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Abstract

Key point analysis (KPA) has been proposed
as a way to summarize arguments with short-
sized pieces of text termed key points. This
work aims at describing a solution for the
Track 1 of the KPA 2021 shared task, ana-
lyzing different methodologies for the specific
problem of key point matching, which con-
sists in finding a reasonable mapping from ar-
guments to key points. The analysis will fo-
cus on transformer based architectures, ex-
perimentally investigating the effectiveness of
variants specifically tailored to the task.

1 Introduction

In the context of natural language processing, text
summarization is the act of creating a concise
summary of a given text. This is particularly use-
ful when the text at hand represents arguments, i.e.
opinions, about a certain topic. An example is that
of political debates, in which politicians express
opinions concerning the subject matter. Another
scenario is that of e-commerce sites, where users
can write reviews about different items. In both
cases, a third party can greatly benefit from a sum-
mary of the arguments in order to make effective
decisions.
In recent years, there have been several attempts
to automatize the summarization of arguments in a
meaningful way. The first works focused on clus-
tering, by which arguments are assigned to clus-
ters based on different notions of relatedness (e.g.
semantic similarity) between pairs of arguments
(Reimers et al., 2019; Ajjour et al., 2019; Misra
et al., 2016). Unfortunately, with this method-
ology the actual summary of the arguments had
to be compiled manually by analyzing the con-
tents of the clusters. More recently, Bar-Haim
et al. (2020a) proposed to transform the summa-
rization problem into what has been named key
point analysis (KPA). Given a certain topic of dis-
cussion, arguments are summarized by matching

them to a short list of high-level summaries, called
key points. This allows a quantitative approach
to summarization, in which the saliency of a key
point (i.e. the degree of matched arguments) gives
a hint of the underlying nature of the arguments.
Even though Bar-Haim et al. (2020a) have shown
that a domain expert can create meaningful key
points for a topic even without looking at the ar-
guments, the final goal of this field would be to
generate the key points and match them with the
respective arguments without human intervention.
With this goal in mind, the KPA 2021 shared task
1 (Friedman et al., 2021) poses two problems to its
participants: a key point matching subtask (Track
1) and a key point generation subtask (Track 2).
This paper describes a solution to the key point
matching subtask, in which key points are given
and the goal is to match them with the appropriate
arguments. The problem is framed as a classifi-
cation task and the paper will focus on analyzing
different transformer based models with different
possible variants.
All experiments are executed on a Nvidia Tesla
P100 with limited access. The computational lim-
itations have influenced many design choices and
results of the paper.

2 KPA 2021 shared task: data and
evaluation metrics

As training data, the proponents shared the ArgKP
dataset (Bar-Haim et al., 2020a) divided into train-
ing and development sets, containing respectively
24 and 4 debate topics of various nature and ar-
guments mined from the internet. The dataset
contains 24,093 <argument, key point> pairs.
Each pair is associated with the concerned topic,
presented as a short-sized text, and the stance to-
wards the topic (+1 for the pro side, -1 for the con
side). A binary label (1 for a match, 0 otherwise) is

1https://github.com/IBM/KPA_2021_shared_
task
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assigned only to <argument, key point> pairs
under the same stance towards the topic, noting
that arguments and key points having opposite
stance automatically constitute a mismatch. At the
end of the competition, the task organizers have
also released an external test set containing 3 top-
ics, totalling 3426 pairs, to be used for the final
evaluation and ranking of participants.
Not every feasible pair appears in the labeled data.
A pair appears in the dataset as a match or a mis-
match if, respectively, more than 60% or less than
15% of the original annotators labeled it as match-
ing. All the other pairs are not included in the
dataset. Intuitively, this ensures that the pairs are
not labeled ambiguously whenever there was no
net agreement between the annotators. Even if
the dataset is constructed like so, in the evalu-
ation phase of the task the final model will be
queried on all possible pairs including the unla-
beled ones, testing the system’s ability to deal with
uncertainty. In fact, the model will have to output,
for each argument, a match score in [0, 1] for each
of the key points under the same topic and in the
same stance towards the topic.

