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Abstract

We present the system description for our
submission towards the Key Point Analysis
Shared Task at ArgMining 2021. Track 1 of
the shared task requires participants to develop
methods to predict the match score between
each pair of arguments and keypoints, pro-
vided they belong to the same topic under the
same stance. We leveraged existing state of
the art pre-trained language models along with
incorporating additional data and features ex-
tracted from the inputs (topics, key points, and
arguments) to improve performance. We were
able to achieve mAP strict and mAP relaxed
score of 0.872 and 0.966 respectively in the
evaluation phase, securing 5th place! on the
leaderboard. In the post evaluation phase, we
achieved a mAP strict and mAP relaxed score
of 0.921 and 0.982 respectively. All the codes
to generate reproducible results on our models
are available on Github?.

1 Introduction
The Quantitative Summarization - Key Point Anal-
ysis (KPA) Shared Task requires participants to
identify the keypoints in a given corpus. Formally,
given an input corpus of relatively short, opinion-
ated texts focused on a particular topic, KPA aims
to identify the most prominent keypoints in the
corpus. Hence the goal is to condense free-form
text into a set of concise bullet points using a well-
defined quantitative framework. In track 1, given a
debatable topic, a set of keypoints per stance, and a
set of crowd arguments supporting or contesting the
topic, participants must report for each argument
the corresponding match score for each keypoint
under the same stance towards the topic. In track
2, we are required to build a language model that
would generate keypoints given a set of arguments
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and a topic and finally find the match score of that
particular keypoint with the argument. We mainly
focused on the first track.

We frame the task of identifying the most promi-
nent keypoints as a sentence similarity task, obtain-
ing the most similar keypoints corresponding to a
given argument.

2 Related Work

Sentence similarity is gaining much attention in the
research community due to its versatility in various
natural language applications such as text summa-
rization (Abujar et al., 2019), question answering
(Ashok et al., 2020), sentiment analysis (Kham-
phakdee and Seresangtakul, 2021) and plagarisim
detection (Lo and Simard, 2019). Two major ap-
proaches to quantitatively measure similarity have
been proposed -

* Lexical similarity, as the name suggests, is
a measure of the extent or degree of lexicon
overlap between two given sentences, ignor-
ing the semantics of the lexicons.

* Semantic similarity takes into account the
meaning or semantics of the sentences. Deep
Learning based approaches are typically lever-
aged to create dense representations of sen-
tences, which are then compared using statis-
tical methods like cosine similarity.

Since the ArgKP-2021 dataset (Friedman et al.,
2021) contains crowd arguments for or against a
particular stance, naturally, we expect some para-
phrasing in the arguments put forth by different peo-
ple. This indicates that semantic similarity would
be an appropriate measure of similarity. However,
we observe the problem of semantic drift (Jansen,
2018) in keypoint - argument pairs. Hence, we
add additional lexical overlap and syntactic parse
based features to improve performance (details on
the features can be found in Section 4).

200

Proceedings of The 8th Workshop on Argument Mining, pages 200-205
Punta Cana, Dominican Republic, November 10-11, 2021. ©2021 Association for Computational Linguistics


https://github.com/manavkapadnis/Enigma_ArgMining
https://github.com/manavkapadnis/Enigma_ArgMining

3 Dataset Description

The ArgKP-2021 dataset (Friedman et al., 2021)
which was the main dataset used for the shared
task consists of approximately 27,520 argu-
ment/keypoint pairs for 31 controversial topics.
Each of the pairs is labeled as matching or non-
matching, along with a stance towards the topic.
The train data comprises of 5583 arguments and
207 keypoints, the validation data comprises of 932
arguments and 36 keypoints and the test data com-
prises of 723 arguments and 33 keypoints.
Additionally, since external datasets were permit-
ted, we experimented with two more datasets i.e.,
the IBM Rank 30k dataset (Gretz et al., 2019) and
the Semantic Textual Similarity or STS dataset
(Cer et al., 2017) (described in section 4.5) to train
our model before fine-tuning on the ArgKP-2021
dataset. The STS dataset comprises of 8020 pairs
of sentences, whereas the IBM Rank 30k dataset
comprises of 30497 pairs of arguments and key-
points.

