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Abstract

Concept normalization, the task of linking
textual mentions of concepts to concepts in
an ontology, is critical for mining and an-
alyzing biomedical texts. We propose a
vector-space model for concept normalization,
where mentions and concepts are encoded via
transformer networks that are trained via a
triplet objective with online hard triplet min-
ing. The transformer networks refine exist-
ing pre-trained models, and the online triplet
mining makes training efficient even with hun-
dreds of thousands of concepts by sampling
training triples within each mini-batch. We
introduce a variety of strategies for searching
with the trained vector-space model, including
approaches that incorporate domain-specific
synonyms at search time with no model retrain-
ing. Across five datasets, our models that are
trained only once on their corresponding on-
tologies are within 3 points of state-of-the-art
models that are retrained for each new domain.
Our models can also be trained for each do-
main, achieving new state-of-the-art on multi-
ple datasets.

1 Introduction

Concept normalization (aka. entity linking or entity
normalization) is a fundamental task of information
extraction which aims to map concept mentions in
text to standard concepts in a knowledge base or
ontology. This task is important for mining and an-
alyzing unstructured text in the biomedical domain
as the texts describing biomedical concepts have
many morphological and orthographical variations,
and utilize different word orderings or equivalent
words. For instance, heart attack, coronary attack,
MI, myocardial infarction, cardiac infarction, and
cardiovascular stroke all refer to the same concept.
Linking such terms with their corresponding con-
cepts in an ontology or knowledge base is critical
for data interoperability and the development of
natural language processing (NLP) techniques.

Research on concept normalization has grown
thanks to shared tasks such as disorder normaliza-
tion in the 2013 ShARe/CLEF (Suominen et al.,
2013), chemical and disease normalization in
BioCreative V Chemical Disease Relation (CDR)
Task (Wei et al., 2015), and medical concept nor-
malization in 2019 n2c2 shared task (Henry et al.,
2020), and to the availability of annotated data
(Doğan et al., 2014; Luo et al., 2019). Existing
approaches can be divided into three categories:
rule-based approaches using string-matching or dic-
tionary look-up (Leal et al., 2015; D’Souza and Ng,
2015; Lee et al., 2016), which rely heavily on hand-
crafted rules and domain knowledge; supervised
multi-class classifiers (Limsopatham and Collier,
2016; Lee et al., 2017; Tutubalina et al., 2018; Niu
et al., 2019; Li et al., 2019), which cannot gener-
alize to concept types not present in their training
data; and two-step frameworks based on a non-
trained candidate generator and a supervised can-
didate ranker (Leaman et al., 2013; Li et al., 2017;
Liu and Xu, 2017; Nguyen et al., 2018; Murty et al.,
2018; Mondal et al., 2019; Ji et al., 2020; Xu et al.,
2020), which require complex pipelines and fail if
the candidate generator does not find the gold truth
concept.

We propose a vector space model for concept
normalization, where mentions and concepts are en-
coded as vectors – via transformer networks trained
via a triplet objective with online hard triplet min-
ing – and mentions are matched to concepts by vec-
tor similarity. The online hard triplet mining strat-
egy selects the hard positive/negative exemplars
from within a mini-batch during training, which
ensures consistently increasing difficulty of triplets
as the network trains for fast convergence. There
are two advantages of applying the vector space
model for concept normalization: 1) it is compu-
tationally cheap compared with other supervised
classification approaches as we only compute the
representations for all concepts in ontology once
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after training the network; 2) it allows concepts
and synonyms to be added or deleted after the net-
work is trained, a flexibility that is important for
the biomedical domain where frequent updates to
ontologies like the Unified Medical Language Sys-
tem (UMLS) Metathesaurus1 are common. Unlike
prior work, our simple and efficient model requires
neither negative sampling before the training nor a
candidate generator during inference.

Our work makes the following contributions:

• We propose a triplet network with online
hard triplet mining for training a vector-space
model for concept normalization, a simpler
and more efficient approach than prior work.

• We propose and explore a variety of strate-
gies for matching mentions to concepts using
the vector-space model, with the most suc-
cessful being a simple sieve-based approach
that checks domain-specific synonyms before
domain-independent ones.

• Our framework produces models trained on
only the ontology – no domain-specific train-
ing – that can incorporate domain-specific
concept synonyms at search time without re-
training, and these models achieve within 3
points of state-of-the-art on five datasets.

• Our framework also allows models to be
trained for each domain, achieving state-of-
the-art performance on multiple datasets.

The code for our proposed framework is available
at https://github.com/dongfang91/
Triplet-Search-ConNorm.