The task is evaluated by the average rank of
the strict and the relaxed mean Average Precisions
(mAP), where the ranks are intended as the final
positions of the two values in the rankings of the
competition. The mAP, which is the mean of the
precision values of the model at different recalls, is
chosen as a metric since it gives a summary of the
recall-precision curve without having to choose a
specific classification threshold. Given the match
scores output by a model on a certain dataset, the
strict and relaxed mAP values are computed as
follows. First, each argument is paired with the
highest scoring key point. Then, half of the low-
est matching pairs are discarded. This is done to
avoid evaluating the model on arguments with no
matching key points. At this point, precision val-
ues and therefore mAP values can be computed
on the remaining pairs based on the labeled data.
Note, however, that a pair can have a high match
score but no labels in the dataset because of its
ambiguity. In this case, the pair can arbitrarily be
considered a match or a mismatch. This results
in the computation of two different mAP scores: a
strict mAP, for which absent pairs are considered a
match, and a relaxed mAP, for which the pairs are
considered a mismatch. The final values are com-
puted by taking the macro-average of strict and re-

laxed mAP values for each topic/stance combina-
tion.

3 Methodological survey

Assigning a match score to an <argument, key
point> pair can be considered as a text classi-
fication task where the problem is to determine
the probability that the pair is a match. In recent
years, transfer learning through fine-tuning of
pretrained transformers such as BERT (Devlin
et al., 2018) have dramatically improved results
on a variety of NLP tasks, including classification.
Furthermore, transformer based architectures are
particularly suited for the task of sentence pair
classification. In fact, many of these models
are pretrained on tasks such as next sentence
prediction (NSP) and sentence order prediction
(SOP), which require the model to take in pairs
of sentences or segments and to classify them
accordingly. This implies that the ArgKP dataset
can be easily adapted to these models. Moreover,
since the models have already learned how to pro-
cess and internally represent sentences, one would
expect to see good results also in the context of
key point matching. For these reasons, this work
focuses on transformers. This is not a limiting
decision, since there are many transformers ar-
chitectures to test and many possible variants for
each model. In literature, previous works related
to KPA (Bar-Haim et al., 2020a,b) already report
results for 4 transformer based models, namely
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019) and ALBERT
(Lan et al., 2019), considering only their largest
versions. For each model, only classification
metrics such as accuracy, precision, recall and F1
scores are reported. This work aims at expanding
the analysis by studying the behavior of the
models under the metrics of the competition and
by experimentally evaluating new variants. In
particular, to allow a comparison with the state
of the art, the same 4 transformers are analyzed
also here, extending the investigation to smaller
versions of the models and to other variants that
will be described later on. Smaller models are
not expected to be superior to the larger versions.
Nonetheless, they are included in the study to give
a reference point regarding their performance on
the task of key point matching.
Key point matching can also be considered as an
instantiation of a natural language inference (NLI)
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task (Dagan et al., 2013), where the problem is to
determine whether the key point logically follows
from the argument (or viceversa). However,
fine-tuning models pretrained on NLI datasets
already showed no improvement in literature
(Bar-Haim et al., 2020a). Because of this and of
the additional computational burden caused by
pretraining on large NLI datasets, this variant is
avoided.
Besides basic transformers, this work includes
SBERT (Reimers and Gurevych, 2019), a sentence
embedding transformer model. SBERT produces
semantically meaningful sentence embeddings,
which means that semantically similar sentences
are close in the vector space. SBERT has been
used alone, without fine-tuning, computing the
cosine similarity between arguments and key
points embeddings. Furthermore, it has also
been used in one of the variants, feeding its
outputs to the linear top-layer of the transformer
based models to see if adding information about
semantically meaningful sentence embeddings
yields an increase in the performance.
BERT, XLNet, RoBERTa and ALBERT have
been downloaded through the huggingface
library (Wolf et al., 2020), while SBERT
has been downloaded through the Sentence-
Transformers Python framework, choosing the
paraphrase-mpnet-base-v2 model since it
has the best performance on a variety of different
tasks. BERT is uncased. XLNet and RoBERTa
are cased since no uncased versions have been
released for them. For each transformer other
than SBERT and ALBERT, both base and large
versions have been tested. For what concerns
ALBERT, albert-base-v2 has been used for
the smaller version, while albert-xxlarge-v1
has been chosen for the larger version since it is
generally better than albert-xxlarge-v2 on
downstream tasks.
A thorough analysis should have included also
RNNs and CNNs. In fact, arguments and key
points are generally short-sized and simpler
models may actually work better in this context.
However, given the non negligible computational
limitations of this work, discarding these and other
valuable models allowed for the exploration of a
greater number of transformer based architectures
and variants.

