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Abstract
In this article, we describe our systems for the
MEDIQA 2021 Shared Tasks. First, we will
describe our method for the second task, Multi-
Answer Summarization (MAS). For extractive
summarization, two series of methods are ap-
plied. The first one follows Xu and Lapata
(2020). First a RoBERTa model is first applied
to give a local ranking of the candidate sen-
tences. Then a Markov Chain model is applied
to evaluate the sentences globally. The second
method applies cross-sentence contextualiza-
tion to improve the local ranking and discard
the global ranking step. Our methods achieve
the 1st Place in the MAS task. For the ques-
tion summarization (QS) and radiology report
summarization (RRS) tasks, we explore how
end-to-end pre-trained seq2seq model perform.
A series of tricks for improving the fine-tuning
performances are validated.

1 Introduction

Automatic summarization is an essential task in the
medical domain. It is time consuming for users
to read a lot of medical documents when they use
a search engine like Google, Medline, etc, about
some topic and obtain a list of documents which are
potential answers. First, the contents might be too
specialized for layman to understand. Second, one
document may not answer the query completely,
and the users might have to summarize the conclu-
sions across multiple documents, which may lead
to waste of time or misunderstanding. In order to
improve the users’ experiences when using medical
applications, automatic summarization techniques
are required.

The MEDIQA 2021 shared tasks are held to in-
vestigate the current state of the art summarization
models, especially how they perform in the med-
ical domains. Three tasks are held. The first one
is Question Summarization (QS), which summa-
rizes long and potentially complex consumer health
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questions into simple ones, which are proven to be
beneficial for automatic question answering. Em-
pirical QA studies based on manual expert sum-
marization of these questions showed a substan-
tial improvement of 58% in performance (Abacha
and Demner-Fushman, 2019). The second task
is Multi-Answer Summarization (MAS) (Savery
et al., 2020). Different answers can bring comple-
mentary perspectives that are likely to benefit the
users of QA systems. The goal of this task is to
develop a system that can aggregate and summa-
rize the answers scattered in multiple documents.
The third task is Radiology Reports Summariza-
tion (RRS) (Zhang et al., 2018, 2020b), which is to
generate radiology impression statements by sum-
marizing textual findings written by radiologists.
which have several applications. First, it can speed
up the technicians’ workflow. Second, a system can
extract the information in the reports and summa-
rize into sentences that a layman can understand.

In the MAS task, we improve upon (Xu and La-
pata, 2020) via three methods. First, during the
coarse ranking of a sentence in one of the given
documents, we also add the surrounding sentences
as input and use two special tokens marking the po-
sitions of the sentence. This modification improves
the coarse ranking with a large margin. Second,
during fine-grained re-ranking, instead of incor-
porating a inverse sentence frequency (IFS) score
based similarity matrix between sentences in the
Markov chain model, we find that directly using
semantic similarity scores to form the similarity
matrix performs better. Third, due to the low re-
source settings of this task, we find that applying a
RoBERTa (Liu et al., 2019) model which is already
fine-tuned on the MS-MACRO task (Campos et al.,
2016) can be beneficial.

For the other two tasks, we mainly explore how
the pre-trained seq2seq model like BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020a), etc,
can perform in these tasks. Two take-aways can
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be made. First, for tasks with small dataset size,
freezing a part of the transformer blocks can be
beneficial. Second, for the RRS task, we find that
controlling the maximum output sequence length
can improve the ROUGE score on the test set.

Our team PAHT_NLP participate in all the three
tasks, and won the 1st place in the MAS task. Ex-
periments will show that our modifications are ben-
eficial for both stage of the MAS task. We also
report extensive experiments for task 1 and task 3.

2 Multi-grained Multi-Answer
Summarization

2.1 problem formulation
Let Q denote a query, and D = {d1, d2, ..., dM} a
set of documents returned by the search engine or
a question answering system (e.g., the ChiQA sys-
tem ((Demner-Fushman et al., 2020))). It is often
assumed (e.g., in our MAS task) that Q consists of
a short question (e.g., Will influenza be the next
pandemic?).