2 Related work

Earlier work on concept normalization focuses on
how to use morphological information to conduct
lexical look-up and string matching (Kang et al.,
2013; D’Souza and Ng, 2015; Leaman et al., 2015;
Leal et al., 2015; Kate, 2016; Lee et al., 2016; Jon-
nagaddala et al., 2016). They rely heavily on hand-
crafted rules and domain knowledge, e.g., D’Souza
and Ng (2015) define 10 types of rules at different
priority levels to measure morphological similarity
between mentions and candidate concepts in the
ontologies. The lack of lexical overlap between
concept mention and concept in domains like so-
cial media, makes rule-based approaches that rely
on lexical matching less applicable.

1https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
index.html

Supervised approaches for concept normaliza-
tion have improved with the availability of anno-
tated data and deep learning techniques. When
the number of concepts to be predicted is small,
classification-based approaches (Limsopatham and
Collier, 2016; Lee et al., 2017; Tutubalina et al.,
2018; Niu et al., 2019; Li et al., 2019; Miftahut-
dinov and Tutubalina, 2019) are often adopted,
with the size of the classifier’s output space equal
to the number of concepts. Approaches differ in
neural architectures, such as character-level con-
volution neural networks (CNN) with multi-task
learning (Niu et al., 2019) and pre-trained trans-
former networks (Li et al., 2019; Miftahutdinov
and Tutubalina, 2019). However, classification ap-
proaches struggle when the annotated training data
does not contain examples of all concepts – com-
mon when there are many concepts in the ontology
– since the output space of the classifier will not
include concepts absent from the training data.

To alleviate the problems of classification-based
approaches, researchers apply learning to rank in
concept normalization, a two-step framework in-
cluding a non-trained candidate generator and a su-
pervised candidate ranker that takes both mention
and candidate concept as input. Previous candi-
date rankers have used point-wise learning to rank
(Li et al., 2017), pair-wise learning to rank (Lea-
man et al., 2013; Liu and Xu, 2017; Nguyen et al.,
2018; Mondal et al., 2019), and list-wise learning
to rank (Murty et al., 2018; Ji et al., 2020; Xu et al.,
2020). These learning to rank approaches also have
drawbacks. Firstly, if the candidate generator fails
to produce the gold truth concept, the candidate
ranker will also fail. Secondly, the training of candi-
date ranker requires negative sampling beforehand,
and it is unclear if these pre-selected negative sam-
ples are informative for the whole training process
(Hermans et al., 2017; Sung et al., 2020).

Inspired by Schroff et al. (2015), we propose
a triplet network with online hard triplet mining
for concept normalization. Our framework sets up
concept normalization as a one-step process, cal-
culating similarity between vector representations
of the mention and of all concepts in the ontol-
ogy. Online hard triplet mining allows such a vec-
tor space model to generate triplets of (mention,
true concept, false concept) within a mini-batch,
leading to efficient training and fast convergence
(Schroff et al., 2015). In contrast with previous
vector space models where mention and candidate

https://github.com/dongfang91/Triplet-Search-ConNorm
https://github.com/dongfang91/Triplet-Search-ConNorm
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
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concepts are mapped to vectors via TF-IDF (Lea-
man et al., 2013), TreeLSTMs (Liu and Xu, 2017),
CNNs (Nguyen et al., 2018; Mondal et al., 2019)
or ELMO (Schumacher et al., 2020), we generate
vector representations with BERT (Devlin et al.,
2019), since it can encode both surface and seman-
tic information (Ma et al., 2019).

There are a few similar works to our vector
space model, CNN-triplet (Mondal et al., 2019),
BIOSYN (Sung et al., 2020), RoBERTa-Node2Vec
(Pattisapu et al., 2020), and TTI (Henry et al.,
2020). CNN-triplet is a two-step approach, requir-
ing a generator to generate candidates for train-
ing the triplet network, and requiring various em-
bedding resources as input to CNN-based encoder.
BIOSYN, RoBERTa-Node2Vec, and TTI are one-
step approaches. BIOSYN requires an iterative can-
didate retrieval over the entire training data during
each training step, requires both BERT-based and
TF-IDF-based representations, and performs a vari-
ety of pre-processing such as acronym expansion.
Both RoBERTa-Node2Vec and TTI use a BERT-
based encoder to encode the mention texts into a
vector space, but they differ in how to generate vec-
tor representations for medical concepts. Specifi-
cally, RoBERTa-Node2Vec uses a Node2Vec graph
embedding approach to generate concept represen-
tations, and fixes such representations during train-
ing, while TTI randomly initializes vector represen-
tations for concepts, and keeps such representations
learnable during training. Note that none of these
works explore search strategies that allow domain-
specific synonyms to be added without retraining
the model, while we do.

