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Abstract

We explore whether state-of-the-art BERT
models encode sufficient domain knowledge
to correctly perform domain-specific infer-
ence. Although BERT implementations such
as BioBERT are better at domain-based rea-
soning than those trained on general-domain
corpora, there is still a wide margin compared
to human performance on these tasks. To
bridge this gap, we explore whether supple-
menting textual domain knowledge in the med-
ical NLI task: a) by further language model
pretraining on the medical domain corpora, b)
by means of lexical match algorithms such as
the BM25 algorithm, c¢) by supplementing lex-
ical retrieval with dependency relations, or d)
by using a trained retriever module, can push
this performance closer to that of humans. We
do not find any significant difference between
knowledge supplemented classification as op-
posed to the baseline BERT models, however.
This is contrary to the results for evidence re-
trieval on other tasks such as open domain
question answering (QA). By examining the
retrieval output, we show that the methods fail
due to unreliable knowledge retrieval for com-
plex domain-specific reasoning. We conclude
that the task of unsupervised text retrieval to
bridge the gap in existing information to facili-
tate inference is more complex than what the
state-of-the-art methods can solve, and war-
rants extensive research in the future.

1 Introduction

Transformers-based neural architectures (Vaswani
et al., 2017) currently hold the state-of-the-art per-
formance on several NLP tasks and domains. In the
biomedical domain itself, there exist several ver-
sions of transformers-based BERT models (Devlin
et al., 2019) that have been shown to be successful.
However, an analysis of the availability of medical
knowledge to these models is incomplete. To facil-
itate better understanding, in our research, we ana-
lyze a sample of errors made by BioBERT (v1.1)
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model (Lee et al., 2019a) on a clinical language
inference task (Romanov and Shivade, 2018). We
find that the errors related to domain knowledge-
based reasoning, such as the knowledge of treat-
ments administered for certain diseases, are domi-
nant (40%).

To address this limitation, we analyze a broad
range of state-of-the-art methods to integrate medi-
cal knowledge in BERT models from textual medi-
cal corpora. These methods have previously been
shown to excel at evidence retrieval in the generic
domain. The goal of our study is to understand
whether these methods can be successfully applied
for knowledge integration in the more complex
setup of finding missing medical information for
supporting sentence-pair inference.

We explore both implicit and explicit knowledge
integration, where implicit refers to indirect ac-
cess to this knowledge by further language model
pretraining on medical corpora, and explicit knowl-
edge integration refers to the setup where a relevant
sentence from external corpora is appended to the
premise to support inference. For explicit knowl-
edge integration, as the baseline method, we make
use of the traditional best match 25 (BM25) algo-
rithm (Robertson and Zaragoza, 2009) for finding
the most relevant sentence in the medical corpora.
As a modification of this method, we additionally
incorporate syntactic knowledge in the retrieval
step. We do so by restricting the retrieved sentence
to the one that contains at least one dependency
relation between premise and hypothesis medical
entities. In the third setup, instead of using BM25
scores and dependency paths, we train an end-to-
end model to first find the most relevant text block
from Wikipedia for a given instance, and then ap-
pend it to the instance for classification.

In both knowledge integration setups, we do not
see any significant performance difference due to
access to additional knowledge. On inspecting the
sentences retrieved by the BM25 and dependency
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relation-based methods, we find that these meth-
ods successfully shortlist sentences related to the
topic, but it is difficult to then automatically rank
the best candidate among the shortlisted options.
This best candidate should fill the information gap
between the sentence pairs to enable pairwise in-
ference. We expect to overcome the ranking issue
when we instead train an end-to-end model that
learns to dynamically retrieve relevant supporting
knowledge alongwith pairwise classification, as op-
posed to static heuristic-based retrieval. However,
we find that although the blocks of text retrieved in
the end-to-end setup provide medical context, they
are often unrelated to the desired information and
are insufficient for improving inference.