We implement the multi-grained MDS follow-
ing Xu and Lapata (2020). We first decompose
documents into segments, i.e., sentences. Then, a
trained RoBERTa model quantifies the semantic
similarities between a selected sentence and the
query, which give importance estimations of the
sentences based the sentence itself or their local
contexts (Local Estimator). Third, to give a global
estimations of the importance of the segments to
the summary, we apply a Markov Chain (Erkan and
Radev, 2004) based estimator (Global Estimator).

2.2 Local Estimator
We leverage fine-tuned pretrained language mod-
els as our evidence estimator, and use the trained
estimators to rank the answer candidates.

Let Q denote a query sequence and
{S1, S2, ..., SN} the set of candidate answers. Our
training objective is to find the correct answers
within this set. We leverage RoBERTa as our
sequence encoder. We concatenate query Q and
candidate sentence S into a sequence < s >, Q,
< /s >, < /s >, S, < /s > as the input to the
RoBERTa encoder (we pad each sequence in a
mini-batch of L tokens). The starting < s >
token’s vector representations t serves as input
to a single layer feed forward layer to obtain the
distribution over positive and negative classes:

pk =
1

Z
exp (tTW:,k), (1)

where k = 0, 1, 1 denoting that a sentence contains
the answer and 0 otherwise. Z is the normalizing
factor, and matrix W = [W:,0;W:,1] ∈ Rd×2 is a
learn-able parameter. We use a cross entropy loss
as the training objective:

L = −
N∑
i=1

(y log pi1 + (1− y) log pi0). (2)

After finetuning, the probability of the positive
class is regarded as the local evidence score and we
will use it to rank all the sentences for each query.

2.3 Global Estimator
Although our local estimator measures the semantic
relevance between the query and the candidate seg-
ments, these estimation is done locally. To obtain
a global estimation of the scores for each segment,
we apply a Global Estimator following (Xu and La-
pata, 2020). The centrality estimator essentially is
an extension of the well-known LexRank algorithm
(Erkan and Radev, 2004).

For each document cluster, i.e., the collections
of documents for each query in our tasks, LexRank
builds a graph G = (V ;E) with nodes V cor-
responding to sentences and undirected edges E
whose weights are computed based on a certain
similarity metric. The original LexRank algorithm
uses TF-IDF (Term Frequency Inverse Document
Frequency). (Xu and Lapata, 2020) proposes to
use TF-ISF (Term Frequency Inverse Sentence Fre-
quency), which is similar to TF-IDF but operates
at the sentence level.

Following ((Xu and Lapata, 2020)), we integrate
our evidence estimator into the similarity matrix E,
that is,

Ẽ = w ∗ [q̃; ...; q̃] + (1− w) ∗ E, (3)

where w ∈ (0, 1) controls the extent to which the
evidence estimator can influence the final summa-
rization, and q̃ is obtained by normalizing the evi-
dence scores,

q̃ =
q∑|V |
v qv

. (4)

Note the similarity matrix E can be seen as the
transition probabilities. If the similarity score Ei,j

between sentence i and j is higher, it is more likely
that sentence i and j are both selected in the finally
summary or are discarded at the same time. We
can see selecting the sentences into summaries as
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a Markov chain process, and we will leverage the
final stationary distribution q̃∗ of this Markov chain
as the final scores of each segment. q̃∗ is obtained
by solving this equation:

q̃∗ = q̃∗Ẽ (5)

Note that with our evidence estimator and cen-
trality estimator, q̃∗ can simultaneously expresses
the importance of a sentence in the document and
its semantic relation to the query. Thus, to formu-
late the final summary, we rank the sentences based
on q̃∗ and select the top ksum ones.

3 Contextualized evidence estimation

The previous section describe a two-step method
for extractive MDS. However, it does not fully
exploit the advantages of pretrained sentence en-
coders, since it only compares the query to single
sentences which suffers from losing the contexts.
In this section, we provide a simple method to con-
duct extractive MDS in one step, and promote the
performances.

Let Q denote a query sequence and
{S1, S2, ..., SN} the set of candidate answers. And
we put each sentence Si back into its contexts by
concatenating the sentences surrounding it. Denote
the Si with its contexts as Ci = [NL

i ;Si;N
R
i ].

