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Abstract

The success of pretrained word embeddings
has motivated their use in the biomedical do-
main, with contextualized embeddings yield-
ing remarkable results in several biomedical
NLP tasks. However, there is a lack of re-
search on quantifying their behavior under se-
vere “stress” scenarios. In this work, we
systematically evaluate three language models
with adversarial examples – automatically con-
structed tests that allow us to examine how ro-
bust the models are. We propose two types
of stress scenarios focused on the biomedical
named entity recognition (NER) task, one in-
spired by spelling errors and another based on
the use of synonyms for medical terms. Our
experiments with three benchmarks show that
the performance of the original models de-
creases considerably, in addition to revealing
their weaknesses and strengths. Finally, we
show that adversarial training causes the mod-
els to improve their robustness and even to ex-
ceed the original performance in some cases.

1 Introduction

Biomedical NLP (BioNLP) is the field concerned
with developing NLP tools and methods for the
life sciences domain. Some applications of these
techniques include e.g., discovery of gene-disease
interactions (Pletscher-Frankild et al., 2015), de-
velopment of new drugs (Tari et al., 2010), or au-
tomatic screening of biomedical documents (Car-
vallo et al., 2020). With the exponential growth
of digital biomedical literature, the importance of
BioNLP has become especially relevant as a tool
to extract relevant knowledge for making decisions
in clinical settings as well as in public health. In
order to encourage the development of this area,
public datasets and challenges have been shared
with the community to solve these tasks, such as
BioSSES (Soğancıoğlu et al., 2017), HOC (Hana-
han and Weinberg, 2000), ChemProt (Kringelum
et al., 2016) and BC5CDR (Li et al., 2016), among

others. At the same time, neural language models
have shown significant progress since the intro-
duction of models such as W2V (Mikolov et al.,
2013), and more recent models like ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019).
These models, trained over large corpora (MED-
LINE and PubMed in the biomedical domain) have
obtained remarkable results in most NLP tasks, in-
cluding BioNLP benchmarks (Peng et al., 2019).
However, they have not been systematically eval-
uated under severe stress conditions to test their
robustness to specific linguistic phenomena. For
this reason, the objective of this paper is to evaluate
three well-known neural language models under
stress conditions. As a case study, we evaluate
NER benchmarks since it a key BioNLP informa-
tion extraction task.

Our stress test evaluation is inspired by the work
of Naik et al. (2018), which proposes the use of ad-
versarial evaluation for natural language inference
by adding distractions in sentences, and evaluating
models on this test set. We propose an adversarial
evaluation black-box methodology, which does not
require access to the inner workings of the models
in order to generate adversarial examples (Zhang
et al., 2019). Specifically, we make perturbations to
the input data, also known as edit adversaries, that
could cause the models to fall into erroneous pre-
dictions. Additionally, we train the models with the
proposed adversarial examples, which is a method-
ology used in previous works (Belinkov and Bisk,
2018; Jia and Liang, 2017) to strengthen the neural
language models during the training process. We
hope that our work will motivate the development
and use of adversarial examples to evaluate models
and obtain more robust biomedical embeddings.

2 Related Work

Adversarial Evaluation of NLP Models One
way to test NLP models is by using adversarial
tests, which consist of applying intentional distur-
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Original (O) Linoleic acid autoxidation inhibitions on all fractions were higher than that on alpha-tocopherol.
Keyboard (K) Linoleic avid autoxidatiob inh9bitions on all fractjons were higher than that on zlpha-toclpherol.
Swap (W) Linoleic aicd autoxidtaion inhibtiions on all fractoins were higher than that on aplha-tocohperol.
Synonymy (S) Linoleic acid autoxidation inhibitions on all fractions were higher than that on vitamin E.

Table 1: Examples of sentences of the stress tests.

bances to a gold standard, to test whether the attack
leads the models into incorrect predictions. Previ-
ous works on adversarial attacks have demonstrated
how dangerous it can be to use machine learning
systems in real-world applications (Szegedy et al.,
2014; Goodfellow et al., 2014). Indeed, it is known
that even small amounts of noise can cause severe
failures in neural computer vision models (Akhtar
and Mian, 2018). However, such failures can be
mitigated through adversarial training (Goodfel-
low et al., 2014). These properties have in turn
motivated novel adversarial strategies designed for
various NLP tasks (Zhang et al., 2019), as well as
work on adversarial attacks focused on recurrent
and transformer networks applied to generic NLP
benchmarks (Aspillaga et al., 2020).