4 Data preprocessing and analysis

Since the training data shared by the organizers is
split into a training (TR) and a validation set (VL),
an internal test set (TS) split had to be extracted
from the TR in order to assess the performance
of the final model. In order not to allow different
<argument, key point> pairs under the same
topic to be spread between different splits, the TS
has been extracted from the TR by doing a topic
based division. The final internal TS contains 3
topics with a total of 3164 pairs, while the final
TR and VL contain respectively 21 and 4 topics
with a total of 17471 and 3458 pairs.
Arguments are mined from the internet and even if
they have been originally filtered, their quality can
vary a lot throughout the dataset. They sometimes
contain misspellings and an informal use of sym-
bols (e.g. slash between words). Even if there is
evidence of the fact that BERT based models can
suffer from natural adversarial instances such as
typos (Sun et al., 2020), the quality of the dataset
has not been improved for the sake of simplicity.
As mentioned earlier in the paper, for each
<argument, key point> pair the dataset also
contains the concerned topic and the stance to-
wards it. Adding the topic to the input of the
model is useful especially when neither the argu-
ment nor the key point contains enough informa-
tion about the context of discourse. In previous
works, the topic has not been included in the in-
puts and therefore its utility will be tested in one
of the variants presented later. When the topic
is considered, it is simply prepended to the con-
cerned argument and the input to the model there-
fore becomes <topic+argument, kp>. Notice,
however, that topics are always written in the af-
firmative form as in ”Kids should be wearing uni-
forms at school”. When the stance towards the
topic is negative, in order not to fool the model
by giving it contradictory information, the topic
should be expressed in its negative form. One way
to do this would be to encode the stance as a binary
input to the linear output layers. Here, instead, af-
firmative topic are simply transformed into their
negative form in order to exploit the encoding ca-
pabilities of the transformers. Transforming an af-
firmation to a negation is not a trivial task, but for-
tunately the topics contained in the dataset and in
the external TS are all in the form SUBJECT +

should or is + REST. This allows to just add not
after should or is in order to complete the transfor-
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mation, noting that, in order to make the system
generalizable, one would have to develop a fully
working affirmative-to-negative module. The al-
ternative to this would have been to encode the
stance as a binary input to the models.
Arguments appear in the dataset in all lower case,
all caps (a very small portion) and a mixture of
both. Arguably, in the context of key point match-
ing, a cased analyis of the text would not be much
useful. For this reason, uncased models have
been used when possible, transforming the text
to lowercase before processing it. All text is to-
kenized and transformed to lowercase by relying
on the different tokenizers provided by each trans-
former. Finally, each <arg, kp> pair is trans-
formed by the tokenizer as follows: [cls] arg
[sep] kp [sep].

5 Models and variants

In the model selection phase, BERT, ALBERT,
ROBERTA, XLNet and SBERT are all tested with
the following modalities. For each model ex-
cept SBERT, the representations computed by the
transformers are fed to a single linear layer with
two output logits. A softmax layer is then used at
evaluation time to compute the final match proba-
bility. Each model except SBERT can have mul-
tiple possible configurations corresponding to dif-
ferent variants of the basic models. This work fo-
cuses on three main variants. First, one can decide
whether to inform or not the model about the topic
with the modalities shown in the previous sec-
tion. Second, the final contextualized representa-
tions output by the transformers can be computed
in a number of different ways as in Devlin et al.
(2018). This was allowed since the best represen-
tation usually depends on the particular task at is-
sue. One can decide to just take the [cls] token
representation or to get a final vector by applying a
pooling operation to the hidden representations of
the transformer. Three pooling options are avail-
able: average of the last layer (avg last), average
of the second last layer (avg 2ndlast), average of
the sum of the last four layers (avg sumlast4).
Finally, one can choose to concatenate the 768-
dimensional SBERT embeddings of the two input
segments to the representation output by the trans-
former. This was allowed to see if adding informa-
tion about semantically meaningful sentence em-
beddings would help the models in the classifica-
tion task.

6 Training procedure and model
selection

6.1 Metrics
Before training, an evaluation metric had to be de-
fined in order to make the model selection possi-
ble. The metric should follow the one used in the
competition so to favor models that can potentially
place high in the final rankings. As explained ear-
lier, the metrics involved in the competition are the
strict and relaxed mAP scores. More specifically,
the final rank of a system is determined by the av-
erage of the ranks of the strict and relaxed mAP
values. For this reason, the average of the two
scores, indicated from now on with Avg mAP, has
been used as the metric. Notice that this is not the
same thing as the average of the ranks. Still, this is
a reasonable way give importance to both scores.
Furthermore, a model with a high Avg mAP is also
likely to have a high average rank. When com-
puting the Avg mAP, the strict and relaxed mAP
scores have been determined with the already out-
lined procedure used by the organizers.

