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Abstract
We investigate the efficiency of two very differ-
ent spoken term detection approaches for tran-
scription when the available data is insufficient
to train a robust speech recognition system.
This work is grounded in a very low-resource
language documentation scenario where only
a few minutes of recording have been tran-
scribed for a given language so far. Experi-
ments on two oral languages show that a pre-
trained universal phone recognizer, fine-tuned
with only a few minutes of target language
speech, can be used for spoken term detec-
tion through searches in phone confusion net-
works with a lexicon expressed as a finite
state automaton. Experimental results show
that a phone recognition based approach pro-
vides better overall performances than Dy-
namic Time Warping when working with clean
data, and highlight the benefits of each meth-
ods for two types of speech corpus.

1 Introduction

Efforts are made across Australia to preserve, doc-
ument and revitalize Aboriginal languages. These
languages exist primarily in spoken form, and even
if there often is an official orthography available, it
is not widely used by local people. Making record-
ings of speakers has been a widespread practice
for documenting traditional knowledge. However,
such recordings are often not transcribed, making
them hard to access.

Manual transcription is time consuming and
is often described as a bottleneck (Brinckmann,
2009). While automatic speech recognition (ASR)
has seen great improvements in recent years (Povey
et al., 2011; Watanabe et al., 2018), it relies on a
large amount of annotated data. Attempts to build
ASR systems for low-resource languages end up
with high word error rate or single-speaker models
making them of limited use in Indigenous contexts
(Gupta and Boulianne, 2020a,b).

Such methods assume that everything should be
transcribed. Bird (2020) describes a sparse tran-
scription model where we only transcribe the words
we can confidently recognize, using word-spotting,
while leaving the transcription of more difficult sec-
tions for later, perhaps when a speaker is available
(Bird, 2020). Based on this model, Le Ferrand et al.
(2020) proposed a workflow which combines spo-
ken term detection and a human-in-the-loop to sup-
port transcription in under-resourced settings. Such
a workflow avoids the use of a language model
which requires too much textual data, data that
we cannot find in most Aboriginal contexts, and
which only needs a few spoken terms to be anno-
tated. While they show through their simulation the
capability of iterative transcription in remote com-
munities, the precision of their method depends on
the quality of the spoken queries, and the density
of the resulting transcription is limited by the size
of the lexicon.

Automatic phone recognition has seen progress
with minimal data (Gupta and Boulianne, 2020b;
Li et al., 2020). While Bird (2020) argues that pho-
netic transcriptions do not stand in for the speech
data and cannot be segmented to generate the re-
quired higher-level word units, we can nevertheless
view phone transcriptions as a speech encoding,
retaining our commitment to the sparse transcrip-
tion model. Such an approach has an advantage
over traditional query-by-example methods in that
a simple word list can be used instead of a spoken
lexicon which can be challenging to collect. In this
paper we show how this can be done, and compare
it with dynamic time warping (DTW) (Sakoe and
Chiba, 1978) commonly used for keyword spot-
ting for Indigenous languages. We consider both
methods as applied to two very low-resource lan-
guages, Kunwinjku (gup) spoken in the far north
of Australia and Mboshi (mdw) spoken in Congo
Brazzaville.



2 Background

Traditional ASR systems are not well suited to Abo-
riginal languages. The lack of data for such lan-
guages does not allow us to train an acoustic model
or a language model. Additionally, the type of data
usually recorded is often spontaneous and noisy
which makes it difficult to transcribe, regardless of
the amount of annotated data available.

Bird (2020) describes the sparse transcription
model, which combines spoken term detection with
a human-in-the-loop, in an iterative process. Using
spoken term detection as a transcription method
allows us to avoid traditional components of an
ASR system, specifically the language model, to
focus only on the recognition of isolated words.

