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Abstract

Recent research on robust representations of
biomedical names has focused on modeling
large amounts of fine-grained conceptual dis-
tinctions using complex neural encoders. In
this paper, we explore the opposite paradigm:
training a simple encoder architecture us-
ing only small sets of names sampled from
high-level biomedical concepts. Our encoder
post-processes pretrained representations of
biomedical names, and is effective for various
types of input representations, both domain-
specific or unsupervised. We validate our pro-
posed few-shot learning approach on multi-
ple biomedical relatedness benchmarks, and
show that it allows for continual learning,
where we accumulate information from vari-
ous conceptual hierarchies to consistently im-
prove encoder performance. Given these find-
ings, we propose our approach as a low-
cost alternative for exploring the impact of
conceptual distinctions on robust biomedical
name representations. Our code is open-
source and available at www.github.com/
clips/fewshot-biomedical-names.

1 Introduction

Recent research in biomedical NLP has focused
on learning robust representations of biomedical
names. To achieve robustness, an encoder should
represent the semantic similarity and relatedness
between different names (e.g. by their closeness in
the embedding space), while its embeddings should
also remain as transferable and generally applicable
as self-supervised pretrained representations.
Prior research into robust representations has
shown three distinct tendencies. Firstly, research
typically focuses on encoders with complex neural
architectures and a large amount of parameters. As
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Chapter V: Mental and behavioural disorders

F34
Persistent mood disorders

F63
Habit and impulse disorders

F34.0 F63.0
Cyclothymia Pathological gambling

F34.1 Fo63.1
Dysthymia Pyromania

Table 1: Example of how reference names are grouped
together within the ICD-10 hierarchy of disorders.

compensation for this complexity, such models can
be heavily regularized during training, e.g. by tying
the output of a nested LSTM to a pooled embedding
of its input representations (Phan et al., 2019), or
by integrating a finetuned BERT model with sparse
lexical representations (Sung et al., 2020).

Secondly, encoders are typically trained on fine-
grained concepts from biomedical ontologies such
as the UMLS, i.e., concepts with no child nodes in
the ontological directed graph. Small synonym sets
of such fine-grained concepts are readily available
as training data, and often serve as evaluation data
for normalization tasks to which trained encoders
can be applied.

Lastly, as a result of using fine-grained concepts,
vast amounts of biomedical names are needed to
model the large collection of fine-grained distinc-
tions present in ontologies. For instance, Phan
et al. (2019) train their encoder on 156K disorder
names. These three tendencies share an underlying
assumption: complex neural encoder architectures
can learn biomedical semantics by generalizing in
a bottom-up fashion from large amounts of fine-
grained semantic distinctions, if provided with suf-
ficient quantities of training data.
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However, it is not self-evident that such an ap-
proach is the most effective way to achieve general-
purpose biomedical name representations. For in-
stance, it does not directly address what concep-
tual distinctions are actually relevant to improve
representations for downstream NLP applications.
Finding and exploiting relevant distinctions can
be an empirical question, and as such require low-
cost exploration of various conceptual hierarchies.
Such a heuristic search is expensive in the current
paradigm.

In this paper, we explore a scalable few-shot
learning approach for robust biomedical name rep-
resentations which is orthogonal to this paradigm.
We investigate to what extent we can fit a simple
encoder architecture using only a small selection of
data, with a limited amount of concepts containing
only a few samples each (i.e., few-shot learning).
To this end, we don’t use fine-grained concepts for
training, but more general higher-level concepts
which span a large range of fine-grained concepts.
Table 1 gives an example of such a larger grouping
of biomedical names.

This paper offers two main contributions. Firstly,
our proposed approach offers an alternative for
training biomedical name encoders with much
lower computational cost, both for training and
inference at test time. It is applicable to large-
scale hierarchies containing at least ten thousands
of names and is equally effective for different types
of pretrained representations when tested on vari-
ous biomedical relatedness benchmarks. Secondly,
we show that this approach allows for low-cost con-
tinual learning from multiple concept hierarchies,
and as such can help with the accumulation of rele-
vant domain-specific information for downstream
biomedical NLP tasks.

2 Approach

Our approach is similar to supervised post-
processing techniques of word embeddings such as
retrofitting and counterfitting (Faruqui et al., 2015;
Mrksi€ et al., 2016), but instead post-processes pre-
trained representations of biomedical names.

