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Abstract

Automatic ICD coding is the task of assigning
codes from the International Classification of
Diseases (ICD) to medical notes. These codes
describe the state of the patient and have mul-
tiple applications, e.g., computer-assisted diag-
nosis or epidemiological studies. ICD coding
is a challenging task due to the complexity and
length of medical notes. Unlike the general
trend in language processing, no transformer
model has been reported to reach high perfor-
mance on this task. Here, we investigate in de-
tail ICD coding using PubMedBERT, a state-
of-the-art transformer model for biomedical
language understanding. We find that the dif-
ficulty of fine-tuning the model on long pieces
of text is the main limitation for BERT-based
models on ICD coding. We run extensive ex-
periments and show that despite the gap with
current state-of-the-art, pretrained transform-
ers can reach competitive performance using
relatively small portions of text. We point at
better methods to aggregate information from
long texts as the main need for improving
BERT-based ICD coding.

1 Introduction

During patient stays in medical institutions, clini-
cians generate text notes that record the state of the
patient as well as the diagnoses and the treatments
administered. Typically, a code from the Interna-
tional Classification of Diseases (ICD) is assigned
to these clinical notes, in order to provide stan-
dardized information about the patient condition.
ICD codes are used for different purposes, such
as billing, computer-assisted diagnosis or epidemi-
ological studies (Choi et al., 2016; Denny et al.,
2010; Avati et al., 2018). Assigning ICD codes to
medical notes is usually done manually by clini-
cians. This is an error-prone and time-consuming
procedure and therefore, automatic solutions have
been studied for over two decades (Larkey and
Croft, 1996; de Lima et al., 1998).
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However, automatic ICD code assignment
proves challenging for multiple reasons. First, there
exists a very large number of ICD codes ( 17.000)
and each clinical report may have associated more
than one code. To deal with this large multi-label
classification problem, it is common to reduce the
number of codes to those that appear most fre-
quently (Mullenbach et al., 2018). Second, medi-
cal text usually lacks structure, includes irrelevant
passages, as well as abbreviations, misspellings,
numbers and a very specific vocabulary. On top of
that, medical notes are long, which makes it diffi-
cult for automatic coding models to draw relations
between different sections of the reports.

Current state-of-the-art methods for automatic
ICD coding from medical notes are based on deep
learning (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). These methods use different
configurations of convolutional (CNN) and recur-
rent (RNN) neural networks as well as attention
modules(Bahdanau et al., 2014). This stands in
contrast to most areas of natural language process-
ing (NLP), where models based on the transformer
architecture (Vaswani et al., 2017) dominate the
state-of-the-art (Wang et al., 2019). One of the
main strengths of transformer models is their abil-
ity to deal with long range dependencies. This
is a desirable property in ICD coding, where an
understanding of different parts of the document
may be necessary to assign a code. The lack of
transformer models for ICD coding is surprising,
especially since there already exist BERT-based
models (Devlin et al., 2019) (a type of bidirec-
tional transformer) that are trained on medical text
data (Lee et al., 2020; Alsentzer et al., 2019; Gu
et al., 2020). These models have achieved state-of-
the-art performance on other tasks such as named
entity recognition or question answering on medi-
cal documents (Gu et al., 2020).

On the other hand, the complexity of transform-
ers scales quadratically with the length of their in-
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put, which restricts the maximum number of words
that they can process at once. This limitation may
be critical in ICD coding, since clinical notes usu-
ally exceed this maximum input length. In this
work, we investigate in detail BERT-based ICD
coding, and explore different strategies to over-
come the constraint on the input length by using an
encoder-decoder architecture. We use the MIMIC-
III dataset (Johnson et al., 2016), a big and widely
used dataset for the ICD coding task, in order that
our results are directly comparable to other exist-
ing methods (Wang et al., 2018b; Mullenbach et al.,
2018; Vu et al., 2020). By exposing the limitations
and benefits of BERT-based models on this task
our work sets a solid basis for further research on
automatic ICD coding systems.