Traditional Spoken Term Detection systems rely
on text-based search in lattices extracted from ASR
systems (Lleida et al., 2019; Saraclar and Sproat,
2004). Attempts to train ASR systems in low-
resource contexts have so far provided poor results
for single speaker systems (Gupta and Boulianne,
2020a,b). This makes traditional spoken term detec-
tion approaches questionable in very low-resource
settings. A few papers linked to the Babel Project
have explored lattice search using ASR systems
trained in low-resource settings (Gales et al., 2014;
Rosenberg et al., 2017). However, they work with
much larger data collections than what is available
in Indigenous contexts.

Query-by-Example methods have been preferred
in very low-resource contexts since they only rely
on acoustic comparison between spoken queries
and utterances. Le Ferrand et al. (2020) explore
feature representation using DTW in an iterative
pipeline following the sparse transcription model
(Bird, 2020), and have been able to transcribe up to
42% of a lexicon in their speech collections. This
method, however, has shown limitations in terms
of robustness in the face of speaker variability. Re-
search around speech features for spoken term de-
tection has explored the use of bottleneck features,
or the hidden representation of an auto-encoder
(Menon et al., 2019; Kamper et al., 2015, 2020).
Such research highlights the benefits of multilin-
gual approaches for spoken term detection when
transcribed data are limited in the target language.
Others have exploited neural approaches to train
word classifiers from word pairs using a Siamese
loss (Settle and Livescu, 2016; Settle et al., 2017),
however pairs of words are required, limiting the
selection to words that can be searched.

Query-by-example relies on a spoken lexicon
and, by extension, a comparison between two
acoustic vectors. A difference of speakers or
recording channel between the query term and the
speech collection has an influence on the likeli-
hood of a given term to be retrieved. Moreover,
a spoken lexicon is not simple to gather and this
therefore limits the amount of terms we can re-
trieve. Using a lexicon made of terms recorded in
isolation for spoken term detection purposes will
lead to poor precision. Another solution would
be to manually extract the terms of the lexicon
from a speech collection which is time-consuming.
Phone recognizers, like ASR systems, also need a
few hours of annotated speech to provide accept-
able performance (Gupta and Boulianne, 2020b;
Adams et al., 2018). However, recent work has
shown how multilingual phone recognizers can be
fine-tuned with minimal data to work on a new lan-
guage (Li et al., 2020). Raw phone transcriptions
are hard to obtain as they require the skills of a
trained linguist, and they cannot help directly for
retrieving higher level-units (Bird, 2020). However,
the orthography of most Indigenous languages is
based on their phonology and there is usually a
simple mapping from graphemes to phonemes can
be obtained to train a phone recognizer, even with
a shallow knowledge of the phonology. A spoken
term detection method based on a phone recog-
nizer could allow us to rely only on written queries
following a traditional lattice-search method.

3 Methods

We begin with a lexicon of size s consisting of au-
dio clips of spoken words, along with orthographic
transcriptions, plus a speech collection in which
more instances of those words may be found.

Two spoken term detection approaches, involv-
ing a multilingual component, are investigated here:
(a) a baseline method based on DTW applied on
multilingual BottleNeck Features (mBNF); and
(b) a method based on a textual search in phone con-
fusion networks extracted from a universal phone
recognizer (P2W).

3.1 Baseline: Sparse Transcription using
DTW

We first extract acoustic features from both the cor-
pora and lexicons. Based on general performance
scores reported in the literature, and in order to
compare our method with another multilingual ap-



proach, we have chosen multilingual bottleneck
features. These are extracted from a model trained
on the Babel corpus and consist of 80 dimension
acoustic vectors. They have been extracted with
the Shennong library.1 We slide each term of the
lexicon along the utterances of the corpus with a
step size of 30 milliseconds. We then select the
best matches for each utterance-word pair based
on DTW distance and retain all matches above a
threshold m for evaluation.

3.2 Sparse Transcription using Phone
Recognition (P2W)

Li et al. (2020) introduced Allosaurus, a univer-
sal phone recognition system which combines a
language independent encoder and phone predic-
tor, and a language dependent allophone layer
with a loss function, associated with each lan-
guage (Fig. 1). Allosaurus models are trained using
standard phonetic transcriptions and the allovera
database (Mortensen et al., 2020), a multilingual
allophone database that can be used to map al-
lophones to phonemes. The model first encodes
speech with a standard ASR encoder which com-
putes the universal phone distribution. Then an
allophone layer is initialized with the allophone
matrix and maps the universal phone distribution
into the phoneme distribution for the given target
language. The resulting model can be fine-tuned
and applied to unseen languages.