2.1 Encoder architecture

Our encoder architecture is a feedforward neural
network with Rectified Linear Unit (ReLU) as non-
linear activation function. This neural network
transforms a pretrained representation of a biomed-
ical name, after which this transformation is aver-
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min max mean stdev

ICD-10 247 40,519 3,414 8,693
SNOMED-CT | 397 19,114 3,532 4,094
(+ ambiguous | 1,108 23,915 4,990 5,134)

Table 2: Descriptive statistics about the number of
names per concept for our training data.

aged with the pretrained representation:

£(n) enc(unz) + Uy,
where f(n) is the output representation for a
biomedical name, u,, is its pretrained input rep-
resentation, and enc is the feedforward neural net-
work which transforms the input representation.
The averaging step ensures that the encoder archi-
tecture learns to update the pretrained input rep-
resentation rather than create an entirely new rep-
resentation. This makes our model more robust
against overfitting in few-shot learning settings.

)]

2.2 Training objectives

Our training objectives are based on the state-of-
the-art BNE model by Phan et al. (2019) and the
DAN model by Fivez et al. (2021b), which gener-
alizes the BNE model to any hierarchical level of
biomedical concepts. Our framework requires a set
of concepts C, where each concept ¢ € C' contains
a set of concept names C,,. The set of biomedical
names /N contains the union of all those sets of
concept names. We propose a simple multi-task
training regime which applies two training objec-
tives to each biomedical name n € N. We use
cosine distance as distance function d for both ob-
jectives.

Semantic similarity We enforce embedding sim-
ilarity between names that are from the same con-
cept by using a siamese triplet loss (Chechik et al.,
2010). This loss forces the encoding of a biomed-
ical name f(n) to be closer to the encoding of a
semantically similar name f(n,,s) than that of an
encoded negative sample name f(pcq), Within a
specified (possibly tuned) margin:

pos = d(f(n), f(npos))
neg = d(f(n), f(nneg))

Lsern, = max(pos — neg + margin, 0)

2

To select negative names during training we apply
distance-weighted negative sampling (Wu et al.,



2017) over all training names, since this has been
proven more effective than hard or random negative
sampling.

Conceptually grounded regularization To pre-
vent the model from overfitting on the semantic
similarity objective, we regularize it by grounding
the output representations to a stable and meaning-
ful target. Simple approximations of prototypical
concept representations can already be very effec-
tive as targets (Fivez et al., 2021a). Following the
model by Fivez et al. (2021b), we use a grounding
target which is applicable to any level of catego-
rization, from fine-grained concept distinctions to
higher-level groupings of names. This target is a
compromise between the contextual meaningful-
ness and conceptual meaningfulness objectives of
the BNE model. Rather than constraining a name
encoding either to its pretrained name representa-
tion or to a pretrained representation of its concept,
we minimize the distance to the average of both
pretrained representations:

1
Ue = 7= u
oz
U + Up 3)
Uground = 2

Lground = d(f(n), ugTound)

where the concept representation u. is approxi-
mated by averaging each pretrained embedding
representation u,, from the set of names C), belong-
ing to the concept.

This constraint implies that the dimensionality
of the encoder output should be the same as that
of the input. However, if the input dimensionality
is smaller than the desired output dimensionality,
this could be solved using e.g. random projections,
which work well for increasing the dimensionality
of neural encoder inputs (Wieting and Kiela, 2019).

Multi-task loss Our multi-task loss sums the
losses of the 2 training objectives:

L=alLsm+ ﬁLground (4)

where o and 3 are possible weights for the indi-
vidual losses. Since both losses directly reflect co-
sine distances, they are similarly scaled and don’t
require weighting to work properly. In our experi-
ments, « = = 1 showed the most robust perfor-
mance along all settings.
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2.3 Training data

We extract sets of high-level concepts and their
constituent names from 2 large-scale hierarchies
of disorder concepts, ICD-10 and SNOMED-CT.
Table 2 gives an overview of our data distributions.

ICD-10 We use the 2018 version of the ICD-10
coding system.! We select the 21 chapters as con-
cept labels, and assign the reference name of each
code in a chapter to its concept label. Table 1 gives
an example of how such a grouping includes di-
verse semantic relations.

SNOMED-CT We use the 2018AB release of
the UMLS ontology? to extract a directed on-
tological graph of SNOMED-CT concepts. We
then select the first-degree child nodes of concept
C0012634, which is the parent concept for all dis-
orders. We then remove those children which are
direct parents to other selected children, since they
are redundant for our purpose.