Although knowledge-integration methods are
effective for evidence retrieval in open domain
QA (Lee et al., 2019b), where the task is to re-
trieve a passage that mentions the correct entities,
they are insufficient for the more complex task of
augmenting missing information for pairwise do-
main knowledge-based reasoning in an unsuper-
vised setup. Entity span-based supervision simpli-
fies the problem statement in the first case, hence
resulting in the documented success. However, the
more realistic setup of retrieving the specific con-
text that can fill the information gap between pairs
of sentences without supervision is not yet solved.

2 Related work

Since the BERT models were found to be effective
for a wide range of NLP tasks (Devlin et al., 2019),
several efforts have been extended towards improv-
ing them by more efficient training strategies (Liu
et al., 2019; Yang et al., 2019b; Sanh et al., 2019;
Lan et al., 2019), training them for different do-
mains (Beltagy et al., 2019; Lee et al., 2019a; Lee
and Hsiang, 2019; Chalkidis et al., 2020; Guru-
rangan et al., 2020) and languages (Devlin, 2018;
de Vries et al., 2019; Le et al., 2020; Martin et al.,
2020; Delobelle et al., 2020; Caiete et al., 2020).
Within the clinical domain, different models in-
clude the BioBERT models pretrained on PubMed
abstracts and PMC full-text articles (Lee et al.,
2019a), SciBERT trained on scientific text (Belt-
agy et al., 2019), clinical BERT models trained on
patient notes from the MIMIC-III corpus (John-
son et al., 2016) (sometimes as a continuation of
the BioBERT models) (Alsentzer et al., 2019), and
BlueBERT models that also use Pubmed abstracts
and MIMIC-III patient notes for training (Peng
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et al., 2019). These models hold promising perfor-
mance for clinical language processing (Si et al.,
2019; Lin et al., 2019) and have become a popular
choice for several classification tasks that involve
the medical data, spanning tasks such as litera-
ture search and question answering for assisting
healthcare professionals (Jin et al., 2019; Wang
et al., 2020; Moller et al., 2020), as well as pa-
tient outcome prediction such as diagnosis predic-
tion (Franz et al., 2020; Rasmy et al., 2020). De-
spite being a popular choice, little is known about
the medical knowledge of these models and their
limitations when in-depth domain knowledge is
required for correctly solving a task.

Much prior research has explored augmenta-
tion of background knowledge in neural models
to make them more effective for downstream tasks.
Most common approaches include adapting en-
tity embeddings learned by models such as BERT
by providing additional knowledge from differ-
ent ontologies that define relations between enti-
ties. This can be done either by using templates
to convert the relations to text before finetuning
embeddings (Weissenborn et al., 2017; Lauscher
et al., 2020; Chen et al., 2020), by combining re-
lational information from knowledge graphs with
text embeddings (Mihaylov and Frank, 2018; Chen
et al., 2018; Zhang et al., 2019; Yang et al., 2019a;
Liu et al., 2020), or by jointly learning knowl-
edge graph and textual embeddings (Peters et al.,
2019; Feng et al., 2020). These ontologies are ei-
ther generic like WordNet (Miller, 1995), Concept-
Net (Liu and Singh, 2004), and Wikidata (Vran-
deci¢ and Krotzsch, 2014), or more specific to a
particular domain like the UMLS (Bodenreider,
2004). An advantage of using ontologies is that the
semantics of entities gets encoded in the learned
representations, thereby enhancing their effective-
ness. However, they are expensive to construct and
either are incomplete, or do not exist for special-
ized domains. Methods that make use of textual
corpora for background knowledge integration are
therefore more easily transferable to other domains.
Talmor et al. (2020) have shown earlier that hav-
ing explicit access to external information can of-
ten improve reasoning skills of the state-of-the-art
models, which we investigate further.

Use of TF-IDF (Ullman, 2011) and BM25 scores
has been frequently explored for evidence retrieval
from Wikipedia for open domain QA (Chen et al.,
2017; Wang et al., 2018; Glass et al., 2020). An-



other popular approach includes representation
similarity-based evidence retrieval (Lee et al., 2018;
Das et al., 2019). Recently, joint training of re-
triever for span identification and pretraining lan-
guage models have also been analyzed by Hu et al.
(2019); Lee et al. (2019b); Guu et al. (2020). Al-
though the methods extensively explore QA, this
line of work has not been explored much for lan-
guage inference, especially in specialized domains.

