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Abstract

In this paper, we propose an error causal in-
ference method that could be used for find-
ing dominant features for a faulty instance un-
der a well-trained multi-modality input model,
which could apply to any testing instance. We
evaluate our method using a well-trained multi-
modalities stylish caption generation model
and find those causal inferences that could pro-
vide us the insights for next step optimization.

1 Introduction

As machine learning models become more complex
and training data become bigger, it is harder for
humans to find errors manually once some output
went wrong. This problem is exacerbated by the
black box nature of most machine learning models.
When a model fails, it can be difficult to determine
where the error comes from. This is especially true
in problems that are inherently multimodal, such as
image captioning, where often multiple models are
combined together in order to produce an output.
This lack of transparency or ability to perform a
vulnerability analysis can be a major hindrance to
machine learning practitioners when faced with a
model that doesn’t perform as expected.

Recently, more and more people begin to fuse
text and visual information for downstreaming task.
In many cases, these models utilize specialized,
pre-trained models to extract features. In these sit-
uations, it is highly likely that the source of these
errors is from these pre-trained networks either be-
ing misused or not being interpreted correctly by
the larger machine learning architecture. In this
paper, we explore how one would perform a vul-
nerability analysis in these situations. Specifically,
we are interested in identifying model errors likely
caused by these pre-trained networks. Specifically,
we aim to diagnose these errors by systematically
removing elements of the larger machine learning
model to pinpoint what the causes of errors happen

to be. This is especially critical in tasks that uti-
lize multi-modality input models since often these
models utilize attention. If the model attends to
the wrong features, then this error could potentially
cascade throughout the network. In other words,
we seek to answer the question, "Given a trained
model M which has input features x, y, z, if the
current test example is not performing well, is that
because of the given features or not? If it is, which
specific feature is more likely to blame?"

By answering this question, we can give ma-
chine learning practitioners, specifically those who
are inexperienced with machine learning and AI
concepts, some direction in how to improve the per-
formance of their architecture. We summarize our
contributions as follows: 1. we provide a practical
method to discover causal errors for multi-modality
input ML models; 2. we explore how this method
can be applied to state-of-the-art machine learning
models for performing stylish image captioning;
3. Evaluate our method by through a case study in
which we assess whether we can improve the per-
formance of the investigated instance by removing
or replacing these problematic features.

2 Related Work

Our approach to sourcing these errors uses causal
inference (Peters et al., 2016; Hernán and Robins,
2020). In this section, we will review works related
to causal inference as well as works that provided
the inspiration for this paper.

Invariance Principle Invariance principle has
been used for finding general causal for some out-
come under designed treatment process, where
people desired to find actual effect of a specific
phenomenon. Invariant causal prediction (Peters
et al., 2016) has been proposed to offer an practical
way to find casuals under linear model assumption.
It later got extended to nonlinear model and data
(Heinze-Deml et al., 2018). This invariance can be
roughly phrased as the outcome Y of some model



12

M would not change due to environment change
once given the cause for this Y . An example of an
environment change when Y = M(X,Z,W ) and
the cause for Y is X , could be a change on Z or
W . The invariance principle has been popularly
used in machine learning models to train causal
models (Arjovsky et al., 2019; Rojas-Carulla et al.,
2018). We are going to employ the same insight,
using the invariance principle to find cause in our
paper but landing in different perspectives. We are
not intended to train a model, instead, we are going
to use the well-trained models to derive the source
cause for lower performance instances.

Potential Outcome and Counterfactual. (Ru-
bin, 2005) proposed using potential outcomes for
estimating causal effects. Potential outcomes
present the values of the outcome variable Y for
each case at a particular point in time after certain
actions. But usually, we can only observe one of
the potential outcome since situations are based
on executing mutually exclusive actions (e.g. give
the treatment or don’t give the treatment). The
unobserved outcome is called the “counterfactual”
outcome. In this paper we can observe the counter-
factual by removing certain input features from the
language generation based on multi-input task.

Debugging Errors Caused by Feature Defi-
ciencies This paper is also related to debugging
errors from input. While we are more focus on
using a causal inference way to get the real cause
for low performance rather than only exploring as-
sociations (Amershi et al., 2015; Kang et al., 2018)

3 Methodology

The goal of this paper is to perform a causal analy-
sis in order to determine the likely source of errors
in a well-trained model. In the following sections,
we will outline our underlying hypotheses related
to this task and go into details on the task itself.