Evaluation of Biomedical Models Models used
in BioNLP tasks elicit particular interest in this con-
text because an erroneous prediction can potentially
be very harmful in practice – e.g., put at risk the
health of patients (Sun et al., 2018). Although ad-
versarial attacks have been widely studied in tasks
related to image analysis (Paschali et al., 2018; Fin-
layson et al., 2019; Ma et al., 2019), to the best of
our knowledge, a gap still exists regarding BioNLP
models and tasks (Araujo et al., 2020).

3 Methodology

We follow a black-box attack methodology (Zhang
et al., 2019), which consists of making alterations
in the input data to cause erroneous predictions in
the models. The following subsections describe
each of the adversarial sets, and their construction1.
We show examples of the stress tests in Table 1.

Noise Adversaries These adversaries test the ro-
bustness of models to spelling errors. Inspired
by (Belinkov and Bisk, 2018), we constructed ad-
versarial examples that try to emulate spelling er-
rors made by human beings. We used SpaCy mod-
els (Neumann et al., 2019) to retrieve the medical
words of each corpus and add noise to them. We
used two types of alterations: i) Keyboard typo
noise (K) involves replacing a random character in

1All stress tests available at https://github.com/ialab-
puc/BioNLP-StressTest.

each relevant word with an adjacent character on
QWERTY English keyboards. This methodology
could be adapted to keyboards with other designs
or languages. ii) Swap noise (W) consists of se-
lecting a random pair of consecutive characters in
each relevant word and then swapping them.

Synonymy Adversaries (S) These adversaries
test if a model can understand synonymy rela-
tions. Unlike the noise adversaries, this set focuses
on modifying chemical and disease words (enti-
ties). We used PyMedTermino (Jean-Baptiste et al.,
2015), which uses the vocabulary of UMLS (Bo-
denreider, 2004), to find the most similar or related
term (synonym) to a certain word. If a synonym is
retrieved, the original word is replaced; otherwise,
it remains the same. In some cases, this method
changes a simple entity (one word) to a composite
one (multiple words), so the gold labels are also
adjusted to avoid a mismatch in the dataset.

Task and Datasets Biomedical NER is the task
that aims at detecting biomedical entities of interest
such as proteins, cell types, chemicals, or diseases
in biomedical documents. We conducted our evalu-
ation on three biomedical NER benchmarks using
the IOB2 tag format (Ramshaw and Marcus, 1999).
The BC5CDR corpus (Li et al., 2016) is composed
of mentions of chemicals and diseases found in
1,500 PubMed articles. The BC4CHEMD corpus
(Krallinger et al., 2015) contains mentions of chem-
icals and drugs from 10,000 MEDLINE abstracts.
The NCBI-Disease corpus (Doğan et al., 2014)
consists of 793 PubMed abstracts annotated with
disease mentions. Table 2 lists the datasets used in
this work along with their most relevant statistics.

Embeddings and NER Models We evaluated
both word (W2V) and contextualized embeddings.
On the one hand, we assessed BioMedical W2V
(Pyysalo et al., 2013) and ChemPatent W2V (Zhai
et al., 2019). The ChemPatent embeddings were
trained on a 1.1 billion word corpus of chemical
patents from 7 patent offices, whereas all the other
embeddings were trained on the PubMed corpus.
On the other hand, we evaluated BioBERT v1.1
(Lee et al., 2019) and BlueBERT (P) (Peng et al.,
2019), both in their base version for convenience.

https://github.com/ialab-puc/BioNLP-StressTest
https://github.com/ialab-puc/BioNLP-StressTest
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Train / Test Entity # of sentences (annotated) # of tokens % K % W % S
BC5CDR Chemical 4560 (1609) / 4797 (1706) 122730 /129547 36.3 / 36.1 33.7 / 33.2 6.8 / 6.5
BC5CDR Disease 4560 (1902) / 4797 (1955) 122730 /129547 36.3 / 36.1 33.7 / 33.2 10.6 / 9.9
BC4CHEMD Chemical 30681 (16175) / 26363 (13935) 922609 / 792369 37.8 / 37.6 33.9 / 33.9 5.2 / 5.3
NCBI-Disease Disease 5423 (2501) / 939 (401) 141092 / 25397 37.4 / 37.5 33.4 / 33.3 9.2 / 8.6

Table 2: Details of the datasets used. The last three columns present the percentage of tokens modified for each of
the adversarial datasets. The slash separates the values belonging to the training and the test set.