3 Proposed methods

We define a concept mention m as a text string in a
corpus D, and a concept c as a unique identifier in
an ontology O. The goal of concept normalization
is to find a mapping function f that maps each tex-
tual mention to its correct concept, i.e., c = f(m).
We define concept text t as a text string denoting
the concept c, and t ∈ T (c), where T (c) is all the
concept texts denoting concept c. Concept text may
come from an ontology, t ∈ O(c), where O(c) is
the synonyms of the concept c from the ontology
O, or from an annotated corpus, t ∈ D(c), where
D(c) is the mentions of the concept c in an an-
notated corpus D. T (c) will allow the generation
of tuples (t, c) such as (MI,C0027051) and (My-
ocardial Infarction,C0027051). Note that, for a

tp
heart
attack

BERT
encoder

V (tp)

ti
myocardial
infarction

BERT
encoder

V (ti)

tn
cardiovascular

infections

BERT
encoder

V (tn)

Sip = Sim(V (ti), V (tp)) Sin = Sim(V (ti), V (tn))

L = ln (1 + e(Sin−Sip))

Figure 1: Example of loss calculation for a single in-
stance of triplet-based training. The same BERT model
is used for encoding ti, tp, and tn.

concept c, it is common to have |O(c)| > |D(c)|,
O(c)∩D(c) = ∅, or even D(c) = ∅, i.e., it is com-
mon for there to be more concept synonyms in the
ontology than the annotated corpus, it is common
for the ontology and annotated corpus to provide
different concept synonyms, and it is common that
annotated corpus only covers a small subset of all
concepts in an ontology.

We implement f as a vector space model:

f(m) = argmax
c∈O

t∈T (c)

Sim(V (m), V (t)) (1)

where V (x) is a vector representation of text
x and Sim is a similarity measure such as co-
sine similarity, inner product, or euclidean distance.
We learn the vector representations V (x) using
a triplet network architecture (Hoffer and Ailon,
2015), which learns from triplets of (anchor text ti,
positive text tp, negative text tn) where ti and tp
are texts for the same concept, and tn is a text for a
different concept. The triplet network attempts to
learn V such that for all training triplets:

Sim(V (ti), V (tip)) > Sim(V (ti), V (tin)) (2)

The triplet network architecture has been adopted
in learning representations for images (Schroff
et al., 2015; Gordo et al., 2016) and text (Necu-
loiu et al., 2016; Reimers and Gurevych, 2019). It
consists of three instances of the same sub-network
(with shared parameters). When fed a (ti, tip, tin)
triplet of texts, the sub-network outputs vector rep-
resentations for each text, which are then fed into
a triplet loss. We adopt PubMed-BERT (Gu et al.,
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2020) as the sub-network, where the representa-
tion for the concept text is an average pooling of
the representations for all sub-word tokens2. This
architecture is shown in Figure 1. The inputs to
our model are only the mentions or synonyms. We
leave the resolution of ambiguous mentions, which
will require exploration of contextual information,
for future work.

3.1 Online hard triplet mining

An essential part of learning using triplet loss is
how to generate triplets. As the number of syn-
onyms gets larger, the number of possible triplets
grows cubically, making training impractical. We
follow the idea of online triplet mining (Schroff
et al., 2015) which considers only triplets within a
mini-batch. We first feed a mini-batch of b concept
texts to the PubMed-BERT encoder to generate a
d-dimensional representation for each concept text,
resulting in a matrix M ∈ Rb×d. We then compute
the pairwise similarity matrix:

S = Sim(M,MT ) (3)

where each entry Sij corresponds to the similarity
score between the ith and jth concept texts in the
mini-batch. As the easy triplets would not con-
tribute to the training and result in slower conver-
gence (Schroff et al., 2015), for each concept text
ti, we only select a hard positive tp and a hard
negative tn from the mini-batch such that:

p = argmin
j∈[1,b]:j 6=i∧C(j)=C(i)

Sij (4)

n = argmax
k∈[1,b]:k 6=i∧C(k) 6=C(i)

Sik (5)

where C(x) is the ontology concept from which tx
was taken, i.e., if tx ∈ T (c) then C(x) = c.

We train the triplet network using batch hard soft
margin loss (Hermans et al., 2017):

L(i) = ln (1 + e(Sin−Sip)) (6)

where S, n, and p are as in eqs. (3) to (5), and the
hinge function, max(·, 0), in the traditional triplet
loss is replaced by a softplus function, ln(1 + e(·)).