For implementation, we limit the sequence length
of Ni by Lmax, which is 512 for RoBERTa. For
formulating the input of RoBERTa, we concatenate
Ci following its sequential order, so that its
contexts is not corrupted. Thus the sequence input
should be like < s >, Q, < /s >, < s >, NL

i ,
< /s >, < s >, Si, < /s >, < s >, NR

i , < /s >.
The above operation adds the contextual informa-

tion of Si, but the position of Si is not emphasized,
and the model might focus on NR

i or NL
i instead

of Si. Thus, we add a pair of special tokens before
and after Si to address the position of the sentence
we are concerning. Thus, the input sequence be-
comes < s >, Q, < /s >, < s >, NL

i , < /s >,
< s >, < t1 >, Si, < t2 >, < /s >, < s >, NR

i ,
< /s >.

The RoBERTa will encode the above sequence
and outputs the semantic relevance score, which we
will use as the final semantic score of the sentence
regarding summarization.

4 End-to-end abstractive summarization

Pre-trained models. In this section, we experi-
ment on applying pretrained Seq2Seq models to

obtain abstractive summarizations, after finetuning
their on our datasets. We mainly investigate two
types of models, BART ((Lewis et al., 2020)) and
PEGASUS ((Zhang et al., 2020a)).

In terms of architecture, BART adopts a standard
transformer seq2seq architecture ((Vaswani et al.,
2017)) with some small changes. It uses GeLU
(xxx, ) rather than ReLU (xxx, ) as activation func-
tion and initiates paramaters with normal distribu-
tion. For pre-training tasks, BART allows arbitrary
noising transformations of input texts and learns a
model to rebuild original text. BART achieves the
state-of-the-art (SOTA) results on a wide range of
tasks, including summarization and machine trans-
lation.

PEGASUS uses pre-training objectives tailored
for abstractive text summarization. During pre-
training, the text inputs are documents with several
important missing sentences and the output is the
predicted missing sentence sequences. PEGASUS
can perform quite well on summarization tasks
with low resources, e.g., when the training sets
only contains only hundreds of samples.

Finetuning techniques. For finetuning the pre-
trained seq2seq models, we experiment a few meth-
ods/techniques which can improve the downstream
task performances:

• Freezing parameters. For tasks like QS and
MAS, the training dataset is quite small and
the large pre-trained models can be easily
overfitting. We alleviate the overfitting prob-
lem by freezing the lower layers of the mod-
els.

• We use the advarsarial training method, i.e.,
Projected Gradient Descent (PGD, (Madry
et al., 2018)) for more robust fine-tuning.

• Back translation from English to Chinese, and
Chinese to English is applied for data augmen-
tation.

5 Experiments on MAS

In task 2, We used two methods to deal with the
problem of low resource data. The first method is
to add muti-ext-summary and single-ext-summary
as targets to the training data. Since some sentences
in the summary are not exactly the same as the sen-
tences in the article, the Jaccard similarity is used
to align the sentences in article to the sentences
in the extractive summary. Because the final tar-
get is multi-text-summary, in order to increase its
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
dev set

roberta-large 56.95 48.11 41.36 56.29
+marco 57.08 48.15 42.10 56.33

+marco+reverse 57.62 49.47 41.90 56.99
+marco+lexrank 57.06 48.31 42.04 56.07
+marco+context 57.57 48.62 42.06 56.75

electra-large+marco 58.53 49.46 42.35 57.84
ensemble-model 59.29 51.09 43.80 58.88

test set
ensemble-model 58.5 50.8 43.5 -

Table 1: Comparison of different models on dev set in Task 2. Marco means using ms-marco data pretrain model,
reverse means inverting Q and S on the input refer to (Su et al., 2020) , lexrank means using lexrank to get the global
score of the sentence described in section 2.3, context means adding Contextual information described in section 3

weight, we repeatedly sampled sentences in multi-
ext-summary and added it to the training set. The
second method, public dataset ms-marco is used to
pre-train the RoBERTa model.