Figure 1: Allosaurus model (Li et al., 2020)

In the current context, since we only have an or-
thographic transcription for Kunwinjku, we translit-
erate it into IPA with the mapping shown in Table 1.
The transcription contains some English words
which will be mapped as if they were Kunwinjku
words (e.g., school is written /sPkool/ instead of

1https://docs.cognitive-ml.fr/shennong/

graphs a b d h e i ch y o k dj s r rr
phones A b d P E i S j O k é s õ r
graphs ng rd rl nj rn u f l m n w p t
phones N ã í ñ ï u f l m n w p t

Table 1: Grapheme to phoneme mapping for Kunwin-
jku

/skUl/). For Mboshi, the orthographic transcription
already mostly matches the corresponding phonetic
transcription.2

We fine-tuned the original pretrained model with
the training and validation subsets described in Sec-
tion 4 following the mapping described above, re-
sulting in one new phone recognition model per
language. We used the resulting models to automat-
ically extract phones in confusion networks from
the validation and test sets of the two languages
(Mboshi and Kunwinjku) (Fig. 3).

The graph extracted is a confusion network
(confnet) and consists of a size s sequence of
phones and the top k likely alternatives for each
phone (see Fig. 3). For each phone in the graph
a probability score between 0 and 1 is assigned.
We also map the lexicons into phones and convert
them into a finite state automaton (FSA) in which
each final state corresponds to the end of a given
word (Fig.2). We explore, in the confusion net-
works related to our collection, every path which
corresponds to a valid transition in the FSA and
has a probability strictly greater than zero. If a path
reaches a terminal state in the FSA, we extract the
word and a score corresponding to the mean of the
accumulated likelihood scores. Like the baseline
with DTW, we then select the best match for each
pair utterance/word pairs based on the likelihood
score and keep for evaluation the matches above a
threshold n. For both systems, we do not keep for
evaluation the pairs which correspond to the query
instances used to build the lexicons.

4 Data

We are using a corpus of spontaneous speech in
Kunwinjku built from several sources. The train-
ing, validation and test set are described in Table
2. The training and validation sets are built from
transcribed recordings made for language descrip-

2The tones are marked in the orthographic transcription
but this feature is not taken into account in the Allosaurus
model. We thus decided to treat the orthographic transcrip-
tion as a phonetic transcription so the accentuated vowels are
considered as new phones.



Figure 2: Example of lexicon converted into a FSA

Figure 3: Example of search in a graph confusion net-
work

tion purposes around language and emotion. They
also contain some recording of guided tours of an
Aboriginal town. The test set contains exclusively
guided tour recordings. The orthographic transcrip-
tion has been force-aligned using the MAUS forced
aligner (Kisler et al., 2017). The train and valida-
tion sets contain the same 5 speakers and the test
set has a non-overlapping set of 5 speakers.

We are also using a corpus of Mboshi speech
which consists of 4.5 hours of speech elicited from
text with orthographic transcription and a forced
alignment at the word level (Godard et al., 2017).
Training, validation and test sets have been ex-
tracted from the corpus and are described in Table
2. The same three speakers are represented among
the three partitions.

The lexicon queries (for spoken term detection)
are made of 100 words for Mboshi and 60 words
for Kunwinjku. We randomly selected in the test
set words which occur at least 3 times in the cor-
responding corpus. For each word, we manually
selected examples clearly pronounced, respecting
the speaker distribution of the test set (Table 3 and
4), and clipped them out.

