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Abstract 

First-hand experience related to any 

changes of one’s health condition and 

understanding such experience can play an 

important role in advancing medical 

science and healthcare. Monitoring the safe 

use of medication drugs is an important task 

of pharmacovigilance, and first-hand 

experience of effects about consumers’ 

medication intake can be valuable to gain 

insight into how our human body reacts to 

medications. Social media have been 

considered as a possible alternative data 

source for gathering personal experience 

with medications posted by users. 

Identifying personal experience tweets is a 

challenging classification task, and efforts 

have been made to tackle the challenges 

using supervised approaches requiring 

annotated data. There exists an abundance 

of unlabeled Twitter data, and being able to 

use such data for training without suffering 

in classification performance is of great 

value, which can reduce the cost of 

laborious annotation process. We 

investigated two semi-supervised learning 

methods, with different mixes of labeled 

and unlabeled data in the training set, to 

understand the impact on classification 

performance. Our results from both 

pseudo-label and consistency 

regularization methods show that both 

methods generated a noticeable 

improvement in F1 score when the labeled 

set was small, and consistency 

regularization could still provide a small 

gain even a larger labeled set was used. 

1 Introduction 

First-hand experience related to any changes of 

one’s health condition and understanding such 

experience can play an important role in advancing 

medical science and healthcare. What has 

happened since the COVID-19 pandemic started 

demonstrates potential values and applications of 

such experiential knowledge, ranging from 

understanding the symptoms of the viral infection, 

to learning the effects after vaccination – personal 

experience shared on social media pertaining to 

symptoms of infection and side effects of vaccine 

may help us gain insight into the virus and vaccine, 

and ultimately advance medical science and 

clinical practice. Post-market surveillance is an 

important activity of pharmacovigilance, and 

experiential information from the users of the 

therapeutic products can help supplement the 

knowledge of medication effects gathered with 

other data sources. Many nations recognized 

importance of patient reporting of drug effects and 

its scientific value (van Hunsel et al., 2012), and 

potential benefits of patient reported drug events 

were studied (de Langen et al., 2008; Blenkinsopp 

et al., 2007; Avery et al., 2011; Anderson et al., 

2011). Patient reporting could help identify new 

adverse drug effects sooner than that by healthcare 

professionals alone (Egberts et al., 1996). A study 

by McLernon and colleagues found that patient 

reports contained a higher median number of 

suspected adverse drug reactions (ADRs) per 

report, and described reactions in more detail, and 

they were richer in descriptions of reactions than 

those from healthcare providers (McLernon et al., 

2010). One study showed that consumers reported 

seven categories of ADRs unreported by the other 

sources, and the investigators recommended that 

consumers should be included in systematic drug 

surveillance systems (Aagaard et al., 2009). 

It is a primary concern of monitoring the health 

conditions as well as the safe use of pharmaceutical 

products to find a rich and accessible data source 

and build an efficient system to process and 

analyze the data.  
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People share their personal health experience on 

social media thanks to their prevalence. As such, 

social media have been considered an alternative 

and active data source for studying health 

surveillance. Platforms like Twitter allow users to 

express their health condition freely online. There 

exist many studies of using social media for health 

surveillance, such as influenza outbreak detection 

(Culotta et al., 2010), public health analyzing (Paul 

et al., 2011), dental pain surveillance (Heaivilin et 

al., 2011). 

Personal experience tweets (PETs) related to 

medication use are defined as Twitter posts 

expressing one’s first-hand personal encounters or 

observations about their health conditions after the 

administration of pharmaceutical drugs. 

