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Abstract

This paper presents the first neural machine
translator system for the Ayuuk language. In
our experiments we translate from Ayuuk to
Spanish, and from Spanish to Ayuuk. Ayuuk
is a language spoken in the Oaxaca state of
Mexico by the Ayuukji’dy people (in Span-
ish commonly known as Mixes). We use dif-
ferent sources to create a low-resource par-
allel corpus, more than 6,000 phrases. For
some of these resources we rely on automatic
alignment. The proposed system is based on
the Transformer neural architecture and it uses
sub-word level tokenization as the input. We
show the current performance given the re-
sources we have collected for the San Juan
Giiichicovi variant, they are promising, up to
5 BLEU. We based our development on the
Masakhane project for African languages.

1 Introduction

In recent years the efforts to preserve and pro-
mote the creation of NLP tools for the native lan-
guages of the Americas have increased, particularly
addressing the challenges that this endeavour re-
quires (Mager et al., 2018). Machine Translation
(MT) has become one of the main goals to pursue
since in the long term it might offer benefits to
the communities that speak such languages. For
instance, it might provide access to knowledge in
their native language and facilitate access to ser-
vices such legal, medical and finance assistance. In
this work, we explore this avenue for the San Juan
Giiichicovi variant of the Ayuuk language, mainly
because one of the authors is a native speaker of
this variant. To our knowledge there has not been
a construction of such a system for the Ayuuk al-
though other variants' are available in the TW300
Corpus (Agié¢ and Vuli¢, 2019).

In this work we rely in multiple previous work.
At the core of our proposal we follow the steps from

'Coatldn Mixe (ISO 639-3 mco), Ayuuk of the Coatldn
region.

the Masakhane project” which focuses on African
Languages (Nekoto et al., 2020). We also rely on
the following libraries:

* For the automatic alignment of our resources
we use the YASA alignment (Lamraoui and
Langlais)?

¢ For the tokenization we use subword-nmt li-
brary* (Sennrich et al., 2016)

* For the training of our models we use
JoeyNMT? (Kreutzer et al., 2019).

With these tools we developed our code base that
can be consulted online together with the part of
the corpus which is freely available ©.

2 Ayuuk from San Juan Giiichicovi

Ayuukjd’dy can be translated as people of the moun-
tains, most them can be located in 24 municipalities
of the Oaxaca state. They are the native speakers of
the Ayuuk language with approximately 139, 760
speakers in Mexico. The Ayuuk language, which
has an ISO 639-3 code mir, belongs to the mixe-
zoqueana linguistic family. This linguistic family is
composed by the Mixe and Zogue subfamilies 7. In
particular, the Mixe subfamily also includes Mixe
of Oaxaca, Sayula Popoluca and Oluta Popoluca
languages. For Ayuuk there are six main variants of
the language, among these the Mixe bajo to which
the San Juan Giiichicovi variant belongs to. At

https://www.masakhane.io/ (last visited march
2021)

*https://github.com/anoidgit/yasa
visited march 2021)

*https://github.com/rsennrich/
subword-nmt (last visited march 2021).

Shttps://github.com/joeynmt/joeynmt (last
visited march 2021)

®https://github.com/DelfinoAyuuk/
corpora_ayuuk-spanish_nmt

"For further information visit about the mixe-zoqueana
family https://glottolog.org/resource/
languoid/id/mixel284

(last
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this municipality it can be estimated there is ap-
proximately 18, 298 speakers of the variant. It is
important to notice that it is estimated that only
3,205 are monolinguist.

The San Juan Giiichicovi’s Ayuuk variant does
not has a normalized orthography, there are ef-
forts to agree on orthographic conventions how-
ever there are strong positions related to num-
ber of consonants. One of these positions, it is
known as the “bodegeros” position which pro-
poses 20 consonants (see 1b.a) (Willett et al., 2018)
vs “petakeros” which proposes a reduction to 13
(see 1b.b) (Reyes Gémez, 2005). In terms of vow-
els, this variant has six (see 2) which contrast with
the other variants of Ayuuk which can have up to
nine vowels.