2 Related Work

Automatic ICD coding has been an active area of
research for over two decades. Already Larkey
and Croft (1996) and de Lima et al. (1998) pro-
posed different strategies to extract features from
medical documents in order to build classifiers
for automatically assigning ICD codes to medi-
cal notes. More recently, Perotte et al. (2014) pro-
posed a multi-level Support Vector Machine (SVM)
model to predict ICD codes from the MIMIC-II
dataset (Saeed et al., 2011), the precursor of the
MIMICH-III dataset (Johnson et al., 2016) that we
consider in this work. Similarly, Scheurwegs et al.
(2017) presented a method to extract features from
structured and unstructured text and evaluated it on
the MIMIC-III dataset.

In the last years, the state-of-the-art of automatic
ICD coding has been dominated by deep learning
models. Shi et al. (2017) proposed an LSTM model
that operates at the character-level combined with
an attention mechanism (Bahdanau et al., 2014).
Wang et al. (2018b) proposed an embedding model
based on GloVE embeddings (Pennington et al.,
2014) that maps text and labels to the same space,
where predictions are made using the cosine simi-
larity. Mullenbach et al. (2018) proposed a model
that combined convolutions with a per-label atten-
tion mechanism. This model was further improved
by Xie et al. (2019) and Li and Yu (2020). Vu
et al. (2020), proposed a label-attention model that
reached the current best performance for ICD cod-
ing on the MIMIC-III dataset. All of these works
represent only a portion of the research carried out
in this field (Karimi et al., 2017; Baumel et al.,
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2018; Song et al., 2020; Prakash et al., 2017; Cao
et al., 2020).

Since the appearance of the Transformer
model (Vaswani et al., 2017), transformer-based
architectures (Brown et al., 2020; Lewis et al.,
2020; Raffel et al., 2019) have become state-of-
the-art in almost every area of Natural Language
Processing (Wang et al., 2018a, 2019) thanks to
their ability to handle long range dependencies.
BERT (Devlin et al., 2019), a bidirectional trans-
former, is of particular importance since it is the
basis of many other language understanding mod-
els. Nonetheless, given the specific characteris-
tics of medical text, e.g., specialized vocabulary,
models pretrained on generic language, like BERT,
do not reach high performance on biomedical lan-
guage understanding tasks. Therefore, specialized
models, such as BioBERT (Lee et al., 2020) or
Clinical BERT (Alsentzer et al., 2019), pretrained
on medical text have been proposed. In particular,
the recent PubMedBERT model (Gu et al., 2020) is
the state-of-the-art in the BLURB benchmark (Gu
et al., 2020), a benchmark for biomedical language
understanding which includes the following tasks:
named entity recognition, question answering, doc-
ument classification, relation extraction, sentence
similarity and evidence-based medical information
extraction. Despite its prominence in medical lan-
guage understanding, automatic ICD coding es-
capes the set of tasks where BERT-based models
excel. To the best of our knowledge, no BERT-
based model has been proposed yet that reaches
competitive performance on ICD coding on the
MIMIC-III dataset. In this work, we investigate in
detail BERT-based ICD coding and identify exist-
ing limitations and opportunities.

3 Background

In this section we present the BERT model used
in our experiments as well as the evaluation met-
rics.

3.1 PubMedBERT

PubMedBERT (Gu et al., 2020) is a transformer
model with the same architecture as BERT-
base (Devlin et al., 2019), i.e., it has 12 transformer
layers, 100 million parameters and it outputs vector
representations of 768 elements. PubMedBERT is
trained from scratch on PubMed text, on a dataset
of 3.1 billion words (21 GB). Furthermore, Pub-



MedBERT has not been pretrained on the MIMIC
datasets as Clinical BERT (Alsentzer et al., 2019)
or BlueBERT (Peng et al., 2019), and therefore, we
can evaluate it on MIMIC-III without information
leakage from the test set. We choose this model
among the existing ones because it is currently the
state-of-the-art in biomedical understanding tasks
as measured by the BLURB benchmark'. We use
the implementation from HuggingFace (Wolf et al.,
2019).