Partitions train valid test
Kunwinjku 35min45 7min39 19min43
Mboshi 21min10 10min03 3h56min

Table 2: Partition duration

Speaker RB TG GN SG MM
Distribution 10% 25% 15% 38% 12%

Table 3: Speaker distribution across Kunwinjku lexicon

Speaker AB KO MA
Distribution 63% 33% 4%

Table 4: Speaker distribution across Mboshi lexicon

5 Results

5.1 Phone Error Rate (PER)

We first evaluate the PER for both languages on
the validation set. For Kunwinjku the PER started
at 55.45%, and we obtained 38.82% after the sys-
tem early stopped at the 24th epoch. For Mboshi
the PER started at 59% and reached 38.72% at the
29th epoch. Although the PER is low consider-
ing the small amount of data used for fine-tuning
Allosaurus, we would expect a bigger difference
between Kunwinjku and Mboshi considering that
Mboshi is read speech without foreign words and
Kunwinjku is spontaneous speech containing En-
glish words. To estimate the performances for each
language, we computed the PER on the test set
between the top 1 phones generated by Allosaurus
and the gold standard. For Kunwinjku the PER is
at 39% and for Mboshi at 44%.

5.2 System performances

We evaluate the proposed methods using precision,
recall and F-score.

We provide for each language the scores based
on a threshold that is optimized on the respective
validation sets. For the P2W method, the optimized
threshold is set at 0.77 for Kunwinjku and 0.631
for Mboshi. For the DTW baseline, it is set at 0.217
for Kunwinjku and 0.174 for Mboshi. The results
are detailed in Table 5. In Mboshi, the method out-
performs the baseline with DTW with recall and
precision. In Kunwinjku, the method does not out-
perform the baseline in terms of F-scores. We can
see that while the baseline brings more candidates
than P2W, our method is more precise. While it is
clear that a phone recognition based method pro-
vides better overall performance on clean speech,
the gap between the F-scores of each method in
Kunwinjku is small which can make them both
beneficial.

The Kunwinjku corpus contains spontaneous
speech. We can observe elision phenomenon and
fast speech which are not well supported by an ap-
proach based on recognition of canonical, lexical
phone sequences. Figures 4 and 5 show that, while
our approach seems to be more consistent across



Figure 4: F-scores for Mboshi with variable thresholds
on validation set

Figure 5: F-scores for Kunwinjku with variable thresh-
olds on the validation set

recall precision F-score
DTW mb 14.55% 20.46% 17.01%
P2W mb 22.61% 45.97% 30.31%
DTW kun 42.09% 22.81% 29.59%
P2W kun 17.41% 62.50% 27.23%

Table 5: Performance of spoken term detection on the
test set with the optimized threshold

thresholds, it is less efficient than DTW for noisy
and spontaneous speech corpora.

We present in Table 6 the top 5 false positives
across methods and languages. We could only re-
port the top 4 for P2W in Kunwinjku since most
of the errors were isolated cases. We can see for
P2W that the errors are made between very similar
words. For Mboshi, the top 5 only includes tonal
differences between the query and the hit. For
Kunwinjku, the errors are made between similar
words, some of which are morphologically related

(balanda (man), balandaken (of the man); karrire
(we-INCL go), ngarrire (we-EXCL go)). For DTW,
the errors are not as consistent and the hits seem to
only match subparts of the query terms (wa, wáre;
marnbolh, bonj).

5.3 Speaker analysis

Le Ferrand et al. (2020) pointed out the limitation
of their method in terms of cross speaker spoken
term detection. To compare the two approaches on
this aspect, we analyze each true positive that is out-
put by each system: we check if the word matched
is pronounced by a same or different speaker that
the query term. Even if we only use the written
forms of the queries for P2W, we also make the
same analysis.

Figure 6: Proportion of same-speaker/different-speaker
retrieval in Kunwinjku

Figure 7: Proportion of same-speaker/different-speaker
retrieval in Mboshi

Figures 6 and 7 present the proportion of spo-
ken terms retrieved from same-speaker or different-
speaker For a fair comparison, we also compute the
distribution of same/different speaker between the
lexicons and all the words to be retrieved in the cor-
pora (reference). We can see that P2W method
follows the general distribution in the corpora
while the baseline DTW retrieves mostly terms
pronounced by the same speaker.