Medication effects can be undesirable feelings 

caused by medication’s side-effects which 

exacerbate one’s health condition, or beneficial 

effects which help alleviate one’s health condition 

after medication intake. Below are examples of 

personal experience tweets (PETs) pertaining to 

medication use (the medication names are in 

boldface and experiences are underscored): 

“codeine got me feeling sloooow xanax got 

me sleeping” 

“this vicodin is putting me to sleep” 

“morphine actual makes ur face so itchy 

think ive scratched ma whole face off” 

As a general purpose social media platform, 

Twitter contains posts on almost all thinkable 

topics and many of them are unrelated to health, let 

alone misspellings, incorrect grammas, and 

creative short texts found in the posts. Therefore, 

differentiating personal experience tweets (PETs) 

from other irrelevant or noisy tweets is challenging. 

Efforts have been made in previous endeavors. 

Personal pronouns were chosen as the feature to 

distinguish PETs from irrelevant tweets such 

advertisements, news, even spams (Jiang and 

Zheng, 2013). An effort was made to engineer 

features including Twitter specific features, n-

grams, punctuation elements, and topics, but the 

topic feature was discarded because of its 

significant efforts required to achieve minimum 

merit of classification performance improvement 

(Alvaro et al., 2015). Later, a set of 22 Twitter 

features including textual data and metadata was 

engineered by Jiang and his colleagues (2016) and 

conventional machine learning methods such as 

decision tree were applied to predict PETs. The 

concept of deep grammulator was proposed to 

include a textual feature with expressions in one 

class but not in the opposite class, to enhance the 

discriminatory power of the classification (Calix et 

al., 2017). In recent studies, application of neural 

embedding and recurrent neural network (LSTM) 

was investigated to improve the classification 

performance (Jiang et al., 2018). In the latest 

development, pre-trained attention-based language 

model approaches based on BERT and RoBERTa 

language models were explored to have achieved 

even better classification performance (Jiang et al., 

2019, Zhu et al., 2020). 

However, all previous attempts are based on 

fully supervised learning mechanisms, requiring 

the laborious effort of annotation which can be 

cost-prohibitive if a large amount of accurately 

labeled data is needed with a limited budget. 

Unlike labeling text data in formal writing, 

annotating Twitter posts can be especially 

challenging, because of various complexities 

associated with the data such as misspellings, use 

of nonstandard language, and lack of sufficient 

context within the limited space. In addition, 

supervised methods are widely used on social 

media data in health-related tasks due to their 

higher accurate than unsupervised approaches, 

requiring manual annotation of large corpora of 

data. Furthermore, the subjectivity of labeling 

social media data is of concern. Inter-annotator 

agreements tend to be relatively low for social 

media–based annotation tasks even with domain 

experts as annotators (O’Connor, 2020). 

On social media, there exists an abundance of 

unannotated data, and being able to use such large 

amount of unlabeled data for training may improve 

the classification performance, without spending a 

significant amount of resources in annotation. In 

this study, we investigate how the classification 

performance in predicting personal experience 

tweets related to medication use will be affected 

using a relatively small amount of annotated data 

instances in training an attention-based language 

model.  

2 Background 

Data and features determine the upper limit of 

machine learning, while models and algorithms can 

only approach this upper limit. For most machine 
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learning tasks, the amount of labeled data directly 

affects the final learning performance.  

In order to obtain a large set of labeled data, 

researchers usually need to spend a significant 

amount of time to annotate data, and the cost of 

annotation process can be drastic and sometimes 

unaffordable. On the other hand, there is 

abundance of unlabeled data which are easily 

accessible. Semi-supervised learning is a 

promising approach in machine learning which 

uses the combination of both of labeled and 

unlabeled data. Studies have shown that it can 

achieve considerable improvement for various 

tasks with a small labeled dataset in conjunction 

with a large set of unlabeled data.  

Based on the cluster assumption, semi-

supervised learning methods are mainly classified 

into two different categories: proxy-label and 

consistency regularization. The proxy-label 

method uses the supervised model or its variants to 

generate proxy labels for the unlabeled data, and 

the proxy labels are mixed with true labels to 

provide additional features to benefit training 

process. A typical implementation of such 

approach is the pseudo-label method as described 

below (Lee 2013). 