Existing studies for augmenting medical knowl-
edge for clinical language inference are limited
to the use of UMLS knowledge graph embed-
dings (Sharma et al., 2019), interaction weighting
between premise and hypothesis based on distance
in the UMLS (Chopra et al., 2019), augmenting
clinical concept definitions during representation
learning (Lu et al., 2019) and adding domain knowl-
edge by means of pretraining existing models fur-
ther on different in-domain corpora and closely re-
lated tasks (Romanov and Shivade, 2018; Lee et al.,
2019a; Alsentzer et al., 2019; Chopra et al., 2019).
The closest work to ours is the contemporary work
by He et al. (2020) that shows improvements when
knowledge from Wikipedia is implicitly integrated
by training BERT masked language models to pre-
dict disease names and their aspects (such as symp-
toms, treatments) given the corresponding context.
In our work, we instead explore whether we can
augment domain knowledge by dynamically fetch-
ing relevant context in an unsupervised manner to
improve medical language inference.

3 Medical language inference

In medical language inference, given a pair of
sentences, the goal is to describe a logical rela-
tion between them. We make use of the MedNLI
dataset (Romanov and Shivade, 2018), where the
premise is a sentence borrowed from patient notes
in the MIMIC-III dataset (Johnson et al., 2016),
and the hypothesis is written by medical experts
such that the premise either entails or contradicts
the hypothesis, or their relation cannot be estab-
lished (neutral). Entailment refers to whether the
meaning of the second sentence, also known as
the ‘hypothesis’, is already contained in the first
sentence called the ‘premise’. We explore whether
the BioBERT v(1.1) model encodes sufficient med-
ical knowledge for this task. In the same manner
as Peng et al. (2019), we model this task as a sen-
tence pair classification task, where the final pooled
BERT [CLS] representations of the premise and the
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hypothesis are processed through a dense neural
layer to classify the correct class. We then per-
form manual analysis on a subset of 50 incorrectly
classified instances in the development set to un-
derstand the type of errors made by the model. We
eliminate ambiguity in the cause of errors by using
an adversarial evaluation, where we modify an in-
stance according to a potential cause of error, and
monitor whether the output changes accordingly.
In this manner, we obtain the distribution of errors
presented in Table 2 and discussed in Section 5.1.

4 Medical knowledge augmentation

4.1 External medical corpora

Different versions of BERT that exist for biomed-
ical tasks are either trained on journal abstracts
and articles, or on patient notes. These articles
and notes are written by and for an audience with
an advanced level of domain knowledge. Funda-
mental domain-specific information, such as an un-
derstanding of domain terminology, commonly ac-
cepted clinical practices for specific medical condi-
tions, human physiology and anatomy, etc. is often
also required for clinical language understanding.
We hypothesize that access to such fundamental
domain knowledge during model training would
complement training on more advanced informa-
tion. To explore this, we create two corpora — one
containing only the medical subset of Wikipedia
(Wikimed), and one with contents of a popular
medical textbook (Medbook). The Wikimed subset
is parsed from the HTML sources of the medical
Wikipedia dataset used in the Android app by the
Kiwix team!. The medical subset of Wikipedia
contains about 40 million tokens, and the medical
textbook corpus contains nearly 3.6 million tokens.

4.2 Implicit knowledge integration

Starting from an existing BioBERT checkpoint that
is already pretrained on a combination of Google
books, Wikipedia, biomedical abstracts and journal
articles (Lee et al., 2019a), we continue to train
BERT language models on the Medbook and the
Wikimed corpora. Our goal is to explore whether
further training on corpora that contain fundamen-
tal domain knowledge can implicitly improve med-
ical knowledge-based reasoning in the medical
language inference task. Since Wikimed is the

https://play.google.com/store/apps/
details?id=org.kiwix.kiwixcustomwikimedé&
hl=en_US&gl=US
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Premise: “Procedure showed severe three
vessel disease and aortic stenosis.”
Hypothesis: “Patient requires a CABG"

(b) Relevant knowledge retrieval in an end-to-end man-
ner by training weights that compute similarity be-
tween sentences in an external corpus and a premise(P)-
hypothesis(H) query during classification.