Mboshi P2W Kunwinjku P2W Mboshi DTW Kunwinjku DTW
Query Hit Query Hit Query Hit Query Hit
ádzá ádza balanda balandaken abvúa wa munguyh bonj
ádzá adzá birrimarnbom birrimanbun mwána wa kahdi konhda
ngala ngalá mani yiman mvúá wa kunak konhda
ngaa ngáa karrire ngarrire wáre wa kunred konhda
okándá řkándá ngaa ngá marnbolh bonj

Table 6: Top 5 false positives

6 Combining the methods

We mentioned in Section 2 that DTW and P2W
each have their own strengths. As we know, DTW
will cope more easily with spontaneous speech and
co-articulation effects such as assimilation and eli-
sion. Phone recognition allows us to avoid gather-
ing spoken queries and retrieving terms with exact
matching between written forms. To highlight the
complementarity of the methods, we analyse the
intersection of their true positives in Figure 8. We
show that across both corpora the intersection of
the true positives is small, and so combining the
two methods can help us increase the coverage of
the transcription to reach up to 49.99% for Kun-
winjku and 32.16% for Mboshi.

Figure 8: Relative coverage of the combined methods

We analysed the most common terms retrieved
by DTW which have been ignored by P2W. For
Kunwinjku, the glottal stop and doubled conso-
nant are the phones the least properly recognized
(wanjh written wanj kunwardde written kunwarde
for example). More generally, since the data used
in Kunwinjku is spontaneous speech, most of the
missed hits by P2W are due to highly mistaken
phone transcriptions by allosaurus. For Mboshi, be-
yond the main easily-confusable phones (o / ω, e /
ε for instance) the main missed hits are due to tones
or long vowels not being correctly recognized.

The baseline provides a match for every utter-
ance/query pair if no threshold is applied. However,
since P2W is restricted by the phones output by the

phone recognizer, we have a limited amount of
candidates regardless of the threshold. As men-
tioned before, this has the advantage of being more
precise, but can easily miss a match if the phone
lattices contain many mistakes. In view of this,
we combine the two methods as follows. For each
utterance/query pair brought by P2W, we first keep
for evaluation the candidates which have a score
greater than the P2W threshold. Then we send to
evaluation every pair having a distance less than
the DTW threshold. We provide in Table 7 the re-
sults for the same optimized thresholds mentioned
before.

recall precision F-score
comb mb 24.89% 45.54% 32.19%
P2W mb 22.61% 45.97% 30.31%
comb kun 35.76% 31.48% 33.48%
P2W kun 17.41% 62.50% 27.23%

Table 7: Performance of the combined methods

The described way of combining the methods
outperforms both P2W and DTW approaches in
terms of F-score. For Mboshi, we can observe a
small increase of the recall with a precision barely
affected. For Kunwinjku, the results are less clear.
While the F-score outperforms both the baseline
and P2W, combining the methods double the recall
but decreases by half the precision.

7 Conclusion

This paper compares two methods of spoken term
detection, one based on DTW with bottleneck fea-
tures, and one based on on phone recognition.
Both methods have been applied on two very low-
resource languages, namely, a corpus in Mboshi
recorded in a controlled environment, and a corpus
of spontaneous speech in Kunwinjku recorded in
remote communities. Experimental results shown
that a few minutes of transcribed speech can be



used to fine-tune a universal phone recognizer.
Then searching terms in a confusion network with
a lexicon expressed as a FSA outperforms the base-
line for Mboshi but not for Kunwinjku.

A text-based approach has the advantage over
traditional Query-by-example that a set of written
queries is easier to gather than spoken queries. Fur-
ther analysis has shown that the proposed phone
recognition approach is more robust to speaker vari-
ability and tends to be more accurate than DTW
overall. However, the baseline seems to have a
better coverage over the corpora and to be more
suitable with noisy data.

One method relies on canonical orthography
while the other relies on acoustic comparison. Both
methods have their own benefits depending on the
type of data they are applied to. Experimental re-
sults have shown that it is possible to take advan-
tage of both methods to increase the overall recall
while maintaining precision at an acceptable rate.
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