Consistency regularization is a relatively new 

method. In consistency training, models are 

regularized to be invariant to a small amount of 

noise applied to inputs or hidden neurons. The 

invariance can be all or parts of hidden states in the 

network, or the outputs of the model. Common 

methods include Temporal Ensembling (Laine et 

al., 2016), Mean Teachers (Tarvainen et al., 2017), 

and Unsupervised Data Augmentation (Xie et al., 

2019). 

3 Method  

The pipeline of data processing and analysis of our 

methods is depicted in Figure 1. Our approach of 

identifying personal experience tweets was based 

upon the two semi-supervised learning methods 

mentioned above: (1) Pseudo-Label which 

generates pseudo labels for unlabeled tweets and 

trains the model with labeled tweets together in a 

supervised behavior, and (2) Consistency 

Regularization which does not generate any labels 

for unlabeled data but tries to keep the consistency 

of the model outputs with the same inputs injected 

with some stochastic noise.  

Our language model is based upon the Google’s 

attention-based Bidirectional Encoder 

Representations from Transformers (BERT) 

(Devlin et al., 2018). Although the Google team 

highly recommends using its pre-trained language 

 

Figure 1. Pipeline of Data Processing and 

Analysis. 

 

Figure 2. Setup of Pseudo-label Based Semi-

supervised Learning. 
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model, a Microsoft team demonstrated that the 

domain-specific BERT language model can 

perform better (Gu et al., 2020), and we adopted 

Microsoft’s approach in this work.  

3.1 Pseudo-Label 

Figure 2 shows our pseudo-label based method. A 

naive but efficient semi-supervised learning 

structure was implemented in this method by 

combining both labeled and unlabeled (pseudo-

labeled) sets of data. First, the model was trained in 

a fully supervised manner with the labeled set, and 

the trained model was used to assign pseudo labels 

to unlabeled tweets. Later, a subset of unlabeled 

tweets was chosen for prediction by the initial 

model. From the prediction results, each unlabeled 

tweet was assigned a pseudo-label whose class has 

the maximum predicted probability. Due to the 

class imbalance of the corpus of labeled tweets 

(Table 1 below), the composition of the unlabeled 

train set was made up of the classes which were 

inversely proportional to the annotated corpus 

(PET: non-PET = 3:1). Finally, both sets of labeled 

and pseudo-labeled tweets were combined to train 

the model. 

3.2 Consistency Regularization 

For consistency training, the framework of П-

model (Laine et al., 2016) was used for reference. 

Figure 3 and Algorithm 1 shows our method. In this 

approach, two parts of the loss function were 

considered: (1) the classification loss, which is 

usually the cross entropy, and (2) the consistency 

loss. The classification loss was only applied to the 

labeled tweets while the consistency loss was for 

all. During training, each input was evaluated twice 

with hidden noise injection, and the difference 

between the two evaluation results was calculated 

by the squared error. In combining these two parts 

of loss, a weight variable was applied to scale the 

consistency loss. The weight variable was initialed 

to zero, allowing the training loss to be dominated 

by classification so that the model could learn from 

labeled data first, and later the weight variable was 

recalculated in the training epochs to reflect the 

consistency loss consistent with the data. The value 

of this weight would be adjusted to a fixed level 

according to the number of labeled and unlabeled 

data used in training. It was an important and tricky 

step. This is because if the value is too small, the 

training is more likely to be supervised and prone 

to overfitting, and on the contrary, the model 

trained with an overly large weight will noticeably 

deteriorate, making the predictions less 

meaningful. Refer to Appendix A for the details of 

training parameters. 

Dropout regularization was chosen as the noise 

injection method in the hidden layer of the model. 