3.2 Similarity search

Once our vector space model has been trained, we
consider several options for how to find the most
similar concept c to a text mention m. First, we

2We also experimented with using the output of the CLS-
token, and max-pooling of the output representations for the
sub-word tokens as proposed by (Reimers and Gurevych,
2019), but neither resulted in better performance.

Searching Over Representation Type

Ontology Training Data Text Concept

O-T X X
O-C X X
D-T X X
D-C X X
OD-T X X X
OD-C X X X

Table 1: Names for similarity search modules.

must choose a search target: we can search over the
concepts from the ontology, or the training data, or
both. Second we must choose a representation type:
we can compare m directly to each text (ontology
synonym or training data mention) of each concept,
or we can calculate a vector representation of each
concept and then compare m directly to the concept
vector. Table 1 summarizes these options.

We consider the following search targets:

Data We search over the concepts in the anno-
tated data. These mentions will be more domain-
specific (e.g., PT may refer to patient in clinical
notes, but to physical therapy in scientific arti-
cles), but may be more predictive if the evalua-
tion data is from the same domains. We search
over the train subset of the data for dev evalua-
tion, and train + dev subset for test evaluation.

Ontology We search over the concepts in the on-
tology. The synonyms will be more domain-
independent, and the ontology will cover con-
cepts never seen in the annotated training data.

Data and ontology We search over the concepts
in both the training data and the ontology. For
concepts in the annotated training data, their rep-
resentations are averaged over mentions in the
training data and synonyms in the ontology.

We consider the following representation types:

Text We represent each text (ontology synonym
or training data mention) as a vector by running
it through our triplet-fine-tuned PubMed-BERT
encoder. Concept normalization then compares
the mention vector to each text vector:

f(m) = argmax
c∈O

t∈T (c)

Sim(V (m), V (t)) (7)

When a retrieved text t is present in more than
one concept (e.g., no appetite appears in con-
cepts C0426579, C0003123, C1971624), and
thus we see the same Sim for multiple concepts,
we pick a concept randomly to break ties.
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First component Second component

D-T O-T
D-T O-C
D-C O-T
D-C O-C
D-T OD-T
D-T OD-C
D-C OD-T
D-C OD-C

Table 2: Options for components in sieve-based search.

Concept We represent each concept as a vector
by taking an average over the triplet-fine-tuned
PubMed-BERT representations of that concept’s
texts (ontology synonyms and/or training data
mentions). Concept normalization then com-
pares the mention vector to each concept vector:

f(m) = argmax
c∈O

Sim

(
V (m),mean

t∈T (c)
V (t)

)
(8)

The averages here mean that different con-
cepts with some (but not all) overlapping syn-
onyms (e.g., C0426579, C0003123, C1971624
in UMLS all have the synonym no appetite) will
end up with different vector representations.

3.2.1 Sieve-based search
Traditional sieve-based approaches for concept nor-
malization (D’Souza and Ng, 2015; Jonnagaddala
et al., 2016; Luo et al., 2019; Henry et al., 2020)
achieved competitive performance by ordering a
sequence of searches over dictionaries from most
precise to least precise.

Inspired by this work, we consider a sieve-based
similarity search that: 1) searches over the anno-
tated training data, then 2) searches over the ontol-
ogy (possibly combined with the annotated training
data). Table 2 lists all possible combinations of first
and second components in sieve-based search. For
instance, in sieve-based search D-T + O-C, we first
search over the annotated corpus using training-
data-mention vectors (D-T), and then search over
the ontology using concept vectors (O-C).

4 Experiments

4.1 Datasets

We conduct experiments on three scientific article
datasets – NCBI (Doğan et al., 2014), BC5CDR-D
and BC5CDR-C (Li et al., 2016) – and two clin-
ical note datasets – MCN (Luo et al., 2019) and

ShARe/CLEF (Suominen et al., 2013). The statis-
tics of each dataset are described in table 3.

NCBI The NCBI disease corpus3 contains 17,324
manually annotated disorder mentions from 792
PubMed abstracts. The disorder mentions are
mapped to 750 MEDIC lexicon (Davis et al.,
2012) concepts. We split the released training
set into use 5,134 training mentions and 787 de-
velopment mentions, and keep the 960 mentions
from the original test set as evaluation. We use
the 2012 version of MEDIC ontology which con-
tains 11,915 concepts and 71,923 synonyms.