Even if the task does not require the models
to compute the actual classification labels, for the
sake of completeness, classification metrics such
as accuracy, precision, recall and F1 scores have
been computed both on the TR and the VL. Com-
puting classification labels from match scores can
be done in multiple ways as shown in Bar-Haim
et al. (2020a). It can be done locally, considering
just the single score of a pair, or globally, taking
into account all the match scores between an ar-
gument and the key points. Since this problem
was not the focus of the paper, only two simple
local methods have been evaluated. In the first
one, a match score is trivially transformed using
a threshold of 0.5. In the second one, the thresh-
old is learned and is chosen to maximize the F1
score on the TR. Since the learned threshold of-
ten generalizes worse than the fixed one, it is not
considered in the discussion and related results are
shown in Appendix A.

6.2 Training
All models are fine-tuned end to end without
freezing the transformers, using Adam as the opti-
mizer and cross entropy loss as the loss function.
The hyperparameters of the models are fixed be-
fore the model selection, following when possi-
ble the configurations employed in the papers of
the respective transformers. The dropout rate of
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the transformers is always the default one (0.1).
In the final linear layer, dropout is always set
to 0.1. Also, the maximum number of epochs
e is always 3 and checkpoints are saved in each
epoch whenever the cross entropy loss on the VL
reaches a new minimum. The number of epochs
was found by manually checking the convergence
of the models during the preliminary phase of the
study. The batch size b is set to 32. When train-
ing smaller models a fixed learning rate is used.
For the largest models, which show no conver-
gence with a constant learning rate, a learning
rate schedule is used following the original papers.
The same warm up and linear decay schedules are
used for each model. The duration of the warm up
phase was found by trying different values and by
checking if the models converged. At the end, the
number of training steps of the warm up phase was
heuristically computed as 1

5 of the total training
steps |TR|

b e, which amounts to around 300 steps.

6.3 Model selection

For computational reasons, the model selection
procedure has been divided into two phases. The
procedure is suboptimal but it nonetheless gives
a hint of what is the appropriate model for the
task. For the same reason, instead of a robust
cross-validation procedure, hold-out validation is
executed in both phases. Given the relatively high
number of models to be tested and the long train-
ing time of transformers, cross-validation would
have been unfeasible with the computational limi-
tations of this work. In the first phase, the chosen
models (both small and large) are all trained and
validated with their basic configurations, which
are the ones that use the cls token representation,
no topic and no concatenation of SBERT embed-
dings. Then, the best model on the VL, i.e. the one
that has the highest Avg mAP score, is selected
for the second phase. In this phase, the selected
model is trained again on the same data splits in
a grid search with 16 different configurations. At
the end, the model with the best configuration on
VL is chosen as the final system and is used for
the evaluation on the internal and external TS.
Given the limited access to the used machine, all
results are obtained with a single random seed,
without averaging multiple runs.

6.4 Results

Results on TR and VL of the first phase of the
model selection are shown in Table 1. As already
mentioned, training is executed only on labeled
data, while results are computed also on all pos-
sible <arg, kp> pairs. In the table, strict and re-
laxed mAP values computed on all possible pairs
are shown on VL but not on TR. This is done to
avoid showing TR results on data which the model
has never seen during training. The table also con-
tains the average of strict and relaxed mAP. This is
the metric used to select the best model. SBERT,
the only unsupervised model in the analysis, is the
worst model as expected and serves as a baseline
for the other models. However, even if the model
is not fine-tuned for the task, the results are not so
far from those of the fine-tuned models in terms of
Avg mAP. This is remarkable, given that the sen-
tence embeddings and the cosine similarity scores
can be computed in a matter of seconds without
any training process. RoBERTa, on the other hand,
is the best of the models in terms of Avg mAP with
ALBERT as a close second. Table 2 shows the
classification metrics on TR and VL for the same
models. The results are similar to those reported
in Bar-Haim et al. (2020a). ALBERT is the best
model under all metrics except for the recall, while
SBERT is the worst one with a very low precision,
showing its weaknesses as an unsupervised model.
Even if RoBERTa managed to beat the other mod-
els under the specified metrics, ALBERT may be
better overall for the task of key point match-
ing when considering non ambiguous data. How-
ever, given the results of this first model selection,
RoBERTa was selected for the second phase.