Figure 1: Explicit domain knowledge integration for
the MedNLI task.

medical-only subset of Wikipedia, it was also in-
cluded in the first phase of training of BERT mod-
els. We do not expect to see a significant difference
in the classification performance here due to this
reason. However, since the Medbook corpus is
quite different from other corpora used earlier, we
expect bigger differences in classification results.

4.3 Explicit knowledge integration

We explore methods to explicitly augment medical
knowledge to the instances in the MedNLI dataset
by retrieving and appending relevant text blocks
from either the Wikimed corpus or the Medbook
corpus before processing it through our BERT mod-
els for finetuning, as described next. We illustrate
the methods pipeline in Figure 1.

4.3.1 Lexical retrieval

We first explore the use of TF-IDF based techniques
for retrieving evidence from external textual cor-
pora to support inference. Although these methods
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are fairly simple, they have been shown to be effec-
tive for several open domain QA tasks (Lee et al.,
2019b). Our goal is to investigate whether these
simple methods are also effective at more complex
information retrieval in our setup.

To this end, we construct a query from premise
and hypothesis by retaining only the lemmas that
are a part of infrequent medical entities, and then
use the best match 25 (BM25) algorithm (Robert-
son and Zaragoza, 2009) to find the most relevant
sentences. As the first step, we recognize premise
and hypothesis medical entities with the help of
Scispacy (Neumann et al., 2019). We lemmatize
these entities and retain only those lemmas that
occur less than a thousand times in the external
corpus?. These lemmas jointly form the query. We
first rank the documents in the external corpora
according to their BM25 scores to retain the top 10
documents. The query is then used again to find
the best matching sentences from these documents.

Due to the manner in which the MedNLI data
has been annotated, premise is longer and more
varied than the hypothesis. Hence, premise entities
often dominate the BM25 retrieval at the cost of
hypothesis entities. To overcome this, we prune the
retrieved sentences if they do not mention at least
one premise and one hypothesis entity lemma.

The highest ranking sentence retrieved in this
manner is then appended® to the premise before
classification. If none of the sentences satisfy either
the constraint or the threshold score, then the use
of explicit knowledge is skipped.

4.3.2 Lexical and syntactic retrieval

In our previous setup, we add an entity-presence
constraint to ensure that the retrieved sentence is
about both the premise and the hypothesis. In or-
der to ensure that the retrieved knowledge also
establishes an explicit relation between the two, we
modify the previous approach to rank sentences
based on dependency paths between premise and
hypothesis lemmas. In this setup, we find the top
documents in the same manner as earlier. Once the
top documents are found, we restrict to the set of
sentences in these documents that have a depen-
dency relation between a premise and a hypothesis
lemma. Once we have established the set of sen-
tences that hold this relation, we rank them either

2The threshold was decided based on preliminary results
on the development set, where retaining less frequent lemmas
provides more specific matches.

3Separated by a space.



using the minimum dependency path length, or
using the BM25 score between the query and a sen-
tence. The sentence with the highest score above
the threshold is then appended to the instance in
the same manner as described earlier.