(1) a. bchddsgjklmniaprsttswxy’
b. ptkxtsmnwyjlrs’

(2) aeéiou

The following are examples of San Juan
Giiichicovi’sAyuuk these were taken from short sto-
ries recollected and written by Albino Pedro Juan
a native speaker and preserver of the language.

(3) Jantim xyondaak ja koy jadu’un.
The bunny become happy.
El conejo se puso feliz.

(4) Kabék je’e ti y’ok €jy y ok néjné.
When everything become silence.

Cuando todo se silencia.

2.1 Spanish

In the case of Spanish, our system produces trans-
lations in Mexican Spanish which belongs to the
American Spanish variant 3, we identify the lan-
guage by the es ISO-639-1 code.

3 The parallel corpus

For the creation of the parallel corpus we collected
samples from different sources for which there was
a available translation between Ayuuk and Spanish,
see Table 1.

Since we have a diverse source of linguistic
sources it was necessary to normalize the orthog-
raphy. For this we follow the proposal from Sagi-
Vela Gonzalez (2019) who has followed the unifi-
cation of the Ayuuk language avoiding taking sides
on the controversy about the number of consonants.

$https://glottolog.org/resource/

languoid/id/amer1254 (visited, last visited march
2021)

Resource es mir

The bible Open | No open
Songs and poems No open | No open
The Mexican constitution Open | No open
Personal colection of No open | No open
Albino Pedro Juan

Esopo Fables Open | No open
National archive of Noopen | Open
indigenous languages®

Social network? Open Open
The dragon and the rabbit? Open Open®
Phrases translated by author®| Open® Open

% https://github.com/DelfinoAyuuk/corpora_ayuuk-spanish_nmt (vis-
ited March 18th)

b https://mexico.sil.org/es/resources/archives/55868 (visited March
18th)

¢ https://www.manythings.org/anki/ (visited March 18th)

Table 1: Source of data collected

Mainly we made two replacements: 7i/ny and ch/tsy
Some of the works were already aligned, others
not. For those not aligned we created automatic
alignments using the YASA tool (Lamraoui and
Langlais). We discarded all empty and double
alignments. Normalization and automatic align-
ments were manually verified by one of the authors.
The corpus keep differences among both normal-
ization variants: petakeros and bodegeros.

Finally, we randomly split the sentences into
training, development and testing sets. For our ex-
perimentation we created two split versions, one
strict and one random. In the strict version we
use all the phrases from the National archive of
indigenous languages (Lyon, 1980) as a test. Since
these sentences are linguistically motivated and
aim to show linguistic aspects of the language
they tend to be harder to translate; This split re-
sulted in 5, 847/700/912 (train/dev/test). In the ran-
dom split we randomly sample sentences from our
sources, the final split resulted in 5,941/700/912
(train/dev/test). Notice that amount of phrases
among splits changes, this is because after separat-
ing the test phrases, we remove repeated or similar
phrases for the train/dev sets. Our intuition was
to have a more uniform training/validation for the
random split while the test follows the distribution
of the original sources. We mimic this procedure
for the strict sample.

4 Neural Architecture

Our translation model is based on the Transformer
architecture (Vaswani et al., 2017). We use an en-
coder-decoder setting. For our experiments we
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Figure 1: Perplexity and BLEU of es-mir in develop-
ment set.

have two configurations for both encoder and de-
coder:

A Number of layers: 3, number of heads: 4,
Input embedding dimensionality: 64, embed-
ding dimensionality: 64, batch size: 128.

B Number of layers: 6, number of heads: 4,
input embedding dimensionality: 256, embed-
ding dimensionality: 256, batch size: 128.