BC5CDR-D & BC5CDR-C These corpora were
used in the BioCreative V chemical-induced
disease (CID) relation extraction challenge4.
BC5CDR-D and BC5CDR-C contain 12,850 dis-
ease mentions and 15,935 chemical mentions, re-
spectively. The annotated disease mentions are
mapped to 1075 unique concepts out of 11,915
concepts in the 2012 version of MEDIC ontol-
ogy. The chemical mentions are mapped to
1164 unique concepts out of 171,203 concepts
from the 2019 version of Comparative Toxicoge-
nomics Database (CTD) chemical ontology. We
use the configuration in the BioCreative V chal-
lenge to keep the same train/dev/test splits.

ShARe/CLEF The ShARe/CLEF corpus is from
the ShARe/CLEF eHealth 2013 Challenge5,
where 11,167 disorder mentions in 298 clini-
cal notes are annotated with their concepts map-
ping to the 12,6524 disorder concepts from the
SNOMED-CT subset of the 2011AA version of
UMLS. We take the 199 clinical notes consisting
of 5,816 mentions as the train set and 5,351 men-
tions from the 99 clinical notes as test. Around
30.4% of the mentions in the corpus could not
be mapped to any concepts in the ontology, and
are assigned the CUI-less label.

MCN The MCN corpus from 2019 n2c2 Shared-
Task track 36 consists of 13,609 concept men-
tions in 100 discharge summaries. The men-
tions are mapped to 3,792 unique concepts out of
434,056 possible concepts in the SNOMED-CT
and RxNorm subset of UMLS version 2017AB.

3https://www.ncbi.nlm.nih.gov/
CBBresearch/Dogan/DISEASE/

4https://biocreative.bioinformatics.
udel.edu/tasks/biocreative-v/

5https://sites.google.com/site/
shareclefehealth/data

6https://n2c2.dbmi.hms.harvard.edu/
track3

https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/
https://sites.google.com/site/shareclefehealth/data
https://sites.google.com/site/shareclefehealth/data
https://n2c2.dbmi.hms.harvard.edu/track3
https://n2c2.dbmi.hms.harvard.edu/track3
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Scientific Articles Clinical Notes

Dataset NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN

Ontology MEDIC MEDIC CTD-Chemical SNOMED-CT SNOMED-CT & RxNorm
# of Concepts (Ontology) 11,915 11,915 171,203 126,524 434,056
# of Synonyms (Ontology) 71,923 71,923 407,247 520,665 1,550,586
# of Documents (Datasets) 792 1,500 1,500 298 100
# of Concepts (Datasets) 750 1,075 1,164 1,313 3,792
# of Mentions (Datasets) 6,881 12,850 15,935 11,167 13,609

Table 3: Statistics of the five datasets in our experiments.

We take 40 clinical notes from the released data
as training, consisting of 5,334 mentions, and the
standard evaluation data with 6,925 mentions as
our test set. Around 2.7% of mentions in MCN
are assigned the CUI-less label.

4.2 Implementation details

Unless specifically noted otherwise, we use the
same training procedure and hyper-parameter set-
tings across all experiments and on all datasets. As
the triplet mining requires at least one positive text
in a batch for each anchor text, we randomly sam-
ple one positive text for each anchor text and group
them into batches. Like previous work (Schroff
et al., 2015; Hermans et al., 2017), we adopt eu-
clidean distance to calculate similarity score during
training, while at inference time, we compute co-
sine similarity as it is simpler to interpret. For the
sieve-based search, if the cosine similarity score
between the mention and the prediction of the first
sieve is above 0.95, we use the prediction of first
sieve, otherwise, we use the prediction of the sec-
ond sieve.

When training the triplet network on the combi-
nation of the ontology and annotated corpus, we
take all the synonyms from the ontology and repeat
the concept texts in the annotated corpus such that
|D|
|O| =

1
3 . In preliminary experiments we found

that large ontologies overwhelmed small annotated
corpora. We also experimented with three ratios
1
3 , 2

3 , and 1 between concept texts and synonyms
of ontology on NCBI and BC5CDR-D datasets,
and found that the ratio of 1

3 achieves the best per-
formance for Train:OD models. We then kept the
same ratio setting for all datasets. We did not thor-
oughly explore other ratios and leave that to future
work.

For all experiments, we use PubMed-BERT (Gu
et al., 2020) as the starting point, which pre-trains
a BERT-style model from scratch on PubMed ab-
stracts and full texts. In our preliminary experi-

ments, we also tried BioBERT (Lee et al., 2019) as
the text encoder, but that resulted in worse perfor-
mance across five datasets. We use the pytorch im-
plementation of sentence-transformers7 to train the
Triplet Network for concept normalization. We use
the following hyper-parameters during the train-
ing of the triplet network: sequence_length = 8,
batch_size = 1500, epoch_size = 100, optimizer =
Adam, learning_rate = 3e-5, warmup_steps = 0.