4.3.3 Joint retrieval and classification model

By using lexical and syntactic approaches that we
have discussed earlier, we ensure that the candi-
date and the retrieved sentences would be related
to both the premise and the hypothesis. However,
when we are confronted with a high number of
relevant candidate sentences, shortlisting one sen-
tences becomes challenging. Adding multiple sen-
tences is also infeasible due to the limited input
sequence length in BERT models. In order to over-
come this challenge, in our third setup, we instead
train an end-to-end model, where the weights of
the retriever are updated along with classification.
Hence, the retriever learns to select the sentence
that provides information that can improve classifi-
cation. This approach has been previously shown
to be quite successful in open domain QA via span
identification (Lee et al., 2019b) and in language
model pretraining (Guu et al., 2020), since it pro-
vides access to a wider evidence space compared
to the limited number of retrieved blocks when us-
ing lexical approaches. However, the use of such
an end-to-end retriever has not been explored for
augmenting knowledge from textual corpora to sup-
port reasoning in NLI tasks. Since we do not have
data annotated specifically for retrieval of support-
ing evidence for NLI tasks, training the retriever
becomes much more complex compared to span
identification. However, given the success of the
end-to-end approaches earlier, we are interested in
investigating its feasibility for our setup and we
build upon existing methods for this.

Retriever pretraining: We reuse the pretrained
retrieval model shared by Lee et al. (2019b), trained
in an inverse cloze task (ICT) setup on complete
Wikipedia, for our experiments. In this setup, a
sentence in Wikipedia is treated as the query, and
the retriever is trained to retrieve its context* in
the original text. This retrieval is performed by
computing a weighted dot product between the
pooled BERT [CLS] embeddings of the query and
the text block. In 10% of the cases, the query is
not removed from the context to ensure that the
model learns to retrieve lexical as well as semantic

“Blocks of at most 288 wordpiece tokens (Wu et al., 2016)
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matches. Although it is trained on entire Wikipedia
instead of only a subset, we reuse it due to resource
constraints for retraining the retriever. Since the
medical portion of Wikipedia is only a subset of
this data, we expect to still be able to retrieve the
sentences relevant for the MedNLI task.

End-to-end-classification: In an end-to-end
setup, the retriever module first returns the &>
most similar blocks of text given a BERT-encoded
premise and hypothesis pair, in the same manner as
described earlier. We add these k retrieved blocks
to the input along with the premise and the hy-
pothesis to obtain £ inputs corresponding to each
instance. We then encode these inputs with BERT
to obtain k different [CLS] representations. All of
these k [CLS] representations are then individually
used for classification by adding a dense layer on
the top in the finetuning phase. In this manner, we
obtain k different outputs for a given instance. We
then aggregate these k& outputs together by retain-
ing the most frequent output among the % options.
We also experimented with average pooling and
selecting the most peaked softmax output distribu-
tion, but majority pooling provided more promising
results on the development set.

Classification loss: We use the categorical cross
entropy loss (Murphy, 2012). The gradients are
backpropagated jointly to both the classifier and
the weights used to compute the similarity between
the query and the blocks of Wikipedia text.

Retriever loss: In the span identification setup
developed by Lee et al. (2019b), mention of the
correct entity in the text provides the retriever with
an explicit feedback. This makes their training
easier compared to our setup where we do not have
this supervised signal. To make the training more
feasible, we experiment with an additional retrieval
loss. This loss quantifies the difference between the
model performance with and without the retrieved
text block, and uses this difference to improve the
retriever. The objective of this loss is to reward the
model when it is better if a retrieved text block is
used as opposed to when only the premise and the
hypothesis are used for inference. We define this
loss in terms of pairwise retrieval loss, i.e.,

R =maz(0,m — (Lpa) — Lp,a,R)))s

where R is the retrieval loss, L(p p) is the categor-
ical cross entropy loss without using the retrieved

SWe use k = 5 in our experiments



text block, and L(p y gy is the categorical cross
entropy loss after adding the retrieved text block
to the given instance, and m is the margin value
that we treat as a hyperparameter. We use m = 0.1
based on the results on the development set. To
explain this loss, we consider three different cases:

1. The model performs equivalently with and
without the retrieved text block: In this case,
the model ignores the retriever and optimizes
for classification without it. This is undesir-
able, and we set the retriever loss to the margin
value, which refers to the minimum desired
difference between the two sets of losses.

The model is worse after adding the retrieved
text block: This behavior is again undesirable
since the goal of retrieval is to improve the
model. Hence, along with the margin, we also
add the difference between the two losses to
compute the retrieval loss.