Because the dropout performed stochastically, the 

model outputs were different from training even 

 

Figure 3. Setup of Consistency Regularization 

Require: xi = training stimuli 

Require: L = labeled set 

Require: yi = labels of labeled data 

Require: w(t) = weight ramp-up function for 

consistency loss 

Require: f(x)= neural network with dropout 

and parameter  

 

for t in [1, num_epochs] do 

  for each minibatch B do 

      𝑧𝑖∈𝐵   f(𝑥𝑖∈𝐵) 

      𝑧′𝑖∈𝐵 f(𝑥𝑖∈𝐵) 

      𝑙𝑜𝑠𝑠 −
1

|𝐵|
∑ (𝑦𝑖log𝑧𝑖 + (1 −𝑖∈(𝐵∩𝐿)

𝑦𝑖)log (1 − 𝑧𝑖)) +

𝑤(𝑡)
1

|𝐵|
∑ |𝑧𝑖 − 𝑧𝑖

′|2
𝑖∈𝐵  

     Update  by using Adam 

   end for 

end for 

Algorithm 1. Pseudo code of consistency 

regularization 
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with the same inputs. Therefore, there were two 

different evaluation results for each input, and the 

expected goal was to minimize them. 

3.3 Network Structure and Baseline 

Pre-trained language models such as Bidirectional 

Encoder Representations from Transformers 

(BERT) (Devlin et al., 2018), Robustly Optimized 

BERT Pretraining Approach (RoBERTa) (Liu et 

al., 2019) and Generative Pre-trained Transformer 

(GPT) (Radford et al., 2019) have achieved the 

state-of-the-art performances in many NLP 

benchmarks and downstream tasks. Efforts have 

been made to apply the pre-trained BERT and 

RoBERTa (and its continuous pre-training) 

language models in identifying PETs (Jiang et al., 

2019; Zhu et al., 2020) which demonstrated 

significant improvement in all classification 

measures. However, these language models are all 

pre-trained using general-domain texts such as 

news, Wikipedia and/or BookCorpus which may 

not have significant relevance to Twitter posts, 

especially pertaining to personal health experience. 

Gu and colleagues (Gu et al., 2020) found that the 

language model learned with domain specific data 

can provide substantial gains over the general 

domain language model, and domain-specific 

learning from the scratch is better than the one that 

starts with the general domain model and is 

updated with the specific domain data. Therefore, 

we decided to pre-train a domain-specific BERT 

language model from scratch to investigate its 

performance. The pre-training process used 10M 

unlabeled medication-related tweets we collected, 

and a new set of in-domain sub-word vocabulary 

was generated. See Appendix A for detail settings. 

This newly pre-trained language model was 

utilized as a network backend for both semi-

supervised learning approaches as well as the 

baseline method. 

For the baseline, supervised learning was 

considered. Following the official transfer learning 

guideline, the domain-specific BERT was 

transferred for binary classification and trained in a 

fully supervised way with the same labeled data as 

semi-supervised methods used. 

3.4 Data 

A set of 22 million raw tweets was collect with 

Twitter Streaming APIs from 25 August 2015 to 7 

December 2016, and another set of 52 million 

tweets posted between 2006 as 2017 was collected 

using a home-made crawler which followed the 

crawling policy documented in the Twitter.com’s 

robots.txt file. To clean the collected raw data, both 

sets were filtered by a set of brand and generic 

medication names, and duplicate as well as non-

English tweets were all eliminated. The above pre-

processing yielded a total 10 million tweets, among 

which a collection of 12,331 (12K) tweets was 

selected and annotated according to the annotation 

guideline which defines what is a PET and a non-

PET. Table 1 lists the composition of labeled 

tweets. 

First, a corpus of 10 million unlabeled tweets 

was used to build a sub-word vocabulary and pre-

training domain-specific BERT language model. 

To avoid any possible data leakage, the 12K 

annotated tweets were excluded from the 10 

million set. The set of 12K labeled tweets was used 

for both supervised baseline method and the 

labeled part of semi-supervised methods. As for the 

unlabeled part of semi-supervised learning, a 

stochastic subset of was randomly generated from 

the 10 million unlabeled corpus.  