4.3 Evaluation metrics

The standard evaluation metric for concept nor-
malization is accuracy, because the most similar
concept in prediction is of primary interest. For
composite mentions like breast and ovarian cancer
that are mapped to more than one concept in NCBI,
BC5CDR-D, and BC5CDR-C datasets, we adopt
the evaluation strategy that composite entity is cor-
rect if every prediction for each separate mention
is correct (Sung et al., 2020).

5 Model selection

We use the development data to choose whether to
train the triplet network on just the ontology or also
the training data, and to choose which among the
similarity search strategies described in section 3.2.
Table 4 shows the performance of all such systems
across the five different corpora. The top half of the
table focuses on settings where the triplet network
only needs to be trained once, on the ontology, and
the bottom half focuses on settings where the triplet
network is retrained for each new dataset. For each
half of the table, the last column gives the average
of the ranks of each setting’s performance across
the five corpora. For example, when training the
triplet network only on the ontology, the searching
strategy D-C (search the training data using concept
vectors) is almost always the worst performing,

7https://github.com/UKPLab/
sentence-transformers

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Train Search NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN Avg. Rank

1 O O-T 83.74 82.65 97.00 82.76 69.11 10.2
2 O O-C 85.01 82.43 92.62 81.12 70.96 12
3 O D-T 85.39 77.29 74.21 79.76 61.26 12.6
4 O D-C 85.26 75.18 74.11 69.70 59.70 13.6
5 O OD-T 89.58 88.87 97.75 88.12 72.67 4.8
6 O OD-C 88.56 85.85 93.30 82.23 72.59 9.4
7 O D-T + O-T 90.34 89.66 97.62 87.26 81.33 3.6
8 O D-T + O-C 89.96 89.40 96.88 83.73 81.93 5
9 O D-C + O-T 86.28 83.72 97.14 82.98 76.67 7.4

10 O D-C + O-C 88.56 83.51 95.77 81.58 76.52 9.8
11 O D-T + OD-T 91.36 90.50 97.64 90.50 81.85 2
12 O D-T + OD-C 90.85 89.90 96.88 84.69 82.15 3.6
13 O D-C + OD-T 91.99 89.47 97.76 86.83 79.19 3.2
14 O D-C + OD-C 88.82 86.93 96.32 82.55 77.41 7.6

15 OD O-T 89.58 87.82 96.71 86.62 72.37 9.8
16 OD O-C 91.36 89.85 96.32 88.11 80.52 9.6
17 OD D-T 86.40 79.01 74.23 79.87 63.33 13.2
18 OD D-C 86.40 78.41 74.23 80.19 62.52 13.4
19 OD OD-T 91.11 90.38 97.85 88.87 76.15 8.2
20 OD OD-C 91.61 89.92 96.32 88.33 81.4 7.8
21 OD D-T + O-T 91.25 91.10 97.81 90.15 84.37 4
22 OD D-T + O-C 91.49 90.88 96.22 88.76 84.52 6.4
23 OD D-C + O-T 92.25 90.71 97.87 89.61 83.78 4
24 OD D-C + O-C 91.49 90.47 96.28 88.65 83.93 7.8
25 OD D-T + OD-T 91.61 91.22 97.81 90.21 84.37 2.4
26 OD D-T + OD-C 91.61 90.83 96.22 89.08 84.67 5.2
27 OD D-C + OD-T 92.25 90.95 97.91 90.15 83.70 3.4
28 OD D-C + OD-C 91.61 90.55 96.28 89.40 84.00 5.8

Table 4: Dev performances of the triplet network trained on ontology and ontology + data with different similarity
search strategies. The last column Avg. Rank shows the average rank of each similarity search strategy across
multiple datasets. Models with best average rank are highlighted in grey; models with best accuracy are bolded.

ranking 14th of 14 in four corpora and 12th of 14
in one corpus, for an average rank of 13.6.

Table 4 shows that the best models search over
both the ontology and the training data. Models
that only search over the training data (D-T and
D-C) perform worst, with average ranks of 12.6
or higher regardless of what the triplet network is
trained on, most likely because the training data
covers only a fraction of the concepts in the test
data. Models that only search over the ontology
(O-T and O-C) are only slightly better, with aver-
age ranks between 9.6 and 12, though the models
in the first two rows of the table at least have the
advantage that they require no annotated training
data (they train on and search over only the ontol-
ogy). However, the performance of such models
can be improved by adding domain-specific syn-
onyms to the ontology, i.e., OD-T vs. O-T (rows 5
vs. 1), and OD-C vs. O-C (rows 6 vs. 2), or adding
domain-specific synonyms and then searching in a
sieve-based manner (rows 7-14).