3.1 Hypothesis

Hypothesis 1: With a fixed model, if the output of
an instance k is unchanged after an intervention, I,
then this is called output invariance. The causes
of the output for this instance k are irrelevant to
the features associated the intervention, I.
Using this output invariance principle, we can iden-
tify features that are irrelevant to the prediction
made. After removing these irrelevant features, the
ones that remain should contribute to any errors
present in the output. Given the strictness of the

output invariance principle, it is often the case that
very few features are identified as the cause of any
error present. In some cases, no features are identi-
fied. In this paper, we are interested in determining
the cause of errors by masking out certain features,
specifically those that are unlikely to be the cause
of an error. As such, we are interested in the spe-
cific case where the removal of certain features
does not cause the performance of the model to
improve. This phenomenon, which we refer to as
output non-increasing will be rephrased below.
Hypothesis 2: With a fixed model, if the output
of an instance, k, after an intervention, I, is either
less than or equal to the original performance of in-
stance k, then this is called output non-increasing.
Then, the features associated with intervention, I,
are likely irrelevant to the cause of any error.
In this paper, we specifically perform interventions
that involving masking/hammering out certain in-
put features. Hammering out features could mean
zero out input features or specific weights, or even
remove certain input modalities, etc.. In this paper
we will change the values of certain input features
f to 0. Then, output is regenerated according to
this new input. If the output is unchanged (or gets
worse), then we will remove this feature f from
the causal features list. Before we perform these
interventions, we first want to identify the errors
which do not relate to any of these features. This
leads to the next hypothesis.
Hypothesis 3: If we hammered out all input fea-
tures and output invariance still holds for instance
k, we will record the cause for instance k hav-
ing lower performance as being due to model and
dataset bias. We will refer to this as bias error.
In this paper, we are interested in more than bias
errors. With this goal, we arrive at our final hypoth-
esis on performing causal inference for identifying
errors.
Hypothesis 4: If the performance of instance k is
poor and the output of instance k is not caused by
bias errors, and if all interventions keep feature f?

unchanged and we still have output non-increasing,
we will say f? is the error feature which causes the
lower performance output for k.
With all of the above hypotheses we can infer
whether the low performance of the instance k
is caused by a single feature f or not. Next we
will show how these hypotheses can be utilized to
identify the causes of errors.
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3.2 Causal Graph: with and without
Hammering out Features

As we know, when we build a model in deep learn-
ing, we always assume a casual graph in advance
and then fit data into the graph for training. Figure 1
shows a sample causal graph (a) with multiple in-
put features. These features will be fit into a black
box model and finally the model will, in this case,
generate some set of output text. Once we have
finished training, we will be able to deploy the
model and see each testing instance’s performance.
With a well-trained model, we can perform many
interventions, or investigate specific features by in-
tervening on them in different environments. In
practice, however, it is impossible for us to obtain
all the random environments. Based hypotheses
3 and 4, along with the steps that people take to
perform causal predictions in linear (Peters et al.,
2016) and non-linear (Heinze-Deml et al., 2018)
situations, we, in this paper, give a more detailed
and practical definition below to help us identify
whether a feature set S is the causal feature set
or not when an instance k having error and this
error is not a bias error defined in hypothesis 3.
Here S could be a feature set composed of a single
feature or multiple features. After hamming out
some features, we call a remaining feature set P as
S’s parental set when S ⊂ P . We denote FS as:
FS = {g(P ) | P is a parental set of S} and

g(P ) =

P if P satisfies output
non-increasing,

∅ otherwise.

Then we could extract the estimated causal fea-
ture set F̂ as:

F̂ =
⋂

F :F∈FS

F (1)

To simply understand above, we basically check
all the parental sets of S on output non-increasing
property to finally make decision on whether S
is an error casual feature set or not. In this pa-
per, we mainly focus on evaluating single feature
set. To better explain, we also display all the in-
terventions (b-h in Figure 1) we have done to the
features (masking out some features) when there
are a total of 3 features in the assumed causal graph.
We will infer the causal feature for a low perfor-
mance instance k based on all of these potential
outcomes before and after interventions. We will
use ox, x ∈ {a, b, c...h} to note the score for output

Figure 1: Displays the causal graph with various sets
of features zeroed out and a red cross mark signifies
zeroing out

generation of graphs in Figure 1. First, we extract
the instances when the error cause is independent
of any features where we find all the instances B,
which satisfy oa == oh. Then the following causal
feature inferences will exclude detected instances
in B first. As we are specifically interested in sin-
gle feature errors, we will enumerate the situation
when causal features are R,C, S for instance k,
respectively. First of all, according to hypothesis
3 and 4, k 6∈ B. The causal feature is S when:
oa >= ob >= oc >= oe; The causal feature is
C when: oa >= oc >= od >= of ; The causal
feature is R when: oa >= ob >= od >= og.

It is important to note that removing an error fea-
ture does not necessarily mean that the performance
will increase, as it is possible that there are other
sources of errors that still keep performance low.
In these rules, we use the "=" sign in its strictest
sense. However, one can always use it in a way that
is interchangeable with "very similar." For exam-
ple, if the difference between two output scores is
10−16, you can choose to regard these two scores
as equal per your needs.

4 Experiment

To show the effectiveness of our approach, we will
examine its performance on a stylish image cap-
tioning task that uses multi-modality feature fusion.
While we focus on this task as an example, this
approach could be applied to many other domains.