4 Implementation Details

In this section, we elaborate on our experiments and
methodology to find the best-performing models.
The section is organized to describe the addition of
dependency parsing features in Section 4.2, parts
of speech features in Section 4.3, Tf-idf features
in Section 4.4, and the use of external datasets in
Section 4.5.

4.1 Baseline Transformer Model
Architecture

In recent work, Transformer (Vaswani et al., 2017)
based pre-trained language models like BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2019), and DeBERTa (He
et al., 2021), have proven to be very powerful in
learning robust context-based representations of
lexicons and applying these to achieve state of the
art performance on a variety of downstream tasks.

We leverage these models for learning contex-
tual representations of a keypoint - argument pair.
The keypoints and arguments are individually con-
catenated, along with the topic (in the same order)
for additional context information. We then ob-
tain the contextual representation of this triplet and
concatenate to it an encoded feature vector of ad-
ditional features (one of Dependency Parse based
features, Parts-of-Speech based features, and Tf-idf
vectors). This concatenated vector was then passed
through dense layers and a sigmoid activation to

get a final similarity score in the desired range of
[0, 1], as shown in Figure 1.

4.2 Dependency Parsing Features

To capture the syntactic structure of the sentences,
we added the dependency parse tree of the sentence
as an additional feature.

To obtain the same, we used the open-source
tool spacy 3. The dependency features are then
label encoded according to descending order of
occurrences. Consider three unique dependency
features in all the concatenated sentences of the
original dataset, namely, ‘aux’, ‘amod’, and ‘nsubj’.
Let ‘aux’, ‘nsubj’, and ‘amod’ be the descending
order of count in the dataset, then ‘aux’ is encoded
as one, ‘nsubj’ as two and ’amod’ is encoded as
three. All the names of unique features can be
found in the supplementary material.

These encoded dependency features are then con-
catenated to the output of the transformer model
and passed to subsequent layers as shown in Figure
1.
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Figure 1: Model Architecture ("+" implies concatena-
tion)

4.3 Parts of Speech Features

With a similar motive as before, i.e., to better cap-
ture the syntactic structure of the sentences, we

*https://spacy.io/
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experimented with Part-Of-Speech (POS) Features
as well.

As before, we used the open-source tool Spacy
to obtain POS labels for each lexicon, which were
then label encoded according to descending order
of occurrences. The encoded feature vector is then
concatenated to the output of the transformer model
and fed to the subsequent layers.

4.4 Tf-idf features

In addition to semantic overlap, we wished to see
if adding lexical overlap-based features would im-
prove the ability of the model to identify similar
sentences. To this end, we obtained the Tf-idf vec-
tor of the (keypoint, argument, topic) triplet (with
padding). As before, the encoded feature vector is
then concatenated to the output of the transformer
model and fed further to the subsequent layers.

4.5 External Datasets

We further tried to experiment with sentence simi-
larity pre-training task on two additional datasets.
The two datasets used were the STS benchmark
dataset and the IBM Debater® - IBM Rank 30k
dataset.

For the STS dataset, we normalized the target
similarity score to bring the scores between 0 and
1. No additional preprocessing was done to the text.
The two input sentences were concatenated into a
single sentence and then directly fed to the model.
We trained our model on STS dataset for 6 epochs
and on the main dataset for 3 epochs.

For the IBM Rank 30k dataset, we used the
MACE (Hovy et al., 2013) Probability score as
the target column, which signifies the argument
quality score for the corresponding topic. This is
analogous to our approach for main task, wherein
we output a similarity score for each argument-
keypoint pair. No preprocessing was done to the
text, the argument and topic were concatenated into
a single sentence and then fed to the model. We
trained our model on the IBM Rank 30k dataset for
3 epochs and on the main dataset for 3 epochs.

Due to resource constraints, we were not able to
perform pre-training on both the additional datasets
one after another.

5 Results and Discussions

After we had concluded our experiments, a new
evaluation method was proposed by organizers,
which removes the positive bias towards a system
that predict less true positives in high confidence.

In the default evaluation metric a perfect recall is
attained only when all positive ground truth labels
are predicted, whereas the new method allows a
perfect recall score when the top 50% of the predic-
tions (ranked by confidence) are positive. However,
since we had completed all our experiments at this
point, it was not feasible to rerun all our experi-
ments in the given time frame. Hence we have
reported all our results according to the default
evaluation method.