3.5 Implementation 

Our two semi-supervised learning methods were 

evaluated in the task of identifying personal 

experience tweets related to medication effects. To 

simulate the situation of the lack of labeled data and 

investigate how semi-supervised learning would 

perform for our task, both of our methods were 

tested with different percentages of the labeled data 

in our training set, and we evaluated the 

performance of the semi-supervised methods along 

with the fully supervised settings as the baseline.  

Ten-fold cross-validation was applied to both 

supervised and semi-supervised approaches, and 

the mean of each classification measure was 

collected. For each fold, 10% of labeled tweets was 

partitioned as the test set which was only used for 

testing the classification performance. The labeled 

training set was randomly selected from the 

remaining 90% tweets by a proportion – we set six 

different proportions: 10%, 30%, 50%, 70%, 90% 

and 100% to investigate how the size of labeled 

data would affect the performance. Note that the 

initial training of pseudo-labeling method used the 

 PETs Non-PETs Total 

Count 2,962 9,369 12,331 

Table 1. Composition of annotated tweets. 
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same proportion of labeled data as the supervised 

baseline as well as the consistency regularization 

method to initial the model for assigning pseudo 

labels of unlabeled tweets. A fixed random seed 

was used to ensure that all methods have the same 

partition of data. 

For both semi-supervised learning methods, a 

collection of 10K of unlabeled tweets was used as 

the unlabeled training set and mixed up with 

labeled ones. More specifically, in consistency 

training, the unlabeled train set was simply 

generated from the 10M unlabeled corpus by a 

stochastic sampler. But for pseudo-label, it was 

time consuming to predict for 10M tweets, and it 

was observed that the prediction of unlabeled data 

was imbalanced – the number of non-PETs was 

about ten times more than that of PETs. In other 

words, the training set would be more imbalanced 

if the 10K unlabeled set were to be used before 

assigning pseudo labels. To address the issue, and 

keep the training time tolerable, a set of 100K 

unlabeled tweets was chosen and assigned with 

pseudo labels, and afterwards, a training set of 10K 

unlabeled tweets was composed from the 100K 

tweets with pseudo labels. To balance the labeled 

set with a 1:3 ratio for PET: non-PET (Table 1), our 

pseudo-labeled training set was made up of 7,500 

tweets with the PET pseudo-label and 2500 the 

non-PET pseudo label. 

4 Results and Discussions  

Listed in Table 2 are the measures of classification 

performance of our semi-supervised methods 

along with the supervised baseline in different 

proportions of labeled data (the highest values are 

in boldface).  

As can be seen in Table 2, no single method 

achieved the best performance in all classification 

measures. The pseudo-label-based method 

achieved the best recall but showed the poorest 

accuracy, precision and AUC/ROC, in all the 

proportions of the labeled tweets used. On the 

contrary, the consistency regularization approach 

demonstrated the completely opposite 

%1 Method2 Acc. (PET) Recall (PET) Prec. (PET) F1 (PET) AUC/ROC 

10 C. 0.8597 0.6239 0.7500 0.6786 0.9079 

 P. 0.8390 0.7512 0.6500 0.6916 0.8944 

 S. 0.8466 0.6607 0.7038 0.6706 0.9048 

30 C. 0.8723 0.6894 0.7559 0.7206 0.9235 

 P. 0.8528 0.7802 0.6661 0.7180 0.9155 

 S. 0.8638 0.6904 0.7325 0.7081 0.9199 

50 C. 0.8765 0.6945 0.7689 0.7294 0.9287 

 P. 0.8591 0.7927 0.6798 0.7303 0.9211 

 S. 0.8657 0.7474 0.7198 0.7280 0.9266 

70 C. 0.8797 0.7134 0.7678 0.7392 0.9313 

 P. 0.8646 0.7765 0.6963 0.7338 0.9239 

 S. 0.8755 0.7171 0.7556 0.7338 0.9289 

90 C. 0.8829 0.7316 0.7680 0.7488 0.9338 

 P. 0.8685 0.7846 0.7037 0.7415 0.9266 

 S. 0.8758 0.7552 0.7383 0.7452 0.9315 

100 C. 0.8855 0.7245 0.7802 0.7508 0.9344 

 P. 0.8678 0.7937 0.6990 0.7427 0.9278 

 S. 0.8792 0.7620 0.7447 0.7519 0.9335 
1. the percentage of labeled data used. 

2. ‘C’ for consistency regularization, ‘P’ for pseudo-label, ‘S’ for supervised baseline. 