3.2 Evaluation Metrics

Following previous work (Wang et al., 2018b; Mul-
lenbach et al., 2018; Vu et al., 2020), we report
the results of our experiments using macro- and
micro-averaged AUC (Area Under the ROC Curve).
In a multi-class classification problem, the macro-
average computes the metric (AUC in our case)
for each class independently and then averages it
across classes. This gives the same weight to all
classes regardless of possible imbalances in the
data. Micro-averaging, on the other hand, com-
putes the average score over all samples, giving
the same weight to each sample rather than to each
class.

4 Dataset

In this work, we use the widely-used MIMIC-III
dataset (Johnson et al., 2016). This dataset contains
medical information in various forms, however, as
in previous studies (Wang et al., 2018b; Mullen-
bach et al., 2018; Vu et al., 2020), we consider ex-
clusively the discharge summaries for ICD coding.
Discharge summaries are medical notes created by
doctors at the end of a stay in a medical facility
and contain all the information about the stay. In
the MIMIC-III dataset, the length of the discharge
summaries after tokenization ranges from 78 to
18,429 tokens with a mean length of 2, 740 tokens
and a median of 2, 500. Each of these discharge
summaries has associated to it one or more ICD
codes from the ICD-9 taxonomy, with an average
of 13.15 ICD codes per summary. Therefore, ICD
coding is a multi-label classification task.

The MIMIC-III dataset consists of 52, 722 dis-
charge summaries with a total of 8, 921 unique ICD
codes. However, most of the codes are very infre-
quent, and therefore, existing work (Wang et al.,
2018b; Mullenbach et al., 2018; Vu et al., 2020)

"https://microsoft.github.io/BLURB/
leaderboard.html
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narrows down the task to finding only the 50 most
frequent ICD codes. We follow this strategy and
use the reduced dataset, sometimes referred to as
MIMIC-III-50. This dataset consists of a training
set of 8, 067 samples, a validation set of 1, 574 sam-
ples and a test set of 1, 730 samples. This data split
is aligned with previous work, and thus, our results
are directly comparable to those in the existing
literature.

4.1 Pre-processing

We pre-process the discharge summaries from the
MIMIC-III dataset following the method proposed
by Mullenbach et al. (2018), which is also used by
other recent work (Vu et al., 2020). This way, we
convert all the text to lower case and we remove all
numbers. However, we do not remove infrequent
words as in (Mullenbach et al., 2018) since BERT
uses WordPiece for tokenizing and hence, it does
not suffer from out-of-vocabulary terms.

5 Model

Discharge summaries are longer than the maximum
length accepted by PubMedBERT such that it fits
in the memory of a modern GPU and thus, we
need to split the summaries into pieces of text. In
order to process more than one piece of text per
summary we adopt an encoder-decoder structure,
where the encoder and the decoder are trained sep-
arately. This way, the encoder is the BERT model
that maps the different pieces of text to vector rep-
resentations. These vector representations are then
combined and decoded into ICD codes by the de-
coder, which can be any kind of model.

5.1 Encoder

We use PubMedBERT as the encoder of our model,
as described in Section 3. We run our experiments
on TITAN RTX GPUs with 24 GB of memory,
where we can fit PubMedBERT with a maximum
sequence length of 512 tokens.”? We devise five
different strategies to split the text of the discharge
summaries:

* Front: First 512 tokens of the summary.
* Back: Last 512 tokens of the summary.

* Mixed: First 256 and the last 256 tokens of
the summary.
“Note that even if we could fit sequences of 1024 or 2048

tokens, they would still be shorter than the mean and median
sequence length of the summaries.
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Figure 1: Validation losses for PubMED-BERT trained
on different parts of the text.

» All: Split the whole discharge summary into
consecutive chunks of 512 tokens; since sum-
maries are of different length, each summary
is split in a different number of chunks with
the last chunk being possibly shorter.

Paragraph: Given that the discharge sum-
maries consist of named paragraphs, we select
the 200 most frequent paragraphs, i.e., those
that are present most often in the discharge
summaries, each with a maximum length of
512 tokens.

