗ POS-ADJ

+ 0.09 ∗ POS-NOUN + 0.061 ∗ inserting

+ 0.046 ∗ reference + 0.043 ∗ sourcing

+ 0.034 ∗ template + 0.027 ∗ encyclopedic

+ 0.013 ∗modify− 0.0088 ∗ battleship

− 0.0071 ∗ cow + 0.006 ∗ PLURAL-NOUN

visuals = 0.47 ∗ cinematography

− 0.47 ∗ CAPITALIZATION + 0.29 ∗ evocative

+ 0.25 ∗multimedia + 0.21 ∗ videos

+ 0.19 ∗ POS-NOUN + 0.15 ∗ PLURAL-NOUN

+ 0.14 ∗ POS-PROPN + 0.12 ∗ hallucinations

+ 0.11 ∗ awesome + 0.1 ∗ PARTICIPLE

+ 0.08 ∗ video− 0.079 ∗ POS-VERB

+ 0.076 ∗ sounds + 0.076 ∗ POS-ADJ

+ 0.076 ∗ slick + 0.075 ∗ POS-ADV

+ 0.066 ∗ C0 + 0.062 ∗ dazzling

+ 0.052 ∗ colorful + 0.044 ∗ interactive

+ 0.027 ∗ jarring + 0.019 ∗ visualization

+ 0.0047 ∗ PAST-TENSE + 0.00025 ∗ POS-NUM

Conflict = 0.61 ∗ POS-NOUN

− 0.49 ∗ POS-PROPN + 0.44 ∗ warfare

+ 0.4 ∗ escalation + 0.4 ∗ peace

+ 0.36 ∗ C0 + 0.24 ∗ guideline

+ 0.23 ∗ CAPITALIZATION + 0.21 ∗ PARTICIPLE

+ 0.19 ∗ ethnic− 0.19 ∗ POS-VERB

+ 0.16 ∗ resolved + 0.12 ∗ POS-NUM

− 0.099 ∗ PLURAL-NOUN + 0.078 ∗ PAST-TENSE

+ 0.07 ∗ divergence + 0.065 ∗ geopolitical

− 0.05 ∗ stationary + 0.038 ∗ POS-ADJ

− 0.032 ∗ shops + 0.03 ∗ polarized

− 0.012 ∗ POS-ADV
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hitter = −0.54 ∗ CAPITALIZATION