Finally, the top 20 sentences based on the model
score are selected and we restore their relative po-
sitions by recording the position of each sentence
in the article in advance as the target. The result
is shown in Table 1. As roberta-large as a base-
line model, both resampling and pretraining by
ms-marco have slightly improved the result of the
model because of the increasing of training set. Al-
though the lexRank method described in section
2.3 has made a improvement, the weight of model
score must be a large value compared to the TF-
ISF, for example 0.99 in our model. For contextu-
alized evidence estimation described in section 3,
we selected the two sentences before and after as
the context and this method greatly improves the
model. Referring to (Su et al., 2020), we tried to
concat the question and the sentence like <s>, S,
</s>,</s>,Q,</s>, this method has achieved com-
petitive results in validation set, but the result in
test set has slightly decreased. In addition, we
also tried the ELECTRA (Clark et al., 2020) model
and achieved a competitive results in validation set
compared to RoBERTa. Ensemble model uses all
models mentioned above, and weighted sum all
scores of model for one sentence based on the re-
sults normalized ROUGE-2 score in validation set.
The ensemble model achieves the best results on
the validation set.

Our model is optimized with Adam on one Tesla
V100 GPU using the following parameters: learn-
ing rate = 1e-5 batch size = 16, maximum length =

128. The learning rate is warmed up over the first 1
epoch. Early stopping strategy for 5 epoch is used
to select the optimal model

In the end, we submitted the results of ensemble
model and achieved the first place, as shown in
Table 1

6 Experiments on QS

At first, we compare the end-to-end abstractive
methods on an 8:2 split at the train set, shown in
Table 2. The result shows that the PEGASUS-large
model with 3-freezed-layer encoder and 3-freezed-
layer decoder gains the highest score. Training
on the whole training set and evaluating on the
official validation set, the model performs shown
in Table 3, without the question type nor question
focus given. We try to do data augmentation, like
translating the train data to Chinese and German
and then translating back to English, but have failed
to improve the result. When concatenating the two
kinds of information with the original message, we
find that the result has been improved (Table 3).

Over CHQA datasets, we train a span predic-
tion model based on the pointer networks and a
question type classification model to predict the
question focus and question type, respectively.
The span prediction model obtains the perfor-
mance of 83% exact match F1, and the ques-
tion type classification model achieves 78% F1.
Based on those two models, we process train,
valid and test set to the same pattern as the in-
put: "SUBJECT:{question_focus};{question_type}
MESSAGE:{message}". Table 4 indicates the re-
sults with different parameters.

By checking the generated sentences, we find
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BART-base 52.33 34.93 49.91 49.90
BART-large 54.25 36.28 51.56 51.51

PEGASUS-large 51.30 34.28 49.33 49.37
PEGASUS-large(freeze=3) 56.97 38.74 54.03 54.07

Table 2: Comparison of different end-to-end models on 80% train set in Task 1

valid set ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
NO type&focus(baseline) 36.17 16.39 35.23 35.32

data augmentation 34.50 13.73 34.03 33.85
WITH type&focus 38.58 12.47 38.42 38.42

Table 3: Results of PEGASUS-large model on valid set in Task 1

the questions are highly like to be predicted as two
sentence patterns: "what the treatments for . . . "
and "where can I find information on . . . ". We
find these patterns appear more than 300 of 1000
train data, so we do the re-sampling for train data
according to the frequency of the first four word of
target questions. We train model on this re-sampled
train set and get the result on valid set (Table 5).
Although the score on valid set has decreased but
the final score in the test set has increased. We
conclude that the improvement are due to the higher
diversity of the sentence patterns.

7 Experiments on RRS

Table 6 reports the main results on 80% training
set with the most popular end-to-end models for
summarization task currently. When using a 8:2
split at official training set, we find that PEGASUS-
large model outperforms all other models with a 2%
difference of ROUGE-1. We also test PEGASUS-
pubmed but find suprising low performances, indi-
cating that pubmed corpus does not fit to our tasks.

Table 7 analyses how different freezing strate-
gies influence model performances. We consider
freezing two different kinds of layers in structure:
embedding layers and encoder layers. So, there
are four combinations of strategies. As for BART-
base model, we can see that models with frozen
encoder layers fall far behind models freezing none
of encoder layers, indicating that encoder layers
are more important than embedding layers. It is in-
teresting that freezing embeding layers sometimes
helps BART models perform better while other
models worse. As a result, We than use stratgies of
freezing embedding layers or freezing no layers to
our subsequent trainging settings.