Among all the transformer models without the
use of external datasets, we found BART-large to
perform best, along with DeBERTa-large with Tf-
idf as additional features, achieving the best mAP
strict and mAP relaxed score of 0.909, 0.982 and
0.911, 0.987 respectively. All the reported results
are averaged over three seeds.

Table 1 describes our experiments with differ-
ent Transformer-based contextual language mod-
els without using any additional features. Recent
improvements to the state-of-the-art in contextual
language models in BART and DeBERTa perform
significantly better than BERT. Further, BART is
pre-trained using various self-supervised objectives
such as token masking, sentence permutation, doc-
ument rotation, token deletion and text infilling,
unlike other models that mostly use either masked
language modelling or next sentence prediction. In
our opinion, the tasks of sentence permutation and
document rotation help the model get a better un-
derstanding of context at the sentence level, and
thus, are helpful when considering the keypoint
matching task. We also observe that the large ver-
sion of the models, trained on more data with more
parameters, perform significantly better than the
base versions, as expected.

Model mAP Strict mAP Relaxed
BERT-base 0.804 +0.037 0.910 £+ 0.050
RoBERTa-base 0.826 +0.051 0.930 + 0.032
BART-base 0.824 +0.030 0.908 £ 0.020
DeBERTa-base 0.894 4 0.020 0.973 £ 0.015
BERT-large 0.821 £ 0.025 0.924 £ 0.006
RoBERTa-large 0.892 + 0.003 0.970 £ 0.015
BART-large 0.909 + 0.011 0.982 + 0.003
DeBERTa-large 0.889 +0.030 0.979 £ 0.010

Table 1: Results of Transformer models

Table 2 shows the best performing results ob-
tained by concatenating one of the following - De-
pendency Parse features, POS features, and Tf-
idf features. We note that out of the three feature
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vectors methods, Tf-idf features performs the best.
Tf-idf gives a relation/measure of lexical overlap
between the argument and keypoint, whereas the
other features (POS and Dependency Parse) just
expand on the sentence structures of the argument
and the keypoint, without expressing the relation
between the same. Thus it is observed that Tf-
idf performs better than the other two feature vec-
tors. In table 2, we report the best-performing
transformer-based models for each feature vector.
Detailed results (each transformer model with each
feature) can be found in the Appendix which is
present in the supplementary material. We could
not perform combination of all the syntactic fea-
tures due to limited GPU memory availability.

Feature Best Model mAP Strict mAP Relaxed
Dep? BART-large 0.868 +0.023 0.977 £+ 0.015
POS? BART-large 0.906 +0.011 0.987 + 0.005
Tf-idf DeBERTa-large 0.911 + 0.005 0.987 + 0.008

Table 2: Results with Additional Features

Table 3 shows the outcome of training on ad-
ditional datasets such as the STS and the IBM
Rank 30k dataset without using any feature vec-
tors. We find that the best performing scores us-
ing both these datasets are almost equal and are
achieved by the same BART-large model architec-
ture. Thus training on additional datasets led to a
substantial increase in both mAP strict and mAP
relaxed scores. The best results of pre-training on
the additional datasets were almost similar, which
might be because the ground truth scores in both
the datasets effectively reflect the semantic overlap
between two sentences (i.e., if two sentences of a
data sample are semantically similar, they would
have a higher score, and vice versa), thus making
the datasets similar to one another.

We also tried adding feature vectors plus training
on additional datasets®, but there was no significant
change in the performance than the existing results.
Transformers themselves are able to learn syntac-
tic and semantic features on their own during the
training process (Clark et al., 2019). Adding these
features only increases redundancy, as a result of
which the performance of the model isn’t affected
much. This observation could also be seen in the
difference in the results of table 1 and 2.

“Encoded dependency features (section 4.2)

SEncoded parts of speech features (section 4.3)

The results of these experiments can be found in Ap-
pendix available in the supplementary material.

Complete results of these experiments can be
found in the Appendix available in the supplemen-
tary material.