Results on both TR and VL for the second phase
of the model selection are shown in Table 3. Re-
member that with the employed hold-out valida-
tion procedure results may be non representative
of the actual performance of the models. Nonethe-
less, analyzing the general behavior of the differ-
ent variants may give an idea about their effective-
ness. Variants exploiting the topic show an aver-
age increase of more than 0.02 in the Avg mAP,
indicating that including the topic in the input ac-
tually helped. On the other hand, there are no
clear winners among the different pooling meth-
ods. On average, avg last was the best, while
cls was the worst. Similarly, the concatenation
of the SBERT embeddings did not make much
difference and on average they actually caused a
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Model Type
TR VL

Loss Loss mAP (S) mAP (R) Avg mAP Time (TR)
SBERT paraphrase-mpnet-base-v2 0.743 0.729 0.759 0.904 0.831 -

BERT
base-uncased 0.115 0.409 0.817 0.964 0.891 00:06:10
large-uncased 0.127 0.389 0.765 0.95 0.857 00:20:41

XLNet
base-cased 0.27 0.302 0.779 0.94 0.86 00:09:41
large-cased 0.207 0.333 0.767 0.945 0.856 00:27:38

RoBERTa
base 0.153 0.271 0.823 0.954 0.889 00:06:17
large 0.057 0.226 0.884 0.995 0.939 00:21:17

ALBERT
base-v2 0.134 0.298 0.762 0.926 0.844 00:06:33
xxlarge-v1 0.09 0.223 0.879 0.992 0.935 02:03:37

Table 1: Results and training times of transformer based models on TR and VL in the first phase of the model
selection. (S) = strict, (R) = relaxed, Loss = cross entropy loss. Avg mAP is the average between strict and relaxed
mAP.

Model Type Accuracy Precision Recall F1

TR

SBERT paraphrase-mpnet-base-v2 0.455 0.261 0.888 0.403

BERT
bert-base-uncased 0.963 0.911 0.909 0.91
bert-large-uncased 0.96 0.911 0.893 0.902

XLNet
xlnet-base-cased 0.894 0.753 0.73 0.741
xlnet-large-cased 0.918 0.839 0.75 0.792

RoBERTa
roberta-base 0.945 0.929 0.793 0.856
roberta-large 0.98 0.981 0.919 0.949

ALBERT
albert-base-v2 0.956 0.968 0.813 0.884
albert-xxlarge-v1 0.971 0.926 0.937 0.931

VL

SBERT paraphrase-mpnet-base-v2 0.488 0.284 0.921 0.434

BERT
bert-base-uncased 0.82 0.554 0.82 0.661
bert-large-uncased 0.824 0.561 0.813 0.664

XLNet
xlnet-base-cased 0.891 0.771 0.695 0.731
xlnet-large-cased 0.865 0.676 0.709 0.692

RoBERTa
roberta-base 0.896 0.764 0.745 0.754
roberta-large 0.912 0.744 0.894 0.812

ALBERT
albert-base-v2 0.89 0.727 0.774 0.75
albert-xxlarge-v1 0.918 0.749 0.925 0.828

Table 2: Classification results on TR and VL with classification threshold set to 0.5 in the first phase of the model
selection.

slight degradation of the performance. Finally,
the model with the best Avg mAP score was the
one exploiting the [cls] token representation, the
topic and the SBERT embeddings. This is the fi-
nal model used for the evaluation on the internal
and external TS. Table 4 shows its results under
the classification metrics on TR and VL.

7 Test set results and analysis

Having chosen the best model on the VL, the last
phase consisted of its assessment on the internal
and external TS. Results on both internal and ex-
ternal TS with a reference to previous results on

VL are shown in Table 5. Under the chosen met-
rics, the performance of the model on the internal
TS is remarkably higher than on the VL, showing
an increase of about 2% in the avg mAP caused
by a sharp increase in the strict mAP. Compared to
the results on the VL, the model seems to behave
well also on the external TS, showing only a slight
decrease in the avg mAP. Table 6 shows classifica-
tion metrics on VL, internal and external TS. On
the internal TS, the model still gives good results,
improving the F1 score of the VL. On the other
hand, the model drastically loses its precision on
the external TS while having a high recall, which
indicates that the model tended to match the pairs
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SBERT Topic Pooling
TR VL