+ 0.45 ∗ C0− 0.42 ∗ PLURAL-NOUN

+ 0.42 ∗ shortstop + 0.36 ∗ designated

+ 0.32 ∗ batting + 0.3 ∗ POS-VERB

+ 0.21 ∗ POS-NOUN + 0.18 ∗ POS-ADV

+ 0.17 ∗ pitchers + 0.17 ∗ pitcher

+ 0.14 ∗ catcher− 0.12 ∗ PARTICIPLE

− 0.1 ∗ POS-NUM− 0.096 ∗ inane

+ 0.087 ∗ guy + 0.073 ∗ POS-PROPN

+ 0.048 ∗ exert− 0.014 ∗ PAST-TENSE

+ 0.0071 ∗ outs− 0.0064 ∗ POS-ADJ

+ 0.0019 ∗ swings

fence = 0.52 ∗ wire

+ 0.43 ∗ gates− 0.41 ∗ CAPITALIZATION

+ 0.35 ∗ yard− 0.32 ∗ PLURAL-NOUN

+ 0.21 ∗ shrubs + 0.14 ∗ barn

+ 0.14 ∗ ditch + 0.09 ∗ POS-VERB

+ 0.085 ∗ side− 0.07 ∗ PARTICIPLE

− 0.052 ∗ POS-ADJ + 0.042 ∗ POS-NUM

− 0.032 ∗ POS-PROPN− 0.02 ∗ PAST-TENSE

− 0.012 ∗ C0 + 0.0068 ∗ nailed

− 0.0047 ∗ POS-ADV + 0.00013 ∗ POS-NOUN

1978 = 0.97 ∗ 1970s

− 0.89 ∗ POS-ADJ− 0.6 ∗ POS-PROPN

+ 0.49 ∗ POS-NUM− 0.42 ∗ POS-NOUN

+ 0.21 ∗ C0− 0.18 ∗ PLURAL-NOUN

− 0.12 ∗ POS-ADV− 0.081 ∗ PARTICIPLE

− 0.073 ∗ CAPITALIZATION

+ 0.067 ∗ POS-VERB

+ 0.041 ∗ PAST-TENSE + 0.039 ∗ seventies

+ 0.026 ∗ contends

heroine = 0.66 ∗ hero

+ 0.35 ∗ protagonist

− 0.34 ∗ CAPITALIZATION

− 0.25 ∗ PLURAL-NOUN + 0.14 ∗ actress

+ 0.13 ∗ girl + 0.1 ∗ C0

+ 0.1 ∗ PAST-TENSE + 0.071 ∗ POS-PROPN

+ 0.07 ∗ POS-NOUN + 0.063 ∗ POS-ADV

− 0.058 ∗ POS-NUM + 0.051 ∗ protagonists

− 0.029 ∗ POS-VERB + 0.026 ∗ PARTICIPLE

+ 0.015 ∗ POS-ADJ + 0.014 ∗ goddess

structure = 0.91 ∗ structures

− 0.35 ∗ CAPITALIZATION

− 0.25 ∗ PLURAL-NOUN

+ 0.17 ∗ structuring + 0.16 ∗ POS-NOUN

− 0.085 ∗ POS-VERB− 0.078 ∗ PAST-TENSE

+ 0.05 ∗ POS-ADV− 0.039 ∗ POS-ADJ

− 0.034 ∗ POS-PROPN + 0.029 ∗ POS-NUM

+ 0.026 ∗ structural + 0.022 ∗ reorganization

− 0.022 ∗ C0 + 0.0079 ∗ PARTICIPLE

wizards = 0.65 ∗magic

+ 0.41 ∗ witches

− 0.41 ∗ CAPITALIZATION

+ 0.36 ∗ PLURAL-NOUN

+ 0.19 ∗ POS-NOUN

− 0.19 ∗ POS-NUM + 0.15 ∗ POS-ADJ

+ 0.15 ∗ tech + 0.13 ∗ POS-ADV

+ 0.098 ∗ PAST-TENSE + 0.09 ∗ wannabe

+ 0.084 ∗ dragons + 0.084 ∗ knights

+ 0.052 ∗ C0− 0.036 ∗ POS-PROPN

+ 0.022 ∗ PARTICIPLE + 0.015 ∗ err

− 0.013 ∗ POS-VERB + 0.0041 ∗ guru

autistic = 0.49 ∗ preschool

+ 0.37 ∗ epilepsy− 0.35 ∗ POS-NOUN

+ 0.33 ∗ POS-ADJ− 0.25 ∗ papal

+ 0.22 ∗ son + 0.21 ∗ POS-PROPN

+ 0.16 ∗ twins + 0.12 ∗ PAST-TENSE

+ 0.12 ∗ therapist + 0.12 ∗ PARTICIPLE

− 0.1 ∗ CAPITALIZATION + 0.084 ∗ teenage

+ 0.072 ∗ trait + 0.069 ∗ psychologist

+ 0.067 ∗ behaviors + 0.056 ∗ kid

+ 0.054 ∗ hospitalized− 0.053 ∗ C0

+ 0.052 ∗manipulative− 0.038 ∗ POS-NUM

+ 0.037 ∗ granddaughter− 0.03 ∗ rounds

+ 0.03 ∗ PLURAL-NOUN + 0.027 ∗ campers

+ 0.026 ∗ POS-VERB + 0.0092 ∗ dementia

− 0.0054 ∗ regional− 0.0052 ∗ POS-ADV

− 0.0023 ∗ sedan
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tornado = 0.72 ∗ hurricane

+ 0.49 ∗ C0− 0.47 ∗ CAPITALIZATION

+ 0.28 ∗ typhoon− 0.26 ∗ PLURAL-NOUN

+ 0.23 ∗ tractor + 0.21 ∗ POS-VERB

+ 0.16 ∗ POS-ADJ + 0.12 ∗ POS-NUM

+ 0.1 ∗ flattened− 0.1 ∗ ports

− 0.097 ∗ opium + 0.072 ∗ POS-ADV

+ 0.053 ∗ POS-PROPN + 0.053 ∗ avalanche

+ 0.052 ∗ tape + 0.05 ∗ earthquake

− 0.045 ∗ colonial− 0.043 ∗ POS-NOUN

+ 0.028 ∗musical− 0.025 ∗ handsets

+ 0.014 ∗ terrifying + 0.013 ∗ PAST-TENSE

+ 0.013 ∗ occurrences− 0.0067 ∗ labour

+ 0.0025 ∗ PARTICIPLE

1852 = 0.85 ∗ 1800s

− 0.81 ∗ POS-PROPN− 0.78 ∗ POS-ADJ

− 0.61 ∗ POS-NOUN + 0.45 ∗ POS-NUM

+ 0.43 ∗ C0− 0.31 ∗ CAPITALIZATION

+ 0.29 ∗ renders + 0.25 ∗ POS-VERB

− 0.19 ∗ PLURAL-NOUN + 0.16 ∗ noted

− 0.15 ∗ PARTICIPLE + 0.13 ∗ underscored

− 0.082 ∗ POS-ADV + 0.063 ∗ insisting

+ 0.029 ∗ PAST-TENSE

gloom = 0.66 ∗ gloomy

− 0.46 ∗ CAPITALIZATION− 0.32 ∗ POS-VERB

+ 0.28 ∗ pessimism + 0.28 ∗ darkness

+ 0.15 ∗ PAST-TENSE − 0.14 ∗ PLURAL-NOUN

+ 0.14 ∗ POS-NOUN + 0.12 ∗ PARTICIPLE

+ 0.11 ∗ POS-NUM− 0.058 ∗ C0

− 0.058 ∗ POS-ADV + 0.052 ∗misery

+ 0.051 ∗ POS-PROPN + 0.037 ∗ slump

− 0.025 ∗ POS-ADJ

recycle = −0.65 ∗ PARTICIPLE

+ 0.61 ∗ bin + 0.49 ∗ rubbish

− 0.48 ∗ C0− 0.47 ∗ PAST-TENSE

+ 0.27 ∗ POS-VERB + 0.18 ∗ POS-NOUN

+ 0.15 ∗ utilize + 0.14 ∗ plastic

− 0.12 ∗ POS-NUM + 0.1 ∗ excess

+ 0.088 ∗ sustainability + 0.083 ∗ POS-PROPN

+ 0.066 ∗ aluminum + 0.042 ∗ gramthesize

− 0.037 ∗ PLURAL-NOUN + 0.036 ∗ POS-ADJ

+ 0.035 ∗ refurbished + 0.034 ∗ POS-ADV

+ 0.03 ∗ converter + 0.026 ∗ nitrogen

− 0.004 ∗ CAPITALIZATION + 0.0024 ∗ saving