PubMedBERT has been pretrained on the
masked language modeling task, and therefore, it
can produce generic representations of the input
text. To fine-tune this model for the ICD coding
task without exceeding the memory constraints we
can feed only one chunk of text at a time. This
way, we fine-tune five different instances of the
PubMedBERT model, one per splitting strategy,
using a batch size of 1 (to ensure the model fits
in memory) and a learning rate of 5e~*. In each
case, the model receives as input a piece of text of
a maximum length of 512 tokens and it is trained
to predict the ICD codes of the corresponding dis-
charge summary. Note that while the text of front,
back and mixed corresponds always to the same
part of the discharge summary, when fine-tuning
the model on the paragraph and all splits, each
training example consists of only one paragraph or
chunk, respectively. Therefore, there is no align-
ment across training examples (each training exam-
ple comes from a different section of a discharge
summary), which introduces noise to the training.

Figure 1 depicts the validation losses after 6
epochs of training for each of the trained mod-
els. For front, back and mixed, we see that the
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validation loss decreases quickly during the first
three epochs and then, it slowly stabilizes. How-
ever, for paragraph and all, the validation loss
stays constant, which indicates that the model is
failing to learn; in other words, the lack of align-
ment between training samples makes the task of
ICD coding too challenging for the model to learn
meaningful representations of the input text.

5.2 Decoder

If we consider only one part of the text at a time,
PubMedBERT can directly make a prediction on
the ICD codes for the corresponding summary, as
done during fine-tuning. However, in order to use
the information from different pieces of text, we
need a decoder capable of combining the informa-
tion from several encodings. This way, the decoder
receives as input one or several encoded represen-
tations (from the same discharge summary) gener-
ated by PubMedBERT during the encoding stage
and outputs a vector of probabilities for the 50 ICD
codes. For the decoder architecture, we consider
a linear layer, multi-layer perceptrons (MLPs) and
transformers.

In all cases, the decoders are trained with binary
cross entropy loss with logits. We use a batch size
of 32, a learning rate of le~* with linear decay
for 30 epochs and weight decay with A = 1le=3.
We train for a maximum of 100 epochs with early
stopping on the validation set.

Linear layer Our simplest decoder consists of
a linear layer that takes as input a concatenation
of the encoding vectors (of size 768 each); when
only one chunk is considered, the input is just one
encoding vector. The output of this linear layer is
the probability vector for the ICD codes.

Multi Layer Perceptron We consider two vari-
ants of MLP-architectures, flat and parallel. In the
flat architecture, the input is the concatenation of
the encodings, as for the linear layer. This vector
is passed through two non-linear layers, which pro-
duce intermediate representation of size 768 and
512 respectively, and then to a final linear layer that
outputs the probabilities of the 50 ICD codes. In
the parallel architecture, each of the input encod-
ings is processed by a different dense layer, each
of which produces an output of size 768/n, where
n is the number of input encodings. These interme-
diate representations are concatenated and passed
through two additional non-linear layers, with the
same sizes as in the flat architecture.



Each of the non-linear layers includes layer nor-
malization (Ba et al., 2016), PReLLU activation (He
et al., 2015), and dropout (Srivastava et al., 2014)
with p = 0.1.

Transformer This decoder takes as input the en-
codings and treats each of them as a token of di-
mensionality 768. These tokens are passed through
a transformer layer with 8 attention heads. The out-
put of this transformer layer is of the same size as
the input, i.e., a set of tokens of 768 elements. The
tokens are then concatenated and passed through
an MLP of the same structure as the flat MLP de-
scribed above.

6 Results

We pose six research questions regarding the dif-
ferent strategies to encode and decode discharge
summaries using a BERT-based encoder. In our
experiments, we fix the random seed so that all the
results are comparable.

How much does fine-tuning the encoder help
decoding?

Here, we consider only the PubMedBERT models
fine-tuned on front, back and mixed data, since they
were the only ones to learn during fine-tuning, as
shown in Section 5.1. To investigate the impact of
this fine-tuning step on decoding performance, we
use a simple linear layer which receives as input the
concatenation of the encodings of the front, back
and mixed chunks. Each of these pieces of text
is encoded by the PubMedBERT model trained
on that piece of text, i.e., we use three different
encoders. We study the difference in performance
for three different training points of the encoders:
not fine-tuned, fine-tuned for three epochs and fine-
tuned for six epochs. The results are detailed in
Table 1.