Loss Loss mAP (S) mAP (R) Avg mAP
N N cls 0.057 0.226 0.884 0.995 0.939
N N avg last 0.061 0.242 0.868 0.979 0.924
N N avg 2ndlast 0.109 0.259 0.869 0.995 0.932
N N avg sumlast4 0.053 0.281 0.881 0.993 0.937
N Y cls 0.132 0.205 0.896 0.995 0.945
N Y avg last 0.115 0.212 0.897 0.995 0.946
N Y avg 2ndlast 0.043 0.219 0.889 0.998 0.943
N Y avg sumlast4 0.049 0.317 0.885 0.991 0.938
Y N cls 0.211 0.251 0.789 0.961 0.875
Y N avg last 0.119 0.207 0.877 0.995 0.936
Y N avg 2ndlast 0.117 0.197 0.872 0.991 0.931
Y N avg sumlast4 0.118 0.249 0.837 0.978 0.907
Y Y cls 0.036 0.262 0.901 0.998 0.949
Y Y avg last 0.133 0.261 0.882 0.99 0.936
Y Y avg 2ndlast 0.052 0.285 0.872 0.995 0.933
Y Y avg sumlast4 0.096 0.236 0.868 0.992 0.93

Table 3: Results of RoBERTa and variants on TR and VL in the second phase of the model selection. SBERT
indicates whether SBERT embeddings are concatenated to the transformer outputs before feeding them to the final
linear layer. Topic specifies if the topic is being given as input to the model. Pooling indicates the type of pooling
employed to get the final contextualized representation from the transformer. (S) = strict, (R) = relaxed, Loss =

cross entropy loss. Avg mAP is the average between strict and relaxed mAPs.

Accuracy Precision Recall F1
TR 0.990 0.978 0.973 0.976
VL 0.907 0.725 0.911 0.807

Table 4: Classification metrics on TR and VL for the best model of the second phase of the model selection. The
classification threshold is set to 0.5.

too often. This, together with the model selection
results, indicates that the used metrics may favor
models which do not perform necessarily well on
non ambiguous labeled data.

8 Error analysis

To complete the study, errors on the external TS
have been analyzed manually in order to try to un-
derstand the weaknesses of the model. To avoid
choosing a particular threshold for the classifica-
tion labeling, only the pairs which the model was
most confident about have been considered for the
study.
Since the final model has a low precision, most of
the analysis focused on the pairs labeled with 0
that have been wrongly matched. What emerged
was that, at first glance, many of these pairs

seemed to be matching also for a human. For hu-
mans, a reasonable match score can be assigned
only after seeing all the possible key points and
the general distribution of the arguments. To show
an example, consider the following topic, argu-
ment and key point in order: ”Routine child vac-
cinations should be mandatory”, ”Child vaccina-
tion should be mandatory to prevent children from
spreading the virus”, ”Routine child vaccinations
are necessary to protect others”. The argument
seems to be matching the key point to a high de-
gree. Let us now introduce a key point that actu-
ally matches the argument: ”Routine child vacci-
nations should be mandatory to prevent virus/dis-
ease spreading”. The argument seems to be
matching this second key point more than the first
one. The score assigment can be also influenced
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Loss mAP (S) mAP (R) Avg mAP
VL 0.262 0.901 0.998 0.949

Internal TS 0.208 0.940 0.996 0.968
External TS 0.366 0.900 0.977 0.939

Table 5: Results of the final model on VL, internal TS and external TS. mAP (with no letters) is computed with
labeled data only. (S) = strict, (R) = relaxed, Loss = cross entropy loss. Avg mAP is the average between strict
and relaxed mAP.