These models were trained in a server with two
Tesla V100 GPUs. To obtain a model it usually take
us around 2h for a 100 epochs. We also were able
to reproduce the experiments in the Colaboratory
platform.

5 Experiments and results

As described in the previous section we have two
different versions of our splits, strict and random.
Per split we performed five experiments, two for
configuration with fewer layers (A), and three for
the configuration with more layers (B). We also
modified: a) the maximum length of the phrase (50
or 70) b) the vocabulary of the BPE sub-word algo-
rithm (we tested 2000 or 4000). Figure 1 shows the
perplexity and the BLEU score in the development
set during training for the direction Spanish (es) to
Ayuuk (mir). The first part of the Table 2, columns
two to five, presents the results on the development
and test sets.

Figure 2 shows the lerning curve on the direction
of translation Ayuuk (mir) to Spanish (es). The
second part of the table 2, columns six to nine,
presents the results on the development and test for
this translation direction.
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Figure 2: Perplexity and BLEU of mir-es in develop-
ment set.
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Figure 3: Perplexity and BLEU of es-mir and mir-es
training with 250 epochs.

As we can appreciate these sets of experiments
show that the translation is possible. We have some
gains on the model with more layers (B), this is
not trivial since we have a small amount of training
data. On the other hand, the strict split as expected
shows to be very difficult to translate, the BLEU
scores are minimal. However with the random
splits the BLEU scores are more promising. We
also observe there that in the current setting it is
more “easy” to translate from Spanish to Ayuuk
than the other direction. Finally, we perform a
larger experimentation with 250 epochs using the
B configuration, following the intuition we haven
reach the right performance with 100. Figure 3
shows the learning curve on the development set,
the bottom part of Table 2 shows our final results
using the random split.

6 Conclusions and Further work

Previous experiences on MT based on deep learn-
ing architecture, particularly on seg2seq settings,
for native languages of the Americas have not been
promising (Mager and Meza, 2018). In particu-
lar, because there is little to none training data.
However, our work shows that a standard model
based on the Transformer architecture and under
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Configuration A 100 epochs H Strict es-mir | Random es-mir H Strict mir-es

Random mir-es

BLEU dev | test dev test dev | test || dev test
Max lenght 50

BPE 2000 1.72 | 0.05 || 1.66 1.71 0.64 | 0.10 | 0.91 0.66
Max lenght 50

BPE 4000 2.03 | 0.10 || 1.21 1.24 1.02 | 0.16 || 0.93 0.83
Configuration B 100 epochs H Strict es-mir | Random es-mir H Strict mir-es | Random mir-es
BLEU dev | test dev test dev | test || dev test
Max lenght 50

BPE 2000 391 | 0.10 | 3.59 3.70 221 | 041 || 2.49 2.72
Max lenght 50

BPE 4000 5.02 | 0.13 | 4.17 4.20 233 | 0.28 || 2.13 2.23
Max lenght 70

BPE 4000 7.58 | 0.10 || 5.83 5.56 4.03 | 0.27 || 3.64 3.52
Configuration B 250 epochs Random es-mir Random mir-es
BLEU dev test dev test
Max lenght 70

BPE 4000 5.83 5.56 3.64 3.52

Table 2: BLEU scores of es-mir and mir-es.

extremely low resource setting can produce some
results. They are still low for normal standards of
the MT field however they are promising for the
future.

In order to improve the performance of the sys-
tem future work will focus on:

1. Collecting more data, paying attention to other
variants of the Ayuuk language.

2. Although the strict setting strongly penalizes
the evaluation, we will continue using linguis-
tic motivated phrases as a good bar to evaluate
our progress.

3. At this moment we rely on sub-word of the
phrases, however our approach could bene-
fit from a deeper morphology analysis (Kann
et al., 2018).

4. Our normalization will continue respecting
the petakeros and bodegeros positions, and for
other variants we also incorporate positions
regarding the number of vowels.
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