Epochs | Macro AUC Micro AUC
None 55.76 69.55
3 81.47 86.00
6 83.00 86.98
Table 1: Performance for different number of train-

ing epochs when combining the front, back and mixed
chunks with a linear decoder.

These results show that fine-tuning the encoder
significantly improves the decoding performance
and that the best performance is obtained after six
epochs. In fact, the difference between fine-tuning
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Figure 2: Performance of a linear layer (top) and a non-
linear MLP (bottom) on the front, back and mixed en-
codings.

for six epochs and not fine-tuning is as large as
27.24 points for the Macro AUC score and 17.43
points for the Micro AUC score. We observed
the same pattern in all of our experiments, and
therefore, in the following we will only present
results with the encoder fine-tuned for six epochs,
unless stated otherwise.

Which of the three pieces of text, front, back or
mixed, contains the most relevant information
for ICD coding?

We experiment with a linear and a flat MLP decoder
and apply these models to the encodings of each of
the three chunks of text separately, i.e., front, back
and mixed. We report the results in Figure 2.

We see that front, i.e., the first 512 tokens of the
discharge summary yields the best performance,
both when the decoder is a linear layer and an MLP.
Although slightly inferior, the mixed chunk pro-
duces competitive scores while when using an MLP
the AUC scores are more than 3 points lower for
back than for front. Furthermore, using as decoder
an MLP improves the performance significantly
over using a linear layer; with the front non-linear



model performing comparably to the combination
of the three chunks with a linear decoder, as re-
ported in the previous section, Table 1.

This naturally raises the question of whether the
combination of the chunks yields an improvement.
To study this, we use the same non-linear MLP
architecture as in Figure 2 (bottom) on 1) the con-
catenation of the encodings of front and back and
2) the concatenation of the three encodings, front,
back and mixed. We report the results in Table 2.

Model | Mac. AUC  Mic. AUC
Front-Back 83.70 88.11
Front-Back-Mixed 84.42 88.58

Table 2: Performance of combining the front, back and
mixed chunks using a two-layer flat MLP decoder.

These results show that combining front and
back improves performance in comparison to using
only front. As it may be expected, adding the mixed
paragraph, which contains redundant information,
produces only a small improvement. Overall, the
combination of the three chunks produces an im-
provement of 2.07 points for Macro AUC and 1.67
points for Micro AUC over using only front. Given
the larger input, these models have more param-
eters than the ones using only one of the chunks,
which could partly explain the improvement, espe-
cially when adding redundant information, i.e., the
mixed chunk. This result leads us to investigate the
influence of the decoder architecture.

How does the architecture of the decoder
impact performance?

Here, we consider flat MLP, parallel MLP and trans-
former decoders on the combination of front, back
and mixed. For each of these architectures, we eval-
uate three different sizes: Base, Large and X-Large,
where the difference between these sizes is only
the number of layers and the size of the internal
representations. This way, our experiments aim at
discerning whether the structure of the decoder, the
number of parameters, or both, influence the per-
formance of the ICD coding model. Table 3 details
the results of these experiments.

None of the models considered obtains a perfor-
mance significantly higher than the others, with the
largest difference across Macro and Micro AUC
scores being of only 0.28 and 0.57 points, respec-
tively. This result is surprising since, given the com-
plexity of the task, it could be expected that larger
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Model | AUC Mac. AUC Mic.
Flat (1.5M) 84.42 88.58
Flat L 3M) 84.30 88.45
Flat XL (TM) 84.30 88.47
Parallel (1M) 84.45 88.65
Parallel L (2M) 84.23 88.48
Parallel XL (3M) 84.51 88.49
Transformer (6.5M) 84.30 88.49
Transformer L (14M) 84.27 88.45
Transformer XL (18 M) 84.29 88.08

Table 3: Performance of different decoder architectures
for the combination of front, back and mixed, the num-
ber of parameters of each model is specified in paren-
thesis.

and more sophisticated decoders would perform
better. Notwithstanding, the saturation in perfor-
mance suggests that all the information available
in the input of the decoder is successfully extracted
by every model, regardless of its complexity. This
in turn indicates that the performance of the whole
encoder-decoder model is limited by the reduced
amount of text that is given as input (only the be-
ginning and the end of the discharge summaries).
Therefore, we next consider providing larger por-
tions of text from the discharge summaries as input.