According to the results of table1, we choose
PEGASUS as our best model. PEGASUS mod-
els stand out from other popular models due to
their specially designed pretrain tasks. We test how
different optimizers influence performances. Ta-
ble 8 also reveals that using adafactor will raise the
ROUGE-2 metric by 2%. From the data we have,
private information of patients will be replaced by
token "___", which absolutely will not appear in
the vocabulary of PEGASUS. Considering the fact
that summaries also contain this special token, we
test whether adding this to vocabulary will help
models perform better. The results show that this
operation decreases the performance a little bit,
possibly because of not having a good initial value
for the added token in embedding space.

By analysing data carefully, we find that almost
half of the summaries start with pattern like "No
acute ..." or "No evidence of ...". A simple idea
is that we can separate the data according to the
pattern into two kinds, one with pattern of start-
ing from "No", one with other patterns, and train
models separately. When predicting, we also need
a classifier to classify samples and send samples
into according models. We label samples of which
summaries start with "No ..." as label 1, and label
other samples as label 0. We than train PEGASUS-
large models to generate summaries and BERT-
base model to classify. The results are shown on
Table 9.

Considering our classifier does make mistakes
when predicting, we set a threshold of 0.75. Only
when the classifier give samples probabilities
higher than this, will we use the separately trained
models. Otherwise, we will use the wholly trained
model to predict.
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model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
PEGASUS-large(freeze=3) 42.83 23.50 41.47 41.33
PEGASUS-large(freeze=0) 42.97 23.93 41.73 41.57

Table 4: Results of PEGASUS-large model on valid set with question type and focus in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
PEGASUS-large(freeze=0) 38.30 19.68 36.68 36.94

Table 5: Results of PEGASUS-large model fine-tuned on re-sampled data in Task 1

model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
BERT-abs 49.79 35.51 46.68 46.72

BART-base 61.90 49.39 58.86 60.29
BART-large(freeze) 60.10 47.38 57.01 58.55

PEGASUS-large 63.61 51.86 60.51 62.28
PEGASUS-pubmed 30.61 19.28 26.91 29.12

T5-small 57.08 45.13 54.65 55.47
T5-base 61.77 49.30 58.72 60.34
T5-large 61.85 50.81 59.19 60.56

Table 6: a comparison of different end-to-end models on 80% training set in Task 3.

model
freeze

encoder
freeze

embedding
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

BART-base yes yes 48.68 33.78 45.88 47.37
BART-base no yes 61.90 49.39 58.86 60.29
BART-base yes no 57.48 45.57 54.75 56.10
BART-base no no 61.30 49.31 58.45 60.01

PEGASUS-large no yes 53.68 42.58 51.57 52.45
PEGASUS-large no no 63.61 51.86 60.51 62.28

PEGASUS-pubmed no yes 26.83 15.83 23.79 24.41
PEGASUS-pubmed no no 30.61 19.28 26.91 29.12

Table 7: a comparison of same models using different freezing strategies

model optimizer
add

vocab
ROUGE

-1
ROUGE

-2
ROUGE

-L
ROUGE
-Lsum

PEGASUS-large adam no 62.29 49.15 59.30 60.62
PEGASUS-large adafactor no 63.07 51.18 60.06 61.42
PEGASUS-large adafactor yes 62.99 51.10 59.97 61.34

Table 8: a comparison of PEGASUS using different optimizer and adding special token in Task 3.

pipeline part model acc ROUGE-1 ROUGE-2
classification BERT-base 88.2

label 0 PEGASUS-large 54.02 37.34
label 1 PEGASUS-large 76.81 69.73

ensemble 61.97 50.02

Table 9: pipeline results on task3



102

8 Conclusion

In this work, we elaborate on the methods we em-
ployed for the three tasks in the MEDIQA 2021
shared tasks. For the extractive summarization of
MAS task, we build upon Xu and Lapata (2020),
and achieve improvements by adding contexts and
sentence position markers. For generating ab-
stractive summaries, we leverage the pre-trained
seq2seq models. To improve the fine-tuning per-
formances on the downstream tasks, we implement
a few techniques, like freezing part of the models,
adversarial training and back-translation. Our team
achieves the 1st place for the MAS task.
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