The model improves after adding the retrieved
text block: If the model becomes better due
to retrieval, it could either be better by chance
(when the difference is lower than the mini-
mum margin), or the difference could be sub-
stantial. In the first case, we quantify the re-
trieval loss as the margin value. The latter
behavior is the desired behavior of the model,
and we set the retrieval loss to be zero.

Here, the final loss function is computed as the
sum of the classification loss and the retrieval loss.

5 Results and Discussion

5.1 Availability of domain knowledge

In the top section of Table 1, we present the re-
sults when we finetune BERT models for medi-
cal language inference. Here we can see that the
BERT model which has been trained on in-domain
Pubmed abstracts for the largest number of opti-
mization steps is consistently the best on both devel-
opment and test sets. As expected based on prior
research, all other models trained on in-domain
data are also significantly better than the BERT
models that are not trained on in-domain data.

We investigate the errors made by the best model,
BioBert (v1.1). As discussed in Section 3, in Ta-
ble 2, we present the distribution of the first 50
errors made on the development set of the MedNLI
dataset. Examples of these errors are illustrated in
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Table 3. Although we present the distribution of er-
rors for one specific run here, we also analyzed this
distribution across 3 different runs of the model.
We found that the average pairwise Cohen’s kappa
agreement (McHugh, 2012) between the predic-
tions on the development set across 3 different runs
is 0.9, and the distribution of errors across these
runs is comparable. In Table 2, we can see that 40%
of the errors happen due to insufficient domain in-
formation. Some of these errors happen because
of missing factual domain knowledge, some lack
advance reasoning based on factual domain knowl-
edge, and some are incorrect potentially because
of model biases due to limited size of the training
dataset, such as assumption that a certain treatment
is always administered for a specific condition, al-
though the treatment might be more diverse. This
highlights the potential to improve the BioBERT
model by providing access to additional fundamen-
tal domain information.

Other dominant category of errors are related
to spurious correlations, numeric inference, nega-
tion, and temporal reasoning. These categories are
important for understanding patient condition in
medical notes, since test results are often expressed
in a numeric manner, patient conditions are often
hedged and negated, and patient information is usu-
ally longitudinal in nature. We limit the focus of
this work to the more frequent error category of
integrating domain information.

5.2 Domain knowledge integration

In Table 1, we see marginal improvements on the
test set between the BioBERT (v1.1) models with
and without additional domain knowledge — both
when the integration is done implicitly via addi-
tional language model pretraining, and when rele-
vant sentences are retrieved using lexical and syn-
tactic methods. Knowledge integration from the
Medbook corpus — both implicit and explicit, does
not show any improvement in the results. Despite
marginal improvements using the Wikimed corpus,
a lack of consistent pattern across both develop-
ment and test sets suggests a random effect rather
than significant differences. When we train an end-
to-end retrieval model instead of further language
modeling or pre-selecting the most relevant sen-
tence, we again see a marginal improvement on
the test set. However, this improvement is again
not visible on the development set. Furthermore,
we see that the pairwise loss for more aggressive



Model MedNLI (% Acc.)

Dev Test

BERT-base-uncased 82.1 77.8
BERT-base-cased 79.9 78.8
BERT-base-cased + PMC + PubMed (BioBERT v1.0) 84.3 82.5
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
SciBERT-base-uncased (SciBERT vocab) 81.5 82.2
He et al. (2020): BioBERT v1.1 + disease NA 82.2
Sharma et al. (2019) NA 79.0
BERT-base-cased + Pubmed 1M (BioBERT v1.1) 84.8 82.9
BioBERT v1.1 + Wikimed MLM 84.2 83.3
BioBERT v1.1 + Medbook MLM 83.2 80.1
BioBERT v1.1 + Wikimed (lexical) 84.3 83.2
BioBERT v1.1 + Medbook (lexical) 83.8 82.6
BioBERT v1.1 + Wikimed (lexical+syntactic) 83.9 83.1
BioBERT v1.1 + Medbook (lexical+syntactic) 83.8 82.5
BERT-base-uncased (Wikipedia+BooksCorpus) 82.1 77.8
BERT-base-uncased + trained Wiki retriever 79.4 78.5
BERT-base-uncased + trained Wiki retriever + retrieval loss | 79.1 77.9