This leaves us with 87 concepts, to which we
assign the reference terms of all their child concepts
in the ontological graph as biomedical names. To
make this setup directly comparable to our ICD-10
setup, we select the 21 largest concepts. Finally,
we leave out ambiguous names which belong to
multiple concepts. Table 2 shows the impact on the
data distribution.

3 Experiments and discussion

3.1 Pretrained representations

We experiment with 3 pretrained name representa-
tions. As a first baseline, we use 300-dimensional
fastText (Bojanowski et al., 2017) word embed-
dings which we train on 76M sentences of pre-
processed MEDLINE articles released by Hakala
et al. (2016). We use average pooling (Shen et al.,
2018) to extract a 300-dimensional name repre-
sentation. As a second baseline, we average the
728-dimensional context-specific token activations
of a name extracted from the publicly released
BioBERT model (Lee et al., 2019).

As state-of-the-art reference, we extract 200-
dimensional name representations using the pub-
licly released pretrained BNE model with skipgram
word embeddings, BNE + SGy,,> which was trained
on approximately 16K synonym sets of disease

"https://www.cdc.gov/nchs/icd
https://uts.nlm.nih.gov/home.html
*https://github.com/minhcp/BNE


https://www.cdc.gov/nchs/icd
https://uts.nlm.nih.gov/home.html
https://github.com/minhcp/BNE

o
[
o

fastText
| --- IcD-10
—— SNOMED-CT

MayoSRS

e © o
] U
N >
)

w
o
L

e

average Spearman's rho
iy
[e¢]
N

e

o

o
L

I

N

IN
L

10
few-shot

Figure 1: Few-shot performance for fastText encoders
on MayoSRS, averaged over 5 random samples.

concepts in the UMLS, containing 156K disease
names.

3.2 Training details

We randomly sample a small fixed amount of
names from each concept in our training data as
actual few-shot training names. We then randomly
sample the same amount of names as validation
data to calculate the multi-task loss as stopping cri-
terion. This criterion is also used to finetune the
size of the encoder network. Using only 1 hidden
layer proved best in all settings, which leaves only
the dimensionality of this layer to be tuned.

Our encoder network is implemented in PyTorch
(Paszke et al., 2019). Adam optimization (Kingma
and Ba, 2015) is performed on a batch size of 16,
using a learning rate of 0.001 and a dropout rate
of 0.5. Input strings are first tokenized using the
Pattern tokenizer (Smedt and Daelemans, 2012)
and then lowercased. We use a triplet margin of
0.1 for the siamese triplet loss Lge,, defined in
Equation 2.

3.3 Results

We evaluate our trained encoders on 3 biomedical
benchmarks of semantic relatedness and similar-
ity, which allow to compare similarity scores be-
tween name embeddings with human judgments
of relatedness. MayoSRS (Pakhomov et al., 2011)
contains multi-word name pairs of related but dif-
ferent fine-grained concepts. UMNSRS (Pakho-
mov et al., 2016) contains only single-word pairs,
and makes a distinction between relatedness and
similarity, which is a more narrow form of related-
ness. Finally, EHR-RelB (Schulz et al., 2020) is
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EHR-RelB MayoSRS UMNSRS
(rel) (rel) (rel) (sim)
BioSyn 0.45 0.50 0.40 0.42
Fivez et al. (2021a) 0.67 0.56 0.56
fastText 0.39 0.44 0.47 0.48
BioBERT 0.34 0.23 0.18 0.26
BNE 0.47 0.63 0.54 0.58
SNOMED
fastText 0.43 0.51 0.46 0.51
BioBERT 0.40 0.31 0.32 0.38
BNE 0.53 0.63 0.55 0.60
ICD-10
fastText 0.43 0.55 0.52 0.56
BioBERT 0.35 0.34 0.32 0.38
BNE 0.51 0.65 0.56 0.60
S—1
fastText 0.44 0.55 0.46 0.52
BioBERT 0.39 0.33 0.35 0.42
BNE 0.54 0.67 0.52 0.58
I—S
fastText 0.45 0.54 0.46 0.51
BioBERT 0.39 0.33 0.37 0.42
BNE 0.54 0.67 0.53 0.58

Table 3: Spearman’s rank correlation coefficient be-
tween human judgments and similarity scores of name
embeddings, reported on semantic similarity (sim) and
relatedness (rel) benchmarks. The highest score is de-
noted in bold; the second highest is underlined.

much larger than the other benchmarks, and con-
tains multi-word concept pairs which are chosen
based on co-occurrence in electronic health records.
This ensures that the evaluated concept pairs are
actually relevant in function of downstream appli-
cations such as information retrieval.