Table 2. Classification performance  

% Method F1 AUC/ROC 

10 C. 2.749x10-1 5.534x10-2 

 P. 3.676x10-2 5.188x10-5 

30 C. 3.653x10-2 6.923x10-3 

 P. 3.828x10-2 3.372x10-4 

50 C. 4.115x10-1 2.538x10-2 

 P. 3.002x10-1 4.669x10-5 

70 C. 7.326x10-2 1.331x10-2 

 P. 4.965x10-1 5.089x10-4 

90 C. 1.979x10-1 4.581x10-3 

 P. 6.620x10-2 9.336x10-4 

100 C. 3.724x10-1 1.018x10-1 

 P. 3.222x10-2 3.619x10-4 

Table 3. T-test results (p-values) between 

baseline and semi-supervised learning methods 

(C. and P.) Boldface figures: < 0.05 
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performances, and notably its AUC/ROC, a more 

comprehensive measure for discriminability, is 

consistently higher than other two methods 

(Fawcett, 2006) – this may indicate that the 

consistency regularization method performed 

better in correctly predicting each class of data. 

It seems to be inconclusive to state which one is 

the winner on a single classification measure. A 

higher accuracy does not necessarily indicate that 

the method is better because the accuracy is 

calculated based upon the prediction results of both 

positive and negative classes. The class imbalance 

in our test set may contribute to a higher accuracy 

if the majority class dominates. Recall and 

precision are of equal importance but neither of 

them alone can measure a network independently 

because recall focuses on the sensitivity of positive 

class while precision just measures the percentage 

of true positive samples in the predicted class. The 

F1 measure represents the harmonic mean 

calculated from both recall and precision, along 

with AUC/ROC, they have been considered as the 

most comprehensive measure among these five 

measures. Figure 4 shows the changes of F1 value 

for each method along with the proportions of the 

labeled data used. To confirm if the improvement 

difference does exist, we conducted statistical 

analysis (paired t-test) on the results between semi-

supervised learning methods and baseline. We set 

the null hypothesis to that the difference between a 

pair of method does not exist while the labeled data 

remain the same. Table 3 shows the results of 

statistical analysis on F1 and AUC/ROC between 

the baseline and two semi-supervised learning 

methods. We set the p-value threshold to 0.05, 

meaning that any p-value less than 0.05, and if its 

corresponding value of performance measure 

larger than that of baseline, it indicates that the 

improvement difference does exist with statistical 

significance and it is not due to chance (these 

values are shown in boldface). 

 As shown in Figure 4, it is clear that both semi-

supervised learning methods performed better than 

supervised baseline when a small amount of 

labeled data was used. In other words, semi-

supervised learning may help us build a more 

robust PET prediction network in the situation 

where only a limited or small amount of the labeled 

data is available. 

More specifically, according to Figure 4 and its 

corresponding p-values, the pseudo-label based 

method showed an outstanding F1 performance in 

tiny labeled sets (about 10% and 30% of the labeled 

data), and its improvement is of statistical 

significance. However, its performance appeared 

to deteriorate when the training set contained a 

large amount of annotated tweets (about more than 

70% of labeled data). A possible explanation of this 

phenomenon might be the mislabeling of unlabeled 

tweets, which may mislead the training process if it 

has more labeled data than unlabeled one. 