Model BC5CDR-Chemical BC5CDR-Disease BC4CHEMD NCBI-Disease
O K W S O K W S O K W S O K W S

BioBERT .937 .745 .635 .770 .863 .407 .473 .366 .919 .585 .675 .678 .887 .483 .628 .683
±.004 ±.006 ±.008 ±.011 ±.004 ±.008 ±.010 ±.007 ±.004 ±.005 ±.007 ±.009 ±.004 ±.007 ±.011 ±.006

BlueBERT .901 .583 .708 .739 .838 .368 .441 .362 .820 .472 .570 .607 .773 .332 .438 .615
±.003 ±.005 ±.008 ±.010 ±.004 ±.007 ±.011 ±.007 ±.003 ±.004 ±.009 ±.010 ±.003 ±.006 ±.009 ±.006

BERT .887 .563 .684 .738 .816 .356 .431 .336 .808 .443 .509 .598 .771 .305 .433 .583
±.004 ±.007 ±.010 ±.015 ±.006 ±.009 ±.013 ±.008 ±.004 ±.006 ±.008 ±.013 ±.005 ±.008 ±.014 ±.007

BioELMo .923 .838 .726 .757 .845 .656 .482 .408 .915 .770 .634 .668 .869 .711 .543 .677
±.001 ±.003 ±.010 ±.032 ±.002 ±.018 ±.025 ±.013 ±.001 ±.003 ±.004 ±.004 ±.005 ±.017 ±.026 ±.012

ChemPatent
ELMo

.910 .822 .745 .757 .824 .637 .508 .380 .898 .766 .662 .642 .863 .693 .586 .655
±.001 ±.004 ±.005 ±.016 ±.001 ±.013 ±.013 ±.017 ±.001 ±.003 ±.005 ±.005 ±.004 ±.018 ±.020 ±.009

ELMo .879 .702 .637 .720 .800 .461 .373 .378 .866 .612 .507 .611 .848 .575 .495 .643
±.002 ±.010 ±.017 ±.018 ±.003 ±.023 ±.020 ±.014 ±.001 ±.007 ±.011 ±.005 ±.004 ±.034 ±.023 ±.008

BioMedical
W2V

.873 .231 .238 .719 .788 .132 .133 .351 .846 .233 .244 .589 .827 .284 .292 .596
±.004 ±.012 ±.021 ±.016 ±.008 ±.009 ±.011 ±.015 ±.005 ±.008 ±.013 ±.012 ±.005 ±.014 ±.019 ±.021

ChemPatent
W2V

.871 .224 .221 .715 .772 .127 .122 .347 .828 .253 .260 .584 .816 .269 .252 .582
±.003 ±.011 ±.012 ±.015 ±.007 ±.005 ±.009 ±.016 ±.007 ±.009 ±.010 ±.012 ±.007 ±.021 ±.019 ±.013

W2V .818 .237 .227 .641 .760 .120 .120 .341 .766 .264 .260 .513 .785 .281 .271 .526
±.004 ±.013 ±.013 ±.017 ±.003 ±.008 ±.009 ±.013 ±.007 ±.011 ±.012 ±.008 ±.005 ±.022 ±.019 ±.009

Table 3: Stress test evaluation results in terms of terms F1-score for each model and dataset. We report means and
standard deviations by training and evaluating ten times with different seeds.

BioBERT embeddings were trained on PubMed
abstracts and full-text corpora consisting of 4.3 bil-
lion and 13.5 billion words each. BlueBERT was
trained on 4 billion words from PubMed abstracts.
We used the implementation provided by Peng et al.
(2019) for NER with default hyperparameters.2 Fi-
nally, we evaluate BioELMo (Jin et al., 2019) and
ChemPatent ELMo (Zhai et al., 2019). As NER
models we either (a) fine-tuned BERT as proposed
by Peng et al. (2019) or (b) used AllenNLP’s ba-
sic biLSTM-CRF implementation3, with no hyper-
parameter tuning other than changing the initial
embedding layer with one of the ELMo or W2V
embeddings. For comparison purposes, we also
include the “vanilla” version of the models men-
tioned above, which are pretrained with general
corpora. We trained each model 10 times using dif-
ferent random seeds, for 15 epochs every time. We
use CoNLL evaluation (Agirre and Soroa, 2007),
reporting the F1 score for all datasets.

4 Experiments

In this section we report the results of our experi-
ments. Note that all percentage drops or increases

2https://github.com/ncbi-nlp/bluebert
3https://github.com/allenai/allennlp-models

are expressed relative to the original score, not as
percentage points.