Accuracy Precision Recall F1
VL 0.907 0.725 0.911 0.807

Internal TS 0.929 0.796 0.868 0.830
External TS 0.883 0.585 0.933 0.719

Table 6: Classification metrics on VL, internal TS and external TS of the final model. The classification threshold
is set to 0.5.

by the nature of the other arguments. If the argu-
ments generally happen to match key points in a
strict way, one may end up assigning lower scores
to looser but still matching pairs. This indicates
that, perhaps, the model should be informed about
the existence of other key points and arguments to
assign the scores in a reasonable way.
Other more subtle errors are caused by the model
wrongly associating different terms coming from
the same semantic field. Consider for exam-
ple the following topic, argument and key point:
”The USA is not a good country to live in”,
”The USA is a bad country to live in because
some people are aggressive”, ”The US is xeno-
phobic/racist”. Here, the model is fooled by the
semantic similarity between aggressiveness and
xenophobia/racism. More specifically, since trans-
former based models are pretrained focusing only
on the co-occurrence of words, the model is not
aware of the actual logical relationship between
them. Consequently, it can not know that someone
who is aggressive is not necessarily xenophobic or
racist.
Lastly, some errors depend on the bad quality of
the arguments and of the labeling. Consider the
following triple: ”The USA is not a good country
to live in”, ”Not because it is a country with many
restrictions for immigrants.”, ”The US is xenopho-
bic/racist”. The model correctly assigns a low
score to the input. However, the pair is labeled
with a 1, indicating that the annotator interpreted
the initial ”Not” as a mining mistake.

9 Conclusions

Key point analysis is a promising way to sum-
marize a large number of arguments about a cer-
tain topic. In this paper, which describes a solu-
tion for the Track 1 of the KPA 2021 shared task,
the specific problem of assigning match scores
to <argument, key point> pairs was tackled
by framing it as a text classification task, fo-
cusing on different state of the art transformer-
based architectures and variants specifically tai-
lored to the problem. The analysis included a
number of different transformers, namely BERT,
XLNet, RoBERTa and ALBERT, as well as sen-
tence embedding transformers, such as SBERT.
After a lightweight model selection procedure,
RoBERTa managed to beat the other models un-
der the metrics imposed by the competition. In-
forming the model about the topic (appropriately
modified based on the stance) has been beneficial
for the overall performance. On the other hand,
supplying the model with information about the
semantic similarity between arguments and key
points through SBERT embeddings gave no par-
ticular advantage. Similarly, changing the type
of pooling of the transformer’s hidden representa-
tions did not result in any notable difference. Af-
ter the evaluation on the external TS, the model
maintained a good behavior under the specified
metrics, which take into account ambiguous non-
labeled data, while getting a low precision on non-
ambiguous data, showing that the metrics may
favor imprecise models. Lastly, the final error
analysis showed how the classification problem
as formulated in the paper may be underspecified
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and that the model should also be informed about
the existence of other key points and arguments.
Moreover, particular errors highlighted the intrin-
sic weaknesses of transformer based models in the
task of key point matching.

Many choices and results of this work have been
determined by computational limitations. With
more computational power, one could improve
the model selection by employing a robust cross-
validation procedure and by testing other valu-
able architectures. Finally, as suggested by the
error analysis, an interesting direction in the key
point matching related research would be to exper-
iment with models that take information regarding
multiple key points and arguments when comput-
ing a match score for a single <argument, key
point> pair.
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Model Type Th Accuracy Precision Recall F1

TR

SBERT paraphrase-mpnet-base-v2 0.666 0.749 0.418 0.535 0.470

BERT
bert-base-uncased 0.459 0.963 0.906 0.918 0.912
bert-large-uncased 0.443 0.96 0.901 0.904 0.903

XLNet
xlnet-base-cased 0.498 0.894 0.752 0.731 0.742
xlnet-large-cased 0.376 0.916 0.791 0.806 0.798

RoBERTa
roberta-base 0.315 0.948 0.877 0.869 0.873
roberta-large 0.264 0.983 0.958 0.959 0.958

ALBERT
albert-base-v2 0.132 0.966 0.92 0.914 0.917
albert-xxlarge-v1 0.697 0.974 0.95 0.923 0.936

VL

SBERT paraphrase-mpnet-base-v2 0.666 0.744 0.430 0.619 0.508

BERT
bert-base-uncased 0.459 0.814 0.542 0.836 0.658
bert-large-uncased 0.443 0.815 0.544 0.827 0.656

XLNet
xlnet-base-cased 0.498 0.89 0.768 0.695 0.73
xlnet-large-cased 0.376 0.851 0.625 0.757 0.685

RoBERTa
roberta-base 0.315 0.87 0.654 0.829 0.731
roberta-large 0.264 0.866 0.626 0.927 0.748

ALBERT
albert-base-v2 0.132 0.847 0.602 0.835 0.7
albert-xxlarge-v1 0.697 0.929 0.799 0.889 0.842

Table 7: Classification results on TR and VL with F1 score optimizing classification threshold in the first phase of
the model selection.