Table 4 also shows that searching based on text
(ontology synonyms or training data mentions) vec-
tors typically outperforms searching based on con-

cept (average of text) vectors. Each pair of rows
in the table shows such a comparison, and only in
rows 15-16 and 19-20 are the average ranks of the
-C models higher than the -T models.

Table 4 also shows that models using mixed rep-
resentation types (-T and -C) have worse ranks
than the text-only models (-T). For instance, going
from Train:O-Search:O-C to Train:O-Search:O-T
improves the average rank from 12 to 10.2, going
from Train:OD-Search:D-T+OD-C to Train:OD-
Search:D-T+OD-T improves the average rank from
5.2 to 2.4, etc. There are a few exceptions to this
on the MCN dataset. We analyzed the differences
in the predictions of Train:OD-Search:D-T+OD-T
(row 25) and Train:OD-Search:D-T+OD-C (row
26) on this dataset, and found that concept vectors
sometimes helps to solve ambiguous mentions by
averaging their concept texts. For instance, the OD-
T model finds concepts C0013144 and C2830004
for mention somnolent as they have the overlap-
ping synonym somnolent, while the OD-C model
ranks C2830004 higher as the other concept also
has other synonyms such as Drowsy, Sleepiness.

Finally, table 4 shows that sieve-based models
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Approach NCBI BC5CDR-D BC5CDR-C ShARe/CLEF MCN

Sieve-based (D’Souza and Ng, 2015) 84.65 - - 90.75 -
Sieve-based (Luo et al., 2019) - - - - 76.35
TaggerOne (Leaman and Lu, 2016) 88.80 88.9 94.1 - -
CNN-based ranking (Li et al., 2017) 86.10 - - 90.30 -
BERT-based ranking (Ji et al., 2020) 89.06 - - 91.10 -
BERT-based ranking (Xu et al., 2020) - - - - 83.56
BIOSYN (Sung et al., 2020) 91.1 93.2 96.6 - -
TTI (Henry et al., 2020) - - - - 85.26

PubMed-BERT + Search:O-T 76.56 76.60 91.78 73.64 59.97
PubMed-BERT + Search:D-T+OD-T 82.19 90.53 94.24 85.35 75.81

Train:O + Search:O-T 82.60 84.44 95.79 83.48 69.62
Train:O + Search:D-T+OD-T 89.48 92.30 96.67 89.19 82.19
Train:OD + Search:D-T+OD-T 88.96 92.92 96.81 90.41 83.23
Train:OD + Search:tuned 91.15 92.92 96.91 90.41 83.70

Table 5: Comparisons of our proposed approaches against the current state-of-the-art performances on NCBI,
BC5CDR-D, BC5CDR-C, ShARe/CLEF, and MCN datasets. Approaches with best accuracy are bolded.

outperform their non-sieve-based counterparts. For
example, D-T + O-T has better average ranks than
O-T, D-T, or OD-T (rows 7 vs. 1, 3, and 5; and
rows 21 vs. 15, 17, and 19).

From this analysis on the dev set, we select the
following models to evaluate on the test set:

Train:O + Search:O-T This is the best approach
that requires only the ontology; no annotated
training data is used.

Train:O + Search:D-T+OD-T This is the best
approach that only needs to be trained once (on
the ontology), as the training data is only used to
add extra concept text during search time. This
is similar to a real-world scenario where a user
manually adds some extra domain-specific syn-
onyms for concepts they care about.

Train:OD + Search:D-T+OD-T This is the best
approach that can be created from any combina-
tion of ontology and training data. The triplet
network must be retrained for each new domain.

Train:OD + Search:tuned This is the bold mod-
els in the second half of table 4. It requires not
only retraining the triplet network for each new
domain, but also trying out all search strategies
on the new domain and selecting the best one.

6 Results

Table 5 shows the results of our selected mod-
els on the test set, alongside the best models
in the literature. Our Train:OD+Search:tuned
model achieves new state-of-the-art on BC5CDR-
C (p8=0.0291), equivalent performance on NCBI

8We used a one-sample bootstrap resampling test. The one
sample is 10,000 runs of bootstrapping results of our system.