Adversarial Evaluation Results Table 3 shows
the evaluation results on the original (O) and adver-
sarial test sets (K, W, and S). In general, the per-
formance of models drops across all adversarial at-
tacks. For BERT-based models, we observe that K
attacks decrease performance by on average 43.1%,
W by 34.3% and S by 30.8%. BioBERT has the
smallest decrease in performance, 34.4%, followed
by BlueBERT, with a 37.9% decrease. We hy-
pothesize that BioBERT is more robust than Blue-
BERT since the former was trained on a larger and
more varied corpus. Furthermore, when comparing
the performance across all datasets, we see that
BC5CDR-Disease is the most affected in all stress
tests, with a 37.7% performance drop, and the least
affected is BC5CDR-Chemical, with 16.1%.

The performance reduction of ELMo-based mod-
els is similar to those of BERT-based models. An
exception is when subject to W and S noise, where
they showed increased robustness with respect to
BERT and W2V models (W: 55.3% better, S: 6.9%
better). In almost all the tests, BioELMo performed
better than ChemPatent ELMo, except under W
noise, where ChemPatent ELMo performed con-

https://github.com/ncbi-nlp/bluebert
https://github.com/allenai/allennlp-models/tree/main/training_config/tagging
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Model Training BC5CDR-Chemical BC5CDR-Disease BC4CHEMD NCBI-Disease
O + K .934 (O) .888 (K) .863 (O) .755 (K) .920 (O) .874 (K) .886 (O) .820 (K)

BioBERT O + W .931 (O) .899 (W) .865 (O) .781 (W) .922 (O) .892 (W) .872 (O) .848 (W)
O + S .933 (O) .910 (S) .840 (O) .819 (S) .919 (O) .923 (S) .874 (O) .875 (S)
O + K .898 (O) .820 (K) .844 (O) .717 (K) .819 (O) .750 (K) .789 (O) .668 (K)

BlueBERT O + W .896 (O) .656 (W) .841 (O) .759 (W) .818 (O) .785 (W) .784 (O) .729 (W)
O + S .900 (O) .890 (S) .818 (O) .814 (S) .820 (O) .788 (S) .773 (O) .804 (S)
O + K .923 (O) .870 (K) .833 (O) .732 (K) .912 (O) .837 (K) .864 (O) .820 (K)

BioELMo O + W .922 (O) .825 (W) .838 (O) .654 (W) .913 (O) .820 (W) .875 (O) .777 (W)
O + S .919 (O) .901 (S) .826 (O) .799 (S) .912 (O) .901 (S) .871 (O) .848 (S)
O + K .910 (O) .859 (K) .823 (O) .713 (K) .898 (O) .828 (K) .860 (O) .793 (K)

ChemPatent ELMo O + W .907 (O) .835 (W) .813 (O) .682 (W) .899 (O) .824 (W) .863 (O) .804 (W)
O + S .904 (O) .895 (S) .813 (O) .757 (S) .895 (O) .874 (S) .848 (O) .819 (S)
O + K .888 (O) .467 (K) .773 (O) .303 (K) .832 (O) .486 (K) .820 (O) .543 (K)

BioMedical W2V O + W .873 (O) .598 (W) .796 (O) .482 (W) .836 (O) .609 (W) .819 (O) .639 (W)
O + S .867 (O) .883 (S) .781 (O) .787 (S) .837 (O) .852 (S) .836 (O) .804 (S)
O + K .867 (O) .454 (K) .768 (O) .307 (K) .817 (O) .482 (K) .822 (O) .548 (K)

ChemPatent W2V O + W .785 (O) .619 (W) .765 (O) .477 (W) .819 (O) .626 (W) .792 (O) .663 (W)
O + S .868 (O) .864 (S) .738 (O) .779 (S) .818 (O) .835 (S) .797 (O) .801 (S)

Table 4: Adversarial training results in terms of F1-score for each model and dataset. The training column shows
the O set merged with K, W, or S. The test set is shown in parentheses for each scenario.

sistently better, by 5.1% on average. We hypoth-
esize that these results are due to ELMo using a
character-based input representation, which would
allow handling of swap characters inside the words.

W2V-based models were the most brittle but
showed similar patterns to the previous models.
Adversaries examples produced performance drops
ranging from 53.8% on NCBI-Disease to 74.1%
on BC5CDR-Disease. In the case of S adversaries,
W2V-based showed performance drops ranging
from 17.8% on BC5CDR-Chemical to 55.3% on
BC5CDR-Disease.