The consistency regularization method appears 

to be more stable than the pseudo-label method. It 

demonstrates consistently good performance even 

with the larger labeled sets (about 90% of labeled 

data), except that it shows a slight but not 

significantly lag behind the supervised baseline in 

F1 when the training set contains all of the labeled 

data. Although the statistical analysis seems does 

not show that the improvement in F1 is significant, 

the constant outperformance in AUC/ROC could 

be confirmed by the t-test – the larger AUC/ROC 

  

Figure 4. F1 and AUC/ROC Measures for Each Method. 
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values in 30%, 50%, 70% and 90% of labeled data 

demonstrated their statistical significance. In the 

case of 10% of labeled data, the t-test results do not 

confirm the existence of performance differences. 

This may be attributed to the fact that too many 

unlabeled instances dominate the training set, 

which confused models in training. It may be 

concluded that Consistency Regularization is 

consistently better if the training data have more 

than 10% but less than 100% labeled instances and 

performs equally well with 100% labeled data in 

this task. However, it seems not performing well as 

the pseudo-label one in F1 when very few tweets 

are labeled (about 10%). This may indicate that 

labels are important in contributing to the 

performance, and the pseudo-label approach may 

be more suitable for the training with an extremely 

small labeled set, whereas consistency 

regularization seems to perform well in other 

situations. 

5 Conclusion 

In this study, we investigated classification 

performance using semi-supervised learning in 

identifying personal experience tweets. Two 

methods of semi-supervision were studied: 

pseudo-label and consistency regularization. Our 

results show that either of the methods performs 

outstandingly well in individual classification 

measures, in comparison with the supervised 

baseline method. However, the F1 and AUC/ROC 

scores show that both could enhance the network 

performance when a small size of the labeled set 

was used, and consistency regularization 

performed consistently well even with the datasets 

containing high number of labeled instances. In 

summary, either semi-supervised method 

performed well in predicting PETs with a small 

amount of labeled instances in the training set, 

which could significantly reduce the annotation 

effort. Although this study focused on the personal 

experience pertaining to medication effects, it is 

conceivable that our semi-supervised approach can 

help other health-related studies where personal 

experience is needed. 
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A Setup and Training Parameters 

All networks were trained by Adam optimizer. For 

supervised baseline and the supervised initial 

training of pseudo-label method, we used the 

parameters suggested by the BERT’s official fine-

tuning guideline with learning rate being 1e-5, and 

training with a batch size of 32 for two epochs. For 

the semi-supervised learning, both methods were 

trained with a batch size of 128, started with a 

learning rate of 1e-5, then progressed with linear 

decay in four (for pseudo-label) and five (for 

consistency regularization) epochs. 

The unsupervised weight variable used in 

consistency training was set by following the setup 

of П-model (Laine et al., 2016). A Gaussian curve 

exp[-5(1 - T)2] was used to ramp-up the weight, 

where T was increased linearly from zero to one 
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during the ramp-up period. We set the first three 

epochs as the period to ramp-up the weight, and the 

maximum value of this weight variable was set to 

wmax * M / N where M is the number of labeled 

tweets and N is the total number of train set. wmax 

was manually set to 1 in this task. 

The structure of domain-specific language 

model was based on BERT which has 12 layers, 

768 hidden neurons and 12 self-attention heads. 

The pre-training process used masked language 

model task only and the next sentence prediction 

was discarded. Following the official guideline of 

pre-training settings, fifteen percent (15%) of 

words in each tweet were masked by special 

[MASK] tokens and the model is trained to predict 

the masked token correctly. We trained the 

language model with 10M unlabeled tweets for 

400K steps with a batch size of 512. The learning 

rate started with zero, and warmed up to 1e-4 in 

first one thousand steps and then linearly decayed 

to zero in the rest of training steps. 

A sub-word vocabulary with about 50K tokens 

was generated by applying WordPiece algorithm 

(Schuster et al., 2012) in our 10M unlabeled tweets. 

Our implementation was based on TensorFlow 

(www.tensorflow.org) and Transformers 

(huggingface.co/transformers). 

http://www.tensorflow.org/
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