(p=0.6753) and BC5CDR-D (p=0.1204), <1 point
worse on ShARe (p=0.0375), and <2 points worse
on MCN (p=0). Note that the performance of TTI
is from an ensemble of multiple system runs. Yet
this model is simpler than most prior work: it re-
quires no two-step generate-and-rank framework
(Li et al., 2017; Ji et al., 2020; Xu et al., 2020), no
iterative candidate retrieval over the entire training
data (Sung et al., 2020), no hand-crafted rules or
features (D’Souza and Ng, 2015; Leaman and Lu,
2016; Luo et al., 2019), and no acronym expansion
or TF-IDF transformations (D’Souza and Ng, 2015;
Ji et al., 2020; Sung et al., 2020).

The PubMed-BERT rows in Table 5 demonstrate
that the triplet training is a critical part of the suc-
cess: if we use PubMed-BERT without triplet train-
ing, performance is 2 to 8 points worse than our
best models, depending on the dataset. Yet, we
can see that our proposed search strategies are also
important, as on the BC5CDR datasets, PubMed-
BERT can get within 3 points of the state-of-the-art
using the D-T+OD-T search strategy (though it is
much further away on the other datasets).

Perhaps most interestingly, our triplet network
trained only on the ontology and no annotated train-
ing data, Train:O+Search:D-T+OD-T, achieves
within 3 points of state-of-the-art on all datasets.
We believe this represents a more realistic scenario:
unlike prior work, our triplet network does not
need to be retrained for each new dataset/domain if
their concepts are from the same ontology. Instead,
the model can be adapted to a new dataset/domain
by simply pointing out any extra domain-specific
synonyms for concepts, and the search can inte-
grate these directly. Domain-specific synonyms do
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PubMed-BERT + Search:OD-T Train:O + Search:OD-T Train:OD + Search:OD-T

Rank Text Concept Score Text Concept Score Text Concept Score

1 HNSCC C535575 0.919 Hyperparathyroidism,
Primary

D049950 0.767 Hyperparathyroidism,
Primary

D049950 0.838

5 NPC2 C536119 0.903 Hyperparathyroidism 1 C564166 0.692 Primary Hyperparathy-
roidism

D049950 0.830

10 MPNST D009442 0.900 HRPT1 C564166 0.611 HRPT1 C564166 0.672
15 HPNS D006610 0.897 Hyperparathyroidism 2 C563273 0.595 Parathyroid Adenoma,

Familial
C564166 0.644

20 PBC2 C567817 0.895 Hyperparathyroidism,
Secondary

D006962 0.566 Hyperparathyroidisms,
Secondary

D006962 0.608

Table 6: Top similar texts, their concepts, and similarity scores for mention primary HPT (D049950) predicted
from models PubMed-BERT + Search:OD-T, Train:O + Search:OD-T and Train:OD + Search:OD-T.

seem to be necessary for all datasets; without them
(i.e., Train:O+Search:O-T), performance is about
10 points below state-of-the-art.

As a small qualitative analysis of the models, Ta-
ble 6 shows an example of similarity search results,
where the systems have been asked to normalize
the mention primary HPT. PubMed-BERT fails,
producing unrelated acronyms, while both triplet
network models find the concept and rank it with
the highest similarity score.

7 Limitations and future research

Our ability to normalize polysemous concept men-
tions is limited by their context-independent repre-
sentations. Although our PubMed-BERT encoder
is a pre-trained contextual model, we feed in only
the mention text, not any context, when producing a
representation vector. This is not ideal for mentions
with multiple meanings, e.g., potassium in clinical
notes may refer to the substance (C0032821) or
the measurement (C0202194), and only the context
will reveal which one. A better strategy to generate
the contextualized representation for the concept
mention, e.g., Schumacher et al. (2020), may yield
improvements for such mentions.

We currently train a separate triplet network
for each ontology (one for MEDIC, one for CTD,
one for SNOMED-CT, etc.) but in the future
we would like to train on a comprehensive ontol-
ogy like the UMLS Metathesaurus (Bodenreider,
2004), which includes nearly 200 different vocab-
ularies (SNOMED-CT, MedDRA, RxNorm, etc.),
and more than 3.5 million concepts. We expect
such a general vector space model would be more
broadly useful to the biomedical NLP community.

We explored one type of triplet training network,
but in the future we would like to explore other
variants, such as semi-hard triplet mining (Schroff

et al., 2015) for generating samples, cosine similar-
ity for measuring the similarity during training and
inference, and multi-similarity loss (Wang et al.,
2019) for calculating the loss.

8 Conclusions

We presented a vector-space framework for concept
normalization, based on pre-trained transformers, a
triplet objective with online hard triplet mining, and
a new approach to vector similarity search. Across
five datasets, our models that require only an on-
tology to train are competitive with state-of-the-art
models that require domain-specific training.
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