Regarding the “vanilla” models, we see that they
are all the worst in the original dataset (O) com-
pared to their biomedical counterparts. In the same
way, they are more fragile to adversary attacks in
the biomedical scenario. In average, BERT has a
decrease in performance of 39.6%, ELMo of 34.4%
and W2V of 59.6% across all datasets.

Even though the BC5CDR dataset covers both
chemicals and diseases, the disease task is more
affected by S adversaries. We believe this is due to
the higher number of words affected by the attacks
compared to the other benchmarks (Table 2). An-
other possible cause is the kind of synonyms used
to replace the entities, which tend to be both su-
perficially dissimilar and more extensive than their
originals, e.g., arrhythmia is replaced by heart con-
duction disorder. By contrast, chemical synonyms
often include terms derived from the original, e.g.,
morphine is changed to morphine sulfate.

Training on Adversarial Examples Addition-
ally, we subjected the training sets to adversar-

ial attacks, and evaluated the models both against
the original test sets and their noisy counterparts.
When training with K noise, we observed perfor-
mance decreases by 21.2%, followed by W, 15.8%,
and S with a slight decline of 0.8%, compared to
44.4%, 46.3% and 31.3% respectively in the Ad-
versarial Evaluation setting. Besides, and inter-
estingly, training with S improves performance in
some cases, by up to 5.5% compared to the origi-
nal S test set. We hypothesize that this is because
the introduced adversarial samples work as a data
augmentation mechanism. In terms of datasets, we
see that BC5CDR-Disease is the most affected by
adversaries, with an average 17.5% drop, and the
least affected is NCBI-Disease, with an average
9.7% drop compared to the non-adversarial test set.
When comparing the three architectures we see
that BERT is affected by 6.3%, ELMo by 7.6% and
W2V by 24.0% on average compared to the origi-
nal test set. This result stands in line with findings
on other NLP tasks, where BERT comes up first,
followed by ELMo and W2V (Peng et al., 2019).
This is because BERT uses recent methods and
techniques like Transformer (Vaswani et al., 2017)
and WordPiece tokenizer (Schuster and Nakajima,
2012) that allow it to learn better representations.

BioBERT Error Analysis This section seeks to
understand how the most robust model – BioBERT
– behaves under adversarial evaluation. To this end,
we analyzed NER model confusions with respect
to the original datasets, synonym (S), swap (W),
and keyboard (K) perturbations on the BC5CDR
chemical and disease dataset(s).

In the original dataset (Figure 1(a)), we see that
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(a)

(b)

(c)

(d)

Figure 1: Normalized confusion matrices for test re-
sults with (a) original (O), (b) keyboard (K), (c) swap
(S) and (d) synonym (S) BC5CDR-Disease and Chem-
ical datasets on average.

most of the errors come from confusing I and O
labels (32% of the cases). Under adversarial at-
tacks, this type of error spreads to other IOB labels.
For keyboard (K) errors (Figure 1(b)), the most fre-
quent mistake is to confuse B with O, with 16.6%
of these cases. The same goes for swap (W) pertur-
bations (Figure 1(c)), where this error is repeated
15% of the time. When using synonyms (S) (Fig-
ure 1(d)), error rates become by contrast globally
low compared to K and W. We believe that this
happens because entities are converted into simi-
lar ones. For instance, “stomach neoplasm” gets
transformed into “stomach tumor”.

Lastly, regardless of the adversaries, there are
confusions with numbers and special character se-
quences that the model classifies as I (i.e., lie inside
an entity span) but whose ground truth label is O
(i.e., lie outside an entity span).

5 Conclusions

In this work, we have investigated whether large
scale biomedical word (W2V) and contextualized
word embeddings (BERT and ELMo) are robust
with respect to black-box adversarial attacks in the
biomedical NER task. Our experimental results
show different sensitivities of the models to mis-
spellings and synonyms. Among the main findings,
we show that BERT-based models are generally
better prepared for adversarial attacks, but they
are still fragile, leaving room for future improve-
ment in the field. ELMo-based models show lower
robustness in most cases but consistently outper-
formed BERT in some specific scenarios. W2V
proves to be more brittle but shows similar patterns
in terms of relative performance drops. We also
demonstrate that by training with adversaries, we
can considerably decrease the drop in performance
and even improve the models’ original performance
when trained with synonyms, as they act as a form
of regularization and augmentation of data.
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