Table 1: Classification accuracy of BERT models and explicit and implicit domain knowledge integration methods
on MedNLI development and test sets. MLM here refers to masked language modeling.
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Error type

Insufficient domain knowledge
Spurious correlations / dataset bias
Difficult instance

Incorrect numeric inference

Incorrect negation

Incorrect tense resolution

Incorrect temporal sequence inference
Lexical (P,H) overlap trick

Modifier ignored

Incorrect abbreviation understanding
Insufficient commonsense knowledge

[\
()

— NN NN WA U

Table 2: Analysis of the first 50 errors of the BioBERT
(v1.1) model on the MedNLI development set.

retriever training along with the classification cross-
entropy loss does not have any significant impact.
Despite this additional signal, the classifier con-
tinues to learn the task by ignoring the retrieved
context, thus indicating that the penalty for incor-
rect retrieval is still not aggressive enough.

Our joint models use the complete Wikipedia as
the source of knowledge, and the improvement pat-
terns here are consistent with using the Wikimed
corpus both implicitly and explicitly, but contrary
to using the Medbook corpus. This suggests that
Wikipedia, both complete and the medical-only
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subset, functions as a better source of information
for the MedNLI task as compared to the medical
textbook that contains more fundamental domain
information. We believe that the difference in re-
sults of the two corpora emerges from a difference
in their sizes, since the medical subset of Wikipedia
is 10 times in size compared to the textbook corpus.
We could not scale the Medbook corpus to larger
sizes due to copyright limitations.

When we analyze the retrieved text blocks for
one example in the development set and compare it
to the gold standard retrieval by humans (presented
in Table 4), we see that none of the retrieval algo-
rithms are capable of finding the desired missing in-
formation to improve semantic inference. Although
the ‘lexical + syntactic’ retriever finds a sentence
related to the topic as well as to the premise and
the hypothesis, it doesn’t bridge the knowledge gap
for correct inference. Moreover, the end-to-end
model with a trained retriever retrieves text block
that is unrelated to the topic, although in the medi-
cal genre.

Hence, we find that none of the explored meth-
ods provide better access to medical information
for domain knowledge-based reasoning, although
the desired factual information is present in these
external corpora. One reason why we do not see fur-
ther improvements on the BioBERT (v1.1) model



Error type

Example

Insufficient domain knowledge

P: ... she was treated with Benadryl ...
H: Patient has had an allergic reaction
Entatlment Neutral

Spurious correlations / dataset bias

P: She spoke with her oncology team ...
H: The patient has cancer.
Neutral Entailment

Incorrect numeric inference

P: ... an ejection fraction of 69 % with normal wall
motion.

H: patient has normal cardiac output

Entatlment Contradiction

Incorrect negation resolution

P: ... no identified sepsis risk factors.
H: ... has multiple risk factors for sepsis
Contradietion Entailment

P:
Incorrect tense resolution

. he had a CT of the chest and CTA of his

coronary arteries ...
H: patient will go for coronary angiography
Neutral Entailment

Incorrect temporal inference

P: ... biopsy ... showed signs of rejection ... subse-
quently did well.

H: The patient had transplant failure
Contradietion Entailment

Lexical (P, H) overlap trick

P: Pt denies any recent chills ...
H: The patient denies recent illness
Neutral Entailment

Modifier ignored

P: Left common femoral dorsalis pedis bypass graft.
H: Patient has CAD
Neutral Entailment

Incorrect abbreviation understanding

P: Her ... PO intake have been normal.
H: She has been NPO since midnigh
Contradiction Neutral

Insufficient commonsense knowledge

P: ... status post high speed motor vehicle crash ...
H: Patient has recent trauma
Entatlment Neutral

Table 3: One example of each category of errors made by the BioBERT (v1.1) model on the MedNLI development
set. & b refers to the fact that class a is the gold class, but the model predicts class b instead.