4.1 Dataset

We have chosen the dataset and the task based on
three qualities:the work has a well-trained saved
model which we could use for intervention and
inference; this work still has room to be improved
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by identifying and removing the source of potential
errors; the work utilizes multiple input features in
a way that enables removing said features.

Specifically, we choose the work on the 3M
model (Li and Harrison, 2021) for stylish text cap-
tioning. We do this because it relies on generat-
ing captions using several input features includ-
ing pre-trained text features (C), ResNext features
(R), and style information (S) as an input. We
would like to explore whether these input features
have caused problems when instances are under
performing. The dataset we examine is the test
set from the PERSONALITY-CAPTIONS dataset
(Shuster et al., 2019) using in Li and Harrison’s
work along with the pretrained model they provide
1. Even though we use its test set in our experi-
ment, our method could be applied on any set of
data of any size when there is a debugging need for
multi-fusion models. We will leave this for future
work.

4.2 Implementing details

Specifically, we define an instance is under perfor-
mance in 3M (Li and Harrison, 2021) when the
BLEU1 (Papineni et al., 2002) score is lower than
the median BLEU1 value among all testing data.
In total, we have investigated 9981 instances and
4982 of them are classified as under performing.
74 of these have been detected as bias errors. So
finally, 4908 instances have been examined for sin-
gle feature errors.

We first perform causal inference for style fea-
ture and denote those instances that have style error
as Ks. Then perform the causal finding steps for
ResNext and dense captions without differentiat-
ing the order in the remaining instances. The rea-
son to decide such order is due to the structure of
3M, where style is used globally to refine ResNext
and dense captions for later stylish text generations
while ResNext and dense caption have the same
importance for text generations.

4.3 Evaluation

The reason to find the cause for the errors is that
we would like to further improve a model when it
is well-trained or make a remedy when the model
is malfunctioned, especially from the source side.
Thus, we evaluate casual predictions by evaluat-
ing whether we could improve the model’s perfor-
mance by just altering the causal feature. There are

1https://github.com/cici-ai-club/3M

many potential treatments that we could make on
the source side such as data augmentation, feature
replacement, or feature removal. For each instance
k with predicted causal feature f , if its performance
could be improved by improving f , then we will
judge the causal error inference for this instance k
as correct, otherwise incorrect. More details on the
specific interventions we use are outlined below:
Style: (S1) replace current style with 5 other well-
trained styles S, where most instances with style
s, s ∈ S has better BLEU1 score than the medium
BLEU1 score. (S2) remove Style. Dense Caption:
(C1) replace dense caption to ground truth; (C2)
remove dense caption. Resnext: (R1) replace dense
caption to ground truth and then remove Resnext,
where we make sure at least one of the visual fea-
tures is valid. (R2) remove Resnext.

We will record the best output BLEU1 score
after each intervention. If the intervention results
in a higher BLEU1 score than the output prior to
the intervention, then the feature in question will
be marked as the cause of an error. For all the
instances which have been ascribed by a feature f ,
we calculate the percentage of those in which the
BLEU1 score could be improved and report them
in Table 1.

5 Result and Discussion

The result is shown in the Table 1. We see that for
each feature, most of the instances have increased
their performance by improving the predicted fea-
tures. This performance is also a conservative value
as we only did limited feature improvements. For
example, for Resnext, we have no better features
available and, thus, could not do a replacement.
Also in Table 1, the style feature is the most pre-
dicted error causal feature among all three feature
modalities. We have 1041 instances point its per-
formance error towards style. We speculate this is
resulting from the weak training of a certain set of
styles, since the BLEU score can be improved if
replaced with other better-trained styles for 89.4%
of these instances. To further investigate this, we
report the frequency of the styles in those 1041 in-
stances in Figure 2 and intend to see whether the
estimated error styles are distributed sparsely (all
styles are not trained well) or densely (a certain set
of styles is not trained well). From Figure 2 we
can see that many styles repeatedly appear as errors
for various instances, which aligns our speculation.
With these predicted error styles, we can either do
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Table 1: The evaluation result for each feature under
casual inference. Predictions Count are the number of
instances predicted with corresponding feature errors.

Feature Predictions Count Improvement(%)
Style 1041 0.894

Dense Caption 378 0.797
Resnext 300 0.769

Figure 2: The styles are those frequently predicted as
the causal errors; the horizontal bar represents the fre-
quency. Here we select the top 50 styles.

some data augmentation to cover the gap between
training and testing or redesign the training process
to enable the model to focus more intently on these
styles.

6 Conclusion

In this paper, we apply an extended invariance
principle to provide a method for performing error
causal inference. We evaluate our method under on
a stylish image captioning model that uses multi-
modal fusion in its input features. We show that
we could improve the performance of this model
based on simply removing or replacing those found
causal errors. Over 70% of the predicted errors
could be modified to improve performance. Also,
our method is model-agnostic, it could be used for
different fusion model for optimization, debugging
or assessing purpose.
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