Model Additional mAP mAP
Dataset Strict Relaxed

BERT-large STS 0.818 £0.045 0.933 £0.016
RoBERTa-large STS 0.905 £+ 0.007 0.986 + 0.004
BART-large STS 0.920 £+ 0.005 0.967 + 0.036
DeBERTa-large STS 0.912 £0.004 0.983 + 0.003
BERT-large IBM Rank 30k  0.793 £0.029 0.914 £0.019
RoBERTa-large IBM Rank 30k 0.872 +0.006 0.974 + 0.003
BART-large IBM Rank 30k  0.921 + 0.018 0.982 + 0.002
DeBERTa-large IBM Rank 30k  0.894 +0.017  0.982 £ 0.008

Table 3: Results with pretraining on additional datasets

Comparison of all the Preprocessing Results of BART large
B mAP Strict [l mAP relaxed
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Figure 2: All preprocessing methods with BART large

Comparison of all the Preprocessing Results of DeBERTa large
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Figure 3: All preprocessing methods with DeBERTa
large

In Figures 2 and 3, we plot the results of the
best-performing transformer-based models using
different feature vectors.

6 Ablation Study

We designed different settings to compare and val-
idate our approach and its performance. This sec-
tion consists of results on excluding of topics from
input in Section 6.1, incorporating average of hid-
den states before feeding to dense layers in Sec-
tion 6.2, and boosting in Section 6.3. Since we

203



obtain best results with BART-large and DeBERTa-
large with Tf-idf features, thus the following abla-
tion study is done with these class of models.

6.1 Exclusion of topic from input

We incorporate the combination of keypoints and
arguments as input to the pre-trained language mod-
els to analyze the importance of the topic towards
generating the matching score. Comparing Table 1
and Table 4, incorporating topic provides more con-
text in the input, thus improving both mAP strict
score and mAP relaxed score.

Model mAP Strict mAP Relaxed
BART-base 0.803 +0.028 0.898 4+ 0.015
DeBERTa-base 0.823 +£0.030 0.922 +0.012
BART-large 0.880 + 0.006 0.946 + 0.010
DeBERTa-large 0.874 4+ 0.025 0.946 + 0.027

Table 4: Results with input as keypoint plus argument

6.2 Average of hidden states

We average the last two and the last three hidden
states of the pre-trained language model. The av-
erage hidden states were then fed into the dense
layers to obtain the match score. It can be observed
that for both BART-large and DeBERTa-large, the
performance decreases as we incorporate more hid-
den states for the output. The intuition behind this
observation can be attributed to the fact that task-
specific information encoded in hidden states is less
as compared to the last layer, resulting in decreased
performance. The results are shown in Table 5.

No. of

Model Hidden States mAP Strict mAP Relaxed
BART-large 2 0.868 + 0.016  0.941 + 0.004
DeBERTa-large 2 0.871 £+ 0.039  0.949 + 0.015
BART-large 3 0.837 £ 0.020 0.933 £+ 0.012
DeBERTa-large 3 0.850 £ 0.014  0.934 + 0.022

Table 5: Results with average of hidden states

6.3 Boosting

We implemented the AdaBoost algorithm by con-
sidering our baseline transformer architecture as
the base model for this sequential paradigm. BART-
large and DeBERTa-large were the transformers
used for this study. The first base model was trained
with the whole training set, whereas the other four
models were trained by sampling data points from a
probability distribution. Initially, all the data points
were assigned an equal probability. However, the

distribution was updated in a way such that the er-
roneous data points for the previous base models
were given a higher probability to be sampled.

The top 10, 000 most probable data points were
sampled for each base model except for the first
one. It can be observed from Table 1 and Table
6 that for DeBERTa large model, the mAP Strict
has indeed been boosted from 0.889 to 0.904. The
results are mentioned in Table 6.

Model
BART-large
DeBERTa-large

mAP Strict mAP Relaxed
0.832 +0.020 0.960 & 0.010
0.904 + 0.021 0.973 £ 0.017

Table 6: Boosting Results on Transformer model

7 Conclusion

In this work, we used Pre-trained Language Mod-
els (PLMs) to predict the match score for each
argument and keypoint pair under the same stance
towards the topic. We observed the state-of-the-
art PLMs such as BART and DeBERTa perform
the best compared to other models. We further
improve the performance with additional datasets
(IBM Rank 30k and STS) to perform additional
pre-training (with sentence similarity) before fine-
tuning on ArgKP-2021 dataset. We experimented
with POS, Dependency and Tf-idf features to eval-
uate the addition of extra syntactic features. We
support the selection of our final models with var-
ious ablation studies. It would be a good future
direction to generate appropriate explanations from
concatenated input and propose methods to use
explanations in the training process.
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