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Abstract

The accelerating growth of big data in the
biomedical domain, with an endless amount
of electronic health records and more than 30
million citations and abstracts in PubMed, in-
troduces the need for automatic structuring of
textual biomedical data. In this paper, we de-
velop a method for detecting relations between
food and disease entities from raw text. Due
to the lack of annotated data on food with re-
spect to health, we explore the feasibility of
transfer learning by training BERT-based mod-
els on existing datasets annotated for the pres-
ence of cause and treat relations among dif-
ferent types of biomedical entities, and using
them to recognize the same relations between
food and disease entities in a dataset created
for the purposes of this study. The best mod-
els achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, re-
spectively.

1 Introduction

The ongoing prevalence of malnutrition, the rising
incidence of chronic diseases affected by diet, and
the fact that even food that is generally considered
to be healthy can be harmful to patients suffering
from certain diseases or when ingested in com-
bination with specific drugs, require a profound
understanding of the role of nutrition in the com-
plex environmental interactions that contribute to
the development or treatment of different ailments.
The effect of food on human health is the subject of
numerous biomedical studies, however, the sheer
volume and the predominantly unstructured form
of newly published articles prevents medical pro-
fessionals from keeping up with recent discover-
ies, and impedes the development of systems for
knowledge-base construction, Decision Support,
and Question-Answering (QA), which brings about
the need for information extraction (IE) methods
for structuring the newly published knowledge.

Knowledge graphs (KGs) are specialized data
representation structures that store information as
a collection of interlinked descriptions of entities.
The development of Relation Extraction (RE) meth-
ods is necessary for automatic linking of the nodes
in KGs and reducing the amount of work required
by the experts in order to create and extend these
resources.

A lot of research effort has been dedicated to
extracting relations between different biomedical
entities, however, the lack of annotated data im-
pedes the development of food-disease RE meth-
ods, which are necessary for linking food entities to
concepts from the biomedical domain, and under-
standing the impact of nutrition on human health.

Transfer learning (TL) (Weiss et al., 2016;
Zhuang et al., 2019) is a potential solution for this
problem, which involves improving a learner from
one domain by transferring information from a re-
lated domain. The use of TL in this paper is two-
fold. On the one hand, we use models that are
pre-trained on large amounts of data, and fine-tune
them for the RE task. On the other hand, we in-
vestigate the feasibility of re-purposing existing
annotated IE resources in the biomedical domain
as a potential strategy for making up for the deficit
of such resources in the food domain.

We focus on the detection of cause and treat
relations among food and disease entities, and rep-
resent the RE task as a binary classification prob-
lem, meaning that we train separate classifiers that
detect the presence of each relation type. We per-
form fine-tuning of BERT (Devlin et al., 2018),
BioBERT (Lee et al., 2019) and RoBERTa (Liu
et al., 2019) models, which have achieved state of
the art results in several Natural Language Process-
ing (NLP) tasks.

To train the classifiers, we use the
CrowdTruth (Dumitrache et al., 2017, 2015b,a) and
Adverse Drug Events (ADE) (Gurulingappa et al.,
2012) datasets, which contain sentences annotated
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for the existence of relations between different
types of biomedical entities. We then apply TL in
order to use the classifiers trained on the source
datasets to directly predict relations among food
and disease entities. The reasoning behind the
use of TL in this setting is that even though the
sentences contain entities of different types, by
masking the entity occurrences in the sentence,
the models could use the context words around
the entities and pick up on linguistic features such
as keywords or sentence structure to detect the
presence of a particular relation. Even though our
goal is focused on detecting the relations between
food and disease entities, we believe the method to
be general enough to be applicable for entities of
any type, as long as the relation is the same as the
one the model was trained to recognize.

To evaluate the proposed models, we introduce
a dataset of 608 sentences, which are extracted
from abstracts of scientific articles from PubMed
and are manually annotated for the presence of
cause and treat relations between food and disease
entities. To the best of our knowledge, this is the
first English RE dataset in the food domain, and it is
publicly available on GitHub 1, as an open-source
resource that can be reused in future studies.