Is dividing the discharge summaries by
paragraphs a good splitting strategy?

By splitting the discharge summaries into para-
graphs we take into account information from a
larger body of text than by using the front and the
back. The main disadvantage of this approach is
that the encoder fails to converge during fine-tuning.
Here, we test the hypothesis of whether the decoder
can compensate the lack of fine-tuning of the en-
coder and, by leveraging the larger amount of infor-
mation available, reach competitive performance.
We encode the 200 most frequent paragraphs using
the PubMedBERT model fine-tuned on paragraph
data, although due to lack of convergence during
fine-tuning, we observed very similar results when
using the not fine-tuned version.

Since not all the discharge summaries contain the
same paragraphs, there is a misalignment between
samples. For this reason, here we consider only
the transformer decoder; the self-attention modules
of the transformer should be able to cope with the
misalignment better than the other architectures.
We consider the transformer decoders (Base, Large
and X-Large) from the previous section. Now, the
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Figure 3: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on paragraph data.

transformer decoder receives 200 encoded repre-
sentations, one per paragraph. Given this large
number of input representations or tokens, we ag-
gregate the output of the transformers by taking the
mean over the representations produced for all the
paragraphs?.

In Figure 3, we compare these paragraph de-
coders to the Parallel MLP model on the front, back
and mixed chunks from the previous section.

We see that dividing the discharge summaries
into paragraphs greatly under-performs in compar-
ison to using the beginning and end of the sum-
maries encoded by fine-tuned PubMedBERT mod-
els. This result partly rejects the hypothesis that
the decoder can benefit from a larger unstructured
input. Next, we continue investigating this hypoth-
esis by feeding the decoder with the complete dis-
charge summaries following the all strategy.

How does splitting the complete summaries in
consecutive chunks perform?

We split the whole text of each discharge summary
into consecutive chunks of 512 tokens (the last
chunk of each summary may be smaller). We en-
code these chunks using the PubMedBERT model
fine-tuned on all data; as before, we observed very
similar results with the not fine-tuned model. The
encodings are then fed into the decoder. Again,
the varying size of the discharge summaries pro-
duces misalignment across examples. Therefore,
we consider only the transformer decoders (Base,
Large and X-Large). We report the results of this
experiment in Figure 4.

The largest transformer model (XL) performs the

3We experimented with other aggregation techniques like
max pooling and large MLPs obtaining very similar results.
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Figure 4: Comparison of front-back-mixed parallel
(FBM-Par.) and three sizes of transformer decoders
(Transf) on all data.

best of the three models on all data. Nevertheless,
its 50.5% Macro and 68.7% Micro AUC scores
are much lower than the results obtained by the
front-back-mixed. In fact, splitting the text into
chunks of the same size performs the worst among
all the methods that we have investigated. These
results confirm that the decoder cannot compensate
the lack of convergence during the fine-tuning of
the encoder and points at the encoder as the main
responsible for the model’s performance.

How do our results compare to the
state-of-the-art?

Finally, in Table 4 we compare one of our best per-
forming BERT-ICD models, the front-back-mixed
Parallel model, with the existing state-of-the art
models for ICD coding on the MIMIC-III dataset.
In particular, we compare against the condensed
memory networks (C-MemNN) by Prakash et al.
(2017), LEAM by Wang et al. (2018b), CAML and
DR-CAML by Mullenbach et al. (2018), MSATT-
KG by Xie et al. (2019) and the Label Attention
model by Vu et al. (2020). We report the perfor-
mance of each model as provided in the correspond-
ing original work.

Model | AUC Mac. AUC Mic.
C-MemNN 83.3 -
LEAM 88.1 91.2
CAML 87.5 90.9
DR-CAML 88.0 90.2
MSATT-KG 914 93.6
Label Attention 92.1 94.6
BERT-ICD 84.45 88.65

Table 4: Comparison of different state-of-the-art mod-
els for ICD coding.