We average all test results over 5 different ran-
dom training samples. We use cosine similarity as
similarity score for all baseline representations and
trained encoders. Figure 1 shows the impact of the
amount of few-shot training names on performance
when using fastText representations. Our model
already substantially improves over the baseline
with only 5 names per concept (105 in total), and
maintains consistent improvement up to 15 few-
shot names. This confirms that our approach is
well-suited to anticipate expected improvements
from training on large-scale hierarchies.

Table 3 shows the results on all benchmarks
for 15-shot learning. All encoders were tuned to
9,600 hidden dimensions. We include two state-of-
the-art biomedical name encoders in our compari-
son. Firstly, BioSyn (Sung et al., 2020) sums the
weighted inner products of fine-tuned BioBERT
representations and sparse TF-IDF representations
into one similarity score between two names. The
pre-trained model* for which we report results was

*https://github.com/dmis-lab/BioSyn
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Parent concept
Parent concept name

Validation mention

15-shot BNE
nebulous urine

double kidney and/or pelvis
Top 10 ranking

renal vein thrombosis
benign tumour of urethra
injury of male urethra

calculus of lower urinary tract ( disorder )
urinary obstruction due to nodular prostate ( disorder )

covered exstrophy of bladder ( disorder )
nephropathy caused by aminoglycoside ( disorder )

postprocedural bulbous urethral stricture

C0042075

disorder of the urinary system

urinary hesitancy

BNE
nebulous urine
calculus of lower urinary tract ( disorder )
urinary obstruction due to nodular prostate ( disorder )
double kidney and/or pelvis
genital oedema
perineal laceration during delivery , nos
abdominal hernia
covered exstrophy of bladder ( disorder )
heart :[ weak ] or [ failure nos ] ( disorder )
hourglass contraction of uterus

Table 4: A comparison between the rankings of 315 SNOMED-CT training names for the validation mention
urinary hesitancy. Non-matching names are underlined. While the pretrained BNE model makes various topical
associations, our 15-shot model using the BNE representations as input has learned to cluster around the semantics

of urinary tract disorders.

trained on the NCBI disease benchmark (Dogan
et al., 2014) for biomedical entity normalization.
Secondly, we include the results of the conceptually
grounded Deep Averaging Network by Fivez et al.
(2021a), which was trained on SNOMED-CT syn-
onym sets mapped into larger ICD-10 categories.

The results show various trends. Firstly, almost
all trained encoders improve over their input base-
lines for all benchmarks, regardless of the type of
input representation. Secondly, the performance in-
crease is consistent for both ICD-10 and SNOMED-
CT, even as their conceptual hierarchies are sub-
stantially different. Lastly, we also look at con-
tinual learning from SNOMED-CT to ICD-10 (S
— I) or vice versa (I — S), where we use the out-
put of the first model as input representations to
train the second model. This approach leads to sys-
tematic improvements for all representation types,
including the state-of-the-art BNE representations.
In other words, we provide tangible empirical evi-
dence that few-shot robust representations can al-
low for continual specialization in biomedical se-
mantics.

To better understand how our few-shot learning
approach can have a visible impact on various re-
latedness benchmarks, Table 4 gives an example
of nearest neighbor names from the training set
of SNOMED-CT names for the validation men-
tion urinary hesitancy. While the pretrained BNE
model makes various topical associations, our 15-
shot model using the BNE representations as input
has learned to cluster around the semantics of uri-
nary tract disorders. As this already generalizes
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to validation mentions, we can expect the model
to transfer this information to downstream applica-
tions wherever urinary tract disorders are relevant.
This applies to all 21 high-level topics which were
simultaneously encoded for both the ICD-10 and
SNOMED-CT ontologies.

4 Conclusion and future work

We have proposed a novel approach for scalable
few-shot learning of robust biomedical name rep-
resentations, which trains a simple encoder ar-
chitecture using only small subsamples of names
from higher-level concepts of large-scale hierar-
chies. Our model works for various pretrained
input embeddings, including already specialized
name representations, and can accumulate infor-
mation over various hierarchies to systematically
improve performance on biomedical relatedness
benchmarks. Future work will investigate whether
such improvements trickle down properly to down-
stream biomedical NLP tasks.
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