(that is a very strong baseline), despite the suc-
cess of these methods in other tasks and domains,
could be the complexity of the research question.
Retrieval of relevant information for language infer-
ence demands a delicate balance between selecting
a sentence that provides sufficient supporting in-
formation related to the given topic and instance
to improve inference, and yet that is neither redun-
dant nor superfluous. As we show in our results,
in a limited computation setting as ours, current
state-of-the-art methods are not capable of strik-
ing this balance in unsupervised setups and result
in unreliable knowledge augmentation. He et al.
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(2020) also report similar results on the same task
using the same BioBERT model. These results sug-
gest that we either need more computation power
to train these models for longer time to enable
convergence, or we need to create large annotated
corpora for retrieving missing facts to enable bet-
ter performance of these algorithms with limited
computation power. We need to direct our efforts
towards investigating advanced evidence retrieval
and knowledge integration setups such as this to
improve knowledge-based reasoning of the current
state-of-the-art models.



Method

Text

Example

P: Infusion stopped and she was treated with Benadryl 50 mg x 1, prednisone 40 mg
x 1, ativan 1 mg.
H: Patient has had an allergic reaction

Gold
retrieval

Benadryl is a brand name for a number of different antihistamine medications used
to stop allergies, including diphenhydramine, acrivastine and cetirizine.

Lexical
retrieval

None

Lexical +
syntactic
retrieval

Prednisone is used for many different autoimmune diseases and inflammatory con-
ditions, including asthma, COPD, CIDP, rheumatic disorders, allergic disorders,
ulcerative colitis and Crohn’s disease, granulomatosis with polyangiitis, adreno-
cortical insufficiency, hypercalcemia due to cancer, thyroiditis, laryngitis, severe
tuberculosis, hives, lipid pneumonitis, pericarditis, multiple sclerosis, nephrotic
syndrome, sarcoidosis, to relieve the effects of shingles, lupus, myasthenia gravis,
poison oak exposure, Méniére’s disease, autoimmune hepatitis, giant-cell arteritis,
the Herxheimer reaction that is common during the treatment of syphilis, Duchenne
muscular dystrophy, uveitis, and as part of a drug regimen to prevent rejection after
organ transplant.

Trained
Wiki
retriever +
retrieval
loss

Gemeprost (16, 16-dimethyl-trans-delta2 PGE methyl ester) is an analogue of
prostaglandin E. It is used as a treatment for obstetric bleeding. It is used with
mifepristone to terminate pregnancy up to 24 weeks gestation. Vaginal bleeding,
cramps, nausea, vomiting, loose stools or diarrhea, headache, muscle weakness;
dizziness; flushing; chills; backache; dyspnoea; chest pain; palpitations and mild
pyrexia. Rare: Uterine rupture, severe hypotension, coronary spasms with subsequent

myocardial infarctions. ...

Table 4: Text blocks retrieved by different methods from the (medical) Wikipedia corpus for one example in the
development set that requires further domain knowledge for correct inference. Gold retrieval mentioned here is a
manually retrieved sentence from Wikipedia, in presence of which the model corrects its output.

6 Conclusions and Future Work

On investigating the error categories of BioBERT
(v1.1) models on the clinical language understand-
ing task, we find that despite having a strong per-
formance, the models still make several mistakes
on examples that require medical domain knowl-
edge. To this end, we explored multiple methods
to improve access of these models to medical do-
main knowledge by implicit and explicit knowl-
edge retrieval and augmentation. However, we
see that these extensions do not show significant
improvement on the test sets. We conclude that
state-of-the-art solutions lead to unreliable knowl-
edge augmentation for language inference, as is
shown by a detailed analysis in our work. Future
research should concentrate efforts towards devel-
oping methods to augment fundamental domain
knowledge from textual corpora to solve the prob-
lem of advanced knowledge-based reasoning in
these domains.
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