We see that although our BERT-based ICD cod-
ing model is competitive with some of the state-
of-the-art models, there is still a substantial gap
between the best performing model from Vu et al.
(2020), and our BERT-ICD model.

7 Discussion

Automatic ICD coding from discharge summaries
using transformer models has proven to be chal-
lenging. Discharge summaries are very long docu-
ments and thus, they need to be divided into chunks
in order to be entirely processed by BERT-like mod-
els.This way, a decoder is necessary to combine the
representations of each chunk, which are indepen-
dently generated by the BERT encoder. We have
shown that for these representations to be meaning-
ful the encoder needs to be fine-tuned on the ICD
coding task. It is straight-forward to fine-tune a
BERT encoder such as PubMedBERT using spe-
cific parts of the summary, e.g., the beginning or
the end. However, in our experiments, fine-tuning
PubMedBERT on excerpts extracted from different
parts of the text, i.e., paragraph and all, prevented
convergence due to the lack of alignment between
samples, i.e., due to each training sample contain-
ing information from a different section of a dis-
charge summary. Furthermore, our results show
that the decoder, regardless of its architecture, can-
not compensate for lack of convergence during the
fine-tuning of the encoder.

On the other hand, our best BERT-ICD model
reaches competitive performance using only 1,024
tokens (front and back), which represents a signifi-
cantly smaller portion of text than state-of-the-art
models, based on CNNs and RNNs. Unlike BERT,
CNN and RNN models can extract information
from texts of any length without needing to split
them, which allows for end-to-end training over
long pieces of text. Mullenbach et al. (2018) found
that the performance of their convolutional atten-
tion model benefits from longer input texts until
a length of between 2, 500 and 6, 500 words, and
Vu et al. (2020) use up to 4,000 words as input.
Our model combines encodings from the begin-
ning and the end of the discharge summary, and
reaches better performance in that case than when
it processes either of those portions of text alone.
This supports the statement that including more text
improves ICD coding. All of these results suggest
that the difficulty of fine-tuning a BERT encoder
on long pieces of text is the main bottleneck for
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performance and the reason for the existing gap
with state-of-the-art models for ICD coding.

One of the main advantages of transformer mod-
els over CNNs and RNNS is that they can handle
long-range dependencies. Hence, if longer text
could be fed at once into a BERT encoder it would
be possible to find relationships and patterns over
longer spans of text. It is therefore likely that ad-
vances either in terms of hardware, i.e., larger GPU
memories allowing for longer pieces of text to be
processed at once; or in compressing BERT-like
models, e.g., distillation, will progressively close
the gap with the state-of-the-art, following the same
trend of other areas of NLP. On top of that, we con-
sider that the two most promising directions for
future research on BERT-based ICD coding are: 1)
devising strategies to fine-tune the encoder over
longer spans of text, e.g., building an ensemble
of models where each of them is trained on one
section of the text; 2) improving the methods to
aggregate encodings from different parts of the
document.

Finally, to deploy automatic ICD coding sys-
tems in the real world, it is important that their
decisions can be explained. Explaining trans-
former models is currently a field of active re-
search, and although there exist important con-
cerns about the interpretability of attention distribu-
tions in transformers (Brunner et al., 2019; Pruthi
et al., 2020), methods based on gradient attribu-
tion (Pascual et al., 2020) or on attention flow (Ab-
nar and Zuidema, 2020) can provide insights on
their decision-making. A BERT-based ICD cod-
ing system could directly benefit from this field
of research and eventually provide explanations
together with its ICD code predictions.

8 Conclusion

Contrary to what is common in most NLP tasks, the
transformer architecture is not the state-of-the-art
in assigning ICD codes to discharge summaries. In
this work, we have presented a thorough study of
the performance of BERT-based models on this task
and we have identified the length of the discharge
summaries as the main obstacle holding back their
performance. Our work sets a solid foundation for
further research on ICD coding and suggests that
overcoming the exposed limitations of BERT-based
models is likely to lead to a new state-of-the-art.
Furthermore, we believe that the interpretability
of ICD coding models is an interesting avenue for



future work, which can benefit from a large body
of existing research.
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