The rest of the paper is organized as follows. In
the next section, we give an overview of the RE
work in the domains of biomedicine, and food and
nutrition. The data sources used for the experi-
ments are described in Section 3. The text repre-
sentation and classification models are presented
in Section 4, while their evaluation is discussed in
Section 5.

2 Related work

In the past decade, numerous methods have been
developed for extracting biomedical relations, such
as drug-drug (Dewi et al., 2017; Liu et al., 2016;
Kim et al., 2015; Sahu and Anand, 2018), protein-
protein (Koyabu et al., 2015; Fan et al., 2018; Zhou
et al., 2018), drug-disease (Wang et al., 2017; Bchir
and Karaa, 2013), chemical-gene (Lim and Kang,
2018) and chemical-protein (Lung et al., 2019) in-
teractions.

In the domain of food and nutrition, the efforts di-
rected at creating RE systems have been quite more
limited in comparison. A gold standard for food RE
has been generated for the German language (Wie-

1https://github.com/gjorgjinac/
food-disease-dataset

gand et al., 2012b), and different methods such
as distant supervision (DS), pattern-matching, and
the use of co-occurrence measures have been in-
vestigated for the detection of food relations for
customer advice (Wiegand et al., 2012a; Reiplinger
et al., 2014). A Chinese food RE system (Miao
et al., 2012) has also been developed, which treats
RE as a sequence labeling task and adopts Con-
ditional Random Fields (CRFs) models to extract
relations between food and disease entities from
Chinese biomedical data. However, resources in
other languages are not easily re-purposed for the
English language.

A related resource in the English language which
contains extracted relations of food and disease
entities is the NutriChem database (Jensen et al.,
2014; Ni et al., 2017), which links plant-based
foods with their small molecule components, drugs
and disease phenotypes. A critical difference be-
tween NutriChem and the method we aim to de-
velop in this work is the fact that NutriChem limits
its scope to plant-based foods, while we do not pose
a limitation on the type of foods or diseases be-
tween which the relations occur, and aim to extract
relations from a broader range of food categories.

The benefits of TL have previously been investi-
gated for the purposes of biomedical NER (Sun and
Yang, 2019; Francis et al., 2019) and RE (Zhang
et al., 2019; Peng et al., 2019; Hafiane et al., 2020).
Recent work has been aimed at solving the chal-
lenges of imbalanced relation distribution, linguis-
tic variation and partial transfer using relation-
gated adversarial learning (Zhang et al., 2019),
and capturing dependency tree information using
TreeLSTM models (Legrand et al., 2018).

BERT has achieved state-of-the-art results on
natural language processing (NLP) tasks, including
RE between several types of biomedical entities,
which is one of the tasks in the Biomedical Lan-
guage Understanding Evaluation (BLUE) bench-
mark (Peng et al., 2019). A comparison of the
performance of BERT models for detecting rela-
tions between proteins and chemicals, and genomic
factors and drugs or drug responses (Hafiane et al.,
2020), finds that depending on the target corpus,
different variants of BERT may achieve the best re-
sults, and that fine-tuning the models is preferable
over freezing the layers of the original model and
only updating the weights of new layers added on
top of the original ones. Guided by these findings,
we perform fine-tuning of several BERT variants

https://github.com/gjorgjinac/food-disease-dataset
https://github.com/gjorgjinac/food-disease-dataset
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for the RE task.
The Adverse Drug Events (ADE) corpus (Gu-

rulingappa et al., 2012), which is one of the source
datasets in our experiments, has been extensively
used for training RE models, and more recently,
for the exploitation of inter-task correlations for
joint entity and relation extraction using differ-
ent approaches, such as adversarial training (Bek-
oulis et al., 2018), Cross-Modal Attention Net-
works (Zhao et al., 2020) and BERT models (Eberts
and Ulges, 2019). However, unlike the previous
work done with this corpus, our goal is not to pre-
dict relations between the annotated entities, but to
learn the context words used for expressing causal
relations, so they can be recognized regardless of
the entities between which they occur.

3 Data

TL usually involves the use of two types of
datasets: source datasets and target datasets, where
models are trained on the source datasets, and
adapted to make predictions on the target datasets.
We are specifically interested in extracting rela-
tions between food and disease entities, and we
use the help of two existing source datasets, the
CrowdTruth (Dumitrache et al., 2017) and the ADE
dataset (Gurulingappa et al., 2012), in order to ex-
tract relations in the target FoodDisease dataset,
which was created for the purposes of this study.

3.1 The CrowdTruth dataset

The CrowdTruth dataset (Dumitrache et al., 2017)
for medical RE contains annotated data for cause
and treat relations in sentences from abstracts of
PubMed articles.

The dataset contains 4028 sentences annotated
for the existence of a cause relation and 3983 sen-
tences annotated for the existence of a treat relation.
Every sample of the dataset contains the name of
a relation, and a sentence containing two entities
between which the relation may or may not occur.
Each entity is further described by its UMLS name,
its starting and ending position in the sentence, and
the exact textual form in which it appears in the
sentence. Apart from this, each sample is assigned
several labels which indicate whether the relation
is observed between the two terms.

The initial data (Wang and Fan, 2014) were col-
lected using Distant supervision (DS) (Mintz et al.,
2009), which is a inexpensive and straightforward
way of labeling training data, but is also prone to

producing noisy, low quality labels (Dumitrache
et al., 2015b; Ji et al., 2017; Chen et al., 2021). Be-
cause of that, the annotations for the cause and treat
relations collected using DS were further refined
using the CrowdFlower platform where a multi-
label annotation task was executed through crowd-
sourcing (Dumitrache et al., 2017, 2015b,a). Ad-
ditionally, experts annotated sentences with binary
labels, based on whether a specified seed relation
discovered by DS is present between two given
biomedical entities that occur in the sentence.

The sentence relation score given for each sam-
ple is computed as the cosine similarity between
the vector containing the sum of the annotations of
the non-expert workers, and the unit vector for the
relation. Here, the unit vector refers to a one-hot
vector where the value corresponding to the relation
is equal to 1, and all other components are equal
to 0. This score is in the range [0, 1]. The crowd
score is calculated using the sentence relation score,
by applying a threshold of 0.5 to separate positive
from negative examples, and rescaling the obtained
positive and negative samples in the ranges [0.5, 1],
and [-1, -0.5], respectively.

The expert label is based on the experts’ annota-
tions and it takes values of either 1 or -1, indicating
the presence or absence of the relation, respectively.
However, due to the cost, limited time and availabil-
ity of experts, the expert annotations were limited
to 975 samples in the cause dataset and 621 sam-
ples in the treat dataset.

3.1.1 Target variable construction in the
CrowdTruth dataset

The target variable is a binary indicator of the exis-
tence of the cause or treat relationship in the respec-
tive dataset. As the CrowdTruth dataset contains
multiple indicators of these relations, we choose
to rely on the labels assigned by experts, but since
these are not available for all samples, we also use
the crowd score, which has been shown to give
reliable results in the original studies (Dumitrache
et al., 2017, 2015b,a). To be more precise, if the
sentence has been labeled by an expert, the target
label is assigned a value of 1, if the score given by
the expert is 1, or 0, if the score given by the expert
is -1. If the sentence has not been labeled by an
expert, the target label is assigned a value of 1, if
the crowd score is positive, or 0, if the crowd score
is negative.
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3.2 The Adverse Drug Events (ADE) dataset

The ADE dataset (Gurulingappa et al., 2012) con-
tains 6821 sentences expressing truthful relations
between drugs and adverse effects they have been
shown to cause, and 279 sentences with relations
between drugs and dosages. Each sample consists
of a sentence, the name of a drug, the name of a
condition (if the relation expressed is adverse ef-
fect) or a dosage term (if the relation expressed is
dose), and their starting and ending position in the
sentence. The sentences were extracted from MED-
LINE case reports, and were manually annotated
by three annotators. There are 1319 unique drugs,
3341 unique conditions, and 130 unique dosage
terms. In order to be consistent with the nomencla-
ture in the other datasets, we refer to the adverse
effect relation in the ADE dataset as a cause rela-
tion, and to the condition entities as diseases. The
intuition behind using relations annotated as ad-
verse effect to detect cause relations between food
and disease entities is that one would use similar
sentence structures to describe a disease occurring
as a result of the ingestion of a particular drug or
food.

3.3 The FoodDisease dataset

Since there was no data labeled for the existence of
cause and treat relations between food and disease
entities, for the purposes of this research we con-
structed a dataset containing 608 sentences from
abstracts of PubMed articles. Fig. 1 depicts the
steps taken in order to generate the dataset.

BuTTER (Cenikj et al., 2020) and
SABER (Giorgi and Bader, 2019) were used
for finding the food and disease entities in each
abstract. Both are Named Entity Recognition
(NER) methods based on Bidirectional Long
Short-Term Memory and Conditional Random
Fields. BuTTER extracts food entities from raw
text, and is trained on the golden version of the
FoodBase corpus (Popovski et al., 2019), which
contains 1000 recipes annotated with food entities.
In particular, we used the lexical lemmatized
BuTTER model introduced in (Cenikj et al.,
2020), which achieves a macro averaged F1 score
of 0.946.

SABER is a biomedical NER tool, which pro-
vides several pre-trained NER models, from which
we use the DISO model 2 to extract disease entities.

2https://baderlab.github.io/saber/
resources

PubMed abstracts

Extraction of disease
entities with SABER

Extraction of food
entities with BuTTER

Extraction of sentences with
food and disease entities

False positive entity removal

Relation annotation

Partial match entity
completion

Figure 1: Steps taken to generate the FoodDisease
dataset

The abstracts were filtered so that only sentences
which contain at least one food and one disease en-
tity were kept. The entities in each sentence were
then manually checked and corrected in order to re-
move false positives and complete partial matches.
Removing the false positive entities means that the
tokens that were incorrectly extracted as food or dis-
ease entities by the BuTTER and SABER methods
were discarded. Completing partial matches entails
adding the missing words in entities which should
contain multiple words, but some of them were
not captured by the automatic annotators. Each
sample contains a single food and a single disease
entity, even if multiple such entities are mentioned
in the sentence. Finally, each sentence was as-
signed binary labels to indicate if the cause and
treat relations are present.

4 Methodology

In this section, we describe the proposed RE
method, starting with the preprocessing applied to
accomplish the generalization of the models trained
on the source datasets to the target dataset. We then
introduce the pre-trained transformer models used
for text representation, and their fine-tuning for the
RE task.

https://baderlab.github.io/saber/resources
https://baderlab.github.io/saber/resources
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Several epidemiological and preclinical studies supported the
protective effect of coffee on Alzheimer's disease (AD).

Several epidemiological and preclinical studies supported the
protective effect of XXX on YYY.

supported the protective effect of XXX on YYY.

ORIGINAL SENTENCE

ENTITY MASKING

CONTEXT EXTRACTION

Figure 2: Application of the preprocessing steps on a
sentence from the FoodDisease dataset

4.1 Data preprocessing

Since the datasets we are using are annotated with
relations between different types of biomedical en-
tities, and we would like the developed models to
generalize, and be able to extract the same relations
between different types of entities, we mask out the
entity mentions in each sentence. The reasoning
behind this is that the model would not learn to
detect relations between the concrete entities, but
instead, use the surrounding words to determine
whether they express the particular relation.

Since there could be several relations present in
one sentence, we use a context window of length 5,
i.e. use the words whose positions in the sentence
are in the range (i-5,j+5), where i is the word index
of the first occurring entity in the sentence, and j
is the word index of the second occurring entity in
the sentence.

Fig. 2 shows an example of the preprocessing
steps being applied on a sentence from the FoodDis-
ease dataset. The bolded words in the original sen-
tence are the food and disease entities, which get
masked out in the Entity Masking step, where they
are replaced by XXX and YYY, respectively. These
masking tokens are chosen arbitrarily, since their
only use is for the model to distinguish between
the subject and object entity. In the Context Ex-
traction step, the final preprocessed version of the
sentence is generated by keeping only the words in
between the entities, and the 5 words that precede
the first entity, coffee. Had there been additional
words after the second entity, Alzheimer’s disease
(AD), the first 5 of them would also be included in
the context.

4.2 Text representation

In order to represent the textual data in numerical
format, we use 3 pre-trained transformed-based
models: BERT, RoBERTa and BioBERT.

4.2.1 BERT
BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a bidi-
rectional, contextual representation model that
achieves state-of-the-art results in several natural
language processing tasks. Following the princi-
ples of transductive TL, BERT is pre-trained on an
unsupervised Mask Language Modeling (MLM)
or Next Sentence Prediction (NSP) task, and then
fine-tuned on another downstream task, such as
NER, Natural Language Inference or Question An-
swering. The pre-trained BERT models can be
finetuned without substantial modifications in their
architecture. In the simplest case, only the out-
put layer needs to be replaced, depending on the
task that the model is intended to perform. We use
the original BERT model, which is pre-trained on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia, and fine tune it for relation classifica-
tion.

4.2.2 RoBERTa
RoBERTa (Robustly Optimized BERT Ap-
proach) (Liu et al., 2019) is a text representation
model based on the original BERT architecture,
with a number of improvements introduced in
the pre-training phase, some of which include
training on a larger amount of data, longer training,
removal of the NSP task, and introduction of
dynamic masking. Apart from the BooksCorpus
and Wikipedia, which are used for the pretraining
of BERT, RoBERTa is trained on data from 3
additional sources: the CommonCrawl News
dataset (Nagel, 2016), the OpenWebText cor-
pus (Gokaslan and Cohen, 2019) and Stories
subset from the Common Crawl dataset (Trinh and
Le, 2018).

4.2.3 BioBERT
BioBERT (Bidirectional Encoder Representations
from Transformers for Biomedical Text Min-
ing) (Lee et al., 2019) is a domain-specific version
of the BERT model. Due to the fact that biomedi-
cal texts contain a considerable amount of domain-
specific proper nouns and terms that do not appear
in more general texts and would hence be unfa-
miliar to the original BERT, the data on which



35

BioBERT is trained is supplemented by PubMed
abstracts and full-text articles from PubMed Cen-
tral. As a result, BioBERT has been shown to out-
perform BERT in biomedical NER, RE, and QA
(Lee et al., 2019).

4.3 Models
We perform end-to-end fine-tuning of the pre-
trained BERT, RoBERTa and BioBERT models
for the RE task. In order to adapt the original ar-
chitecture to perform binary classification, the last
layer of the models is replaced with a dropout and
a linear layer which performs binary classification.
During fine-tuning, the model parameters are ini-
tialized with the values from the pre-training step,
and are fine-tuned using the labeled data from the
source datasets. The input of a BERT model can un-
ambiguously represent both a single sequence and
a pair of text sequences (for example, a question
and an answer) in one token sequence, by using
a separator token [SEP] to mark the end of each
sequence. We explore both types of inputs and
construct two different models:

• Single Sequence Classifier (SSC) - The model
takes a single sequence as an input and per-
forms simple binary classification.

• Sequence Pair Classifier (SPC) - The model
takes as input two sequences. The first se-
quence is the sequence that we want to clas-
sify (the one that is used on its own in the
SSC), while the second sequence is a con-
catenation of 10 randomly sampled sequences
which have positive labels for the relation we
are aiming to detect. We refer to the first
sequence as the sequence of interest, while
we call the concatenation of 10 sequences a
ground truth for the relation in question. The
sentences used in the ground truth sequences
are not used as sequences of interest.

The intuition behind this approach is that we
can reformulate the task Does sequence X ex-
press relation Y? as Is sequence X similar to
other sequences that contain relation Y?. The
task is still a binary classification, and the la-
bel remains the same as for the SSC.

We construct 10 ground truth sequences for
each relation, and pair each sequence of in-
terest with each ground truth. The same gen-
erated ground truths are used at training and
prediction time. For each sequence of interest

Table 1: Examples of inputs given to the SSC and SPC
models when identifying the treat relation

Inputs given to the SSC model
Input Label
supported the protective effect of XXX
on YYY

1

XXX is known to cause YYY 0

Inputs given to the SPC model
Input Label
Sequence of interest: supported the pro-
tective effect of XXX on YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

1

Sequence of interest: XXX is known to
cause YYY

Ground truth: XXX has been used in
the treatment of YYY; XXX is known
to cure YYY; XXX is associated with a
reduced incidence of YYY

0

in the test set, we generate 10 predictions (one
for each ground truth) and assign the average
of the predicted probabilities as the probabil-
ity of the sequence of interest belonging to the
positive class.

Table 1 features examples of the inputs given
to the SSC and SPC models that identify the treat
relation. The first input sample expresses a treat
relation, so the label is one, while the second input
sample expresses a cause relation, so the label is
zero. The inputs of the SSC model are the same
as for the sequences of interest of the SPC model.
For the sake of simplicity, for the SPC model in the
examples, we demonstrate one ground truth, which
is a concatenation of 3 sequences that represent a
treat relation. In our experiments, we use 10 such
ground truths, each being a concatenation of 10
sequences.

During the fine-tuning, the AdamW optimizer is
used with a learning rate of 4∗10−5. An early stop-
ping strategy is applied to prevent overfitting. The
models are trained for a maximum of 10 epochs,
or until the improvement in validation loss of 2
consecutive epochs does not surpass 5 ∗ 10−3.

The source codes for fine-tuning the SSC mod-
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Table 2: Number of samples from the positive and neg-
ative class in each dataset

Dataset CrowdTruth ADE FoodDisease
Relation Cause Treat Cause Cause Treat
Class
Positive 1429 1406 6821 142 323
Negative 2555 2578 1685 466 285

els3 and the SPC4 models are publicly available on
the Colab platform.

5 Evaluation

5.1 Evaluation on the source datasets
When applying TL, a model trained on a source
dataset can experience some degradation in perfor-
mance when evaluated on the target dataset. In
order to get an idea about the upper bound of the
performance expected on the target dataset, the
models’ performance is first evaluated on the same,
source datasets they were trained on using 10-fold
cross validation.

All 3 of the datasets are unbalanced, and the
class distribution of each dataset is given in Table
2. For the ADE dataset, we only train classifiers
for the detection of the cause relation, since that
dataset does not contain annotations for the treat
relations. We consider the sentences annotated
with the dose relation in the ADE dataset to be
negative samples for the cause relation. However,
since there are only 279 such sentences, in order to
avoid extreme class unbalance, we supplement the
negative samples in the train portion of the ADE
dataset by adding the samples that are annotated
as positive for the treat relation in the CrowdTruth
dataset. 10% of the training portion of each fold
is removed and used for validation, preserving the
ratio of the positive and negative samples.

Because of the unbalanced class distribution in
all three datasets, we evaluate the models in terms
of the macro averaged f1 scores, averaged from all
folds, and these are depicted in Table 3. The mod-
els are both trained and evaluated on the datasets
indicated in the table header. The SSC and SPC
models combined with 3 different pretrained BERT
models (BERT, RoBERTa and BioBERT) result in

3https://colab.research.google.com/
drive/1UOFuk6-_6c-za6P54SiIhdY9ZH6T5Xpo?
usp=sharing

4https://colab.research.google.com/
drive/1HA78g3YG90UuYT9SZPxw5brE6LqPKC2s?
usp=sharing

Table 3: Macro averaged F1 scores obtained from the
evaluation on the source datasets when the proposed
preprocessing is applied, averaged from 10 folds

Dataset CrowdTruth ADE FoodDisease
Relation Cause Treat Cause Cause Treat
Model:
SSC
BERT 0.753 0.880 0.871 0.744 0.886
RoBERTa 0.740 0.879 0.866 0.711 0.884
BioBERT 0.750 0.890 0.894 0.847 0.871
Model:
SPC
BERT 0.745 0.873 0.822 0.478 0.835
RoBERTa 0.752 0.880 0.743 0.433 0.835
BioBERT 0.771 0.884 0.873 0.545 0.900

6 models, which are evaluated on the 3 datasets.
The first group of three rows of scores refers to the
performance of the SSC model, while the second
group refers to the SPC model. The underlined
values refer to the highest f1 macro score in each
column, and we can note that the BioBERT mod-
els give the best performance. The SSC models
generally outperform the SPC models.

The performance of the SPC models which de-
tect the cause relation in the FoodDisease dataset
is notably lower than the rest of the models. Look-
ing into the models’ raw predictions, it is obvious
that the models predict the negative class too often,
which results in high recall for the negative class,
but very low recall for the positive class. This can
be attributed to the fact that from the 114 positive
samples in the training portion of each fold, 100 are
used for constructing the ground truth sequences
used by the SPC models, leaving only 14 posi-
tive samples for training. Annotating more data,
decreasing the number of ground truth sequences
or the number of sentences in each ground truth
sequence, and balancing the data are possible strate-
gies which are expected to remedy this anomaly.

5.2 Transfer learning evaluation

In this subsection, we report the performance
reached by the models trained on the CrowdTruth
and ADE source datasets, when evaluated on the
target FoodDisease dataset. In this case, the models
are trained on balanced data, since the class distri-
bution in the source datasets does not reflect the
distribution in the target dataset, and are evaluated
on the whole FoodDisease dataset.

https://colab.research.google.com/drive/1UOFuk6-_6c-za6P54SiIhdY9ZH6T5Xpo?usp=sharing
https://colab.research.google.com/drive/1UOFuk6-_6c-za6P54SiIhdY9ZH6T5Xpo?usp=sharing
https://colab.research.google.com/drive/1UOFuk6-_6c-za6P54SiIhdY9ZH6T5Xpo?usp=sharing
https://colab.research.google.com/drive/1HA78g3YG90UuYT9SZPxw5brE6LqPKC2s?usp=sharing
https://colab.research.google.com/drive/1HA78g3YG90UuYT9SZPxw5brE6LqPKC2s?usp=sharing
https://colab.research.google.com/drive/1HA78g3YG90UuYT9SZPxw5brE6LqPKC2s?usp=sharing
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Table 4: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
proposed preprocessing is applied

Dataset CrowdTruth ADE
Relation Cause Treat Cause
Model: SSC
BERT 0.727 0.841 0.750
RoBERTa 0.805 0.883 0.710
BioBERT 0.805 0.878 0.750
Model: SPC
BERT 0.585 0.689 0.619
RoBERTa 0.701 0.838 0.648
BioBERT 0.636 0.872 0.639

Table 4 features the macro averaged F1 scores
that the models achieve when the preprocessing
introduced in subsection 4.1 is applied on the input.

When comparing the results in Table 3 and 4,
we can observe that the SPC models and the mod-
els trained on the ADE dataset experience perfor-
mance deterioration when they are evaluated on the
target dataset, but the SSC models trained on the
CrowdTruth dataset have a similar performance in
both evaluations. This is expected to some extent,
since the relations in the ADE dataset are originally
annotated as adverse effect, which we loosely in-
terpret as a cause relation, while the sentences in
the CrowdTruth dataset are annotated for precisely
cause and treat relations.

Additionally, we conduct experiments to evalu-
ate the proposed preprocessing technique, which
we compare to the scenario when no preprocessing
is applied (neither the Entity Masking nor the Con-
text Extraction step) and the entire sentences are
given to the model. The macro averaged F1 scores
obtained in such a setting are featured in Table 5.
The best results are achieved by the RoBERTa and
BioBERT models. Most of the models benefit from
the preprocessing, which is especially noticable in
the SSC models that identify the cause relation,
where the proposed preprocessing leads to an im-
provement of the averaged macro f1 scores of at
least 0.100. Looking into the metrics for the posi-
tive and negative class separately reveals that the
lower performance of the models which do not
use the proposed processing is due to their lower
precision in identifying the positive class.

Interestingly, the SPC models that identify the
treat relation seem to perform better without the
preprocessing, even though only one the perfor-

Table 5: Macro averaged F1 scores obtained from the
evaluation on the target FoodDisease dataset, when the
entire sentence is being used as input

Dataset CrowdTruth ADE
Relation Cause Treat Cause
Model: SSC
BERT 0.595 0.828 0.568
RoBERTa 0.659 0.759 0.228
BioBERT 0.610 0.900 0.633
Model: SPC
BERT 0.557 0.837 0.608
RoBERTa 0.594 0.844 0.587
BioBERT 0.657 0.881 0.625

mance of the BERT model differs by a large mar-
gin, while the performances of the BioBERT and
RoBERTa models differ by less than 0.010.

It is important to note that the evaluation on these
models on the FoodDisease dataset may be some-
what flawed, since it may hide the possible disad-
vantage of using entire sentences as input, because
all of the sentences in the FoodDisease dataset are
unique. This would mean that if a sentence con-
tains both relations, as for example Nuts are known
to reduce the risk of heart disease, but can also
cause allergies, the dataset would either contain
the (food, relation, disease) triple (nuts, treat, heart
disease) or the triple (nuts, cause, allergies), but
not both. The models that do not use the proposed
preprocessing and get the entire sentence as input,
would in this case produce an identical output for
both triples, but when evaluated on the FoodDis-
ease dataset, they would not be penalized for doing
so.

Overall, the best models trained on the source
datasets achieve a macro F1 scores of 0.805 and
0.900, for the detection of cause and treat rela-
tions, respectively, between food and disease enti-
ties in the target dataset. In comparison, the per-
formance of the best models trained on the target
FoodDisease dataset (the SSC-BioBERT and SPC-
BioBERT in Table 3) is 0.847 and 0.900. This in-
dicates that the application of TL using pretrained
transformer models enables us to train models us-
ing a small amount of annotated data, but we can
also obtain satisfactory results with no annotated
data for the specific RE task, by repurposing an-
notations for the same relations between different
entities.
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6 Conclusion

In this paper, we propose Relation Extraction (RE)
models for the detection of cause and treat rela-
tions between food and disease entities from raw
text. To make up for the absence of annotated data
for this task, we explore the feasibility of Trans-
fer Learning (TL) by using the transformer models
BERT, RoBERTa, and BioBERT, which are pre-
trained on large amounts of data, and fine-tuned for
performing RE between various types of biomedi-
cal entities. The models are trained to recognize re-
lations based on the context words used to express
each relation, rather than the entities themselves,
so they can successfully generalize to the task of
recognizing the relations between food and disease
entities, and likely, other types of entities, though
this is not evaluated in the scope of this paper.

In order to evaluate the proposed approach, we
introduce the FoodDisease dataset, which consists
of 608 sentences annotated for the existence of the
cause and treat relations between food and disease
entities in sentences of PubMed abstracts. The
dataset is released as an open-source resource, and
is, to the best of our knowledge, the first annotated
English RE dataset of such kind in the food domain.

The best models that are fine-tuned on this
dataset achieve macro averaged F1 scores of 0.847
and 0.900 for the cause and treat relations, respec-
tively. The best models which are fine-tuned using
the data where the entities are not food-disease
pairs, but other biomedical entities of various types,
achieve macro averaged F1 score of 0.805 for the
cause relation and 0.900 for the treat relation. This
indicates that in the event where no experts are
available to annotate data, the proposed method
enables the repurposing of existing RE datasets
for the training of models that can recognize the
relation that the dataset is annotated for, between
different types of entities.

The developed models will be used as part of an
information extraction pipeline which will struc-
ture the findings of experts in biomedical scientific
literature, with the aim of alleviating the process
of linking knowledge graphs from the domain of
biomedicine to the domain